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Abstract 

 
Different datasets can be used to calculate the cropped areas. These datasets range from Statistical to Physical 

Measurements and Remotely Sensed. In this study, remotely sensed images were used to identify the cropped 

areas. RS GIS based Google Earth platform as a mechanical meeting is implemented to sign in unique id regard at 

each perception area Normalized Difference Vegetation Index (NDVI) the use of Reflectance and intensity of 

specific limits of data and data collecting instruments Photo-misleadingly Active Radiation (PAR), Fractional 

Absorbed PAR (fPAR), Absorbed Photo Synthetically in Bahawalpur and Rahim yar khan. The effects are 

differentiated this observe hopes to convert into the laying out for development of collect assessment from 

cautious and quantifiable to far flung spotting techniques in Pakistan. 
 

* Corresponding Author: Sumaira Hafeez  sumaira.gis@gmail.com 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

International Journal of Agronomy and Agricultural Research (IJAAR) 

ISSN: 2223-7054 (Print) 2225-3610 (Online) 
http://www.innspub.net 

Vol. 21, No. 6, p. 18-27, 2022 

 



Int. J. Agron. Agri. R. 

 

Hafeez et al.                                                                                                                        Page 19

Introduction  

Google Earth Engine is a geospatial data handling and 

administering service. With Earth Engine, one can 

perform geospatial handling at scale, fueled by Google 

Cloud Platform. Yield assessment are routinely settled 

on certified assessments applied at some real data 

sets made open several time spans after assemble 

collecting (Zhang, 2016; Shao, 2015; Johnson, 2017). 

The Normalized Difference Vegetation Index (NDVI) 

(Mulianga, 2013; Son, 2014; Bulaghi, 2008) is the 

most frequently utilized distinction file. The collect 

advancement models use lists determined from 

somewhat detected information to concentrate on 

crop improvement at various stages and their yield 

(DeWit, 2012; Jin, 2017; Xie, 2017). The harvest 

improvement cycle and yield can be precisely 

reproduced relying on exact model wellsprings of 

data, including air conditions, soil conditions and 

agrarian organization measures (Huang, 2015; Cheng, 

2018). As of now, crop advancement models are for 

the still up in the air by field information and are 

difficult to add to a local pattern where there is a 

shortfall of geographical accumulated data (Silvestro 

et al., 2017; Zhao, 2013).  

 
Materials and methods 

Research Significance 

• To devise remote sensing methods for estimation 

of rice cropped area in the districts of Bahawalpur 

and Rahim Yar Khan. 

• To devise methods for estimating rice crop produce 

in the districts of Bahawalpur and Rahim Yar Khan.  

• To automate the procedure of above calculations 

for further development of the algorithm for scaling 

at a regional and national level. Google Earth Engine 

shall be used to implement this task 

 
Study Area 

Bahawalpur is organized 889 kilometers for the most 

part contribute towards the many crops of Pakistan. 

Outright district of the area is surveyed to connect 

with 25 thousand square kilometers with a general 

population thickness of 150 people for each square 

kilometer. The Rahimyar khan District is 

fundamental district. It is a piece of the Bahawalpur 

Division. The District consists water areas to forsake 

locales. The notable transformation of the five 

streams, Panjnad, is in like manner a piece of the 

Rahimyar khan District. Ordinary level more than 

mean sea level is 586 ft. The hard and fast district of 

the area is represented to connect with 13 thousand 

square kilometers with a general population thickness 

of 420 people for each square kilometer. 

 

 

Fig. 1. District map of Bahawalpur. 

 

 

Fig. 2. District map of Rahimyar khan. 
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Layour 

 

 

Role of Google Earth Engine and Remote Sensing 

By using Google Earth Engine, everyone can do 

geospatial taking care of at scale, powered by Google 

Cloud Platform. Google Earth Engine should be visible 

as a superior execution figuring foundation containing 

numerous APIs for managing geospatial information or 

it tends to be seen as an application server for serving 

clients' numerous intuitive applications. Earth Engine 

is a phase for representation of logical information. The 

Earth Engine adds a large number of symbolisms at 

various handling levels to its datasets consistently 

which empower the researchers to do upgraded 

information mining at a worldwide scale. Sentinel-2 

was sent off by the European Space Agency. It conveys 

high goal payload equipped for catching information in 

various phantom groups. It has a wide area inclusion 

(290 kilometers).  

 

 

Data Acquisition 

Every element is the polygonal quarter encased 

through inner cutoff factors and out of doors beaches 

in which applicable, and numerous international 

locations incorporate numerous features, one for 

every disjoint region. All of the 180,741 blueprints are 

part of the region of one of the 284 international 

locations depicted on this dataset 

 

 

 

 

Fig. 3. LSIB country boundaries.  

 

 

Fig. 4. SAR data. 

Collection of MODIS Landuse and 

Landcover Data 

Filtering the Satellite Image Collection 

Based on the Year of Requisite Crop 

Clipping and Filtered Dataset to the 

Study Area 

Generation of Yearly Landuse Raster 

Collection of synthetic 

aperture radar data 

with 10m spatial 

resolution 

Filtering the satellite 

image collection based on 

the requisite crop sowing 

temporal window  

Clipping and mosaicing the 

filtered dataset to the 

selected study area 

Classification of Dry and 

Wet Areas Based on 

Percenntile 

Collection of Sentinel 2 Data 

Filtering the Satellite Image 

Collection Based on the 

Requisite Crop Sowing 

Temporal Window  

Clipping and Mosaicing the 

Filtered Dataset to the Study 

Area 

Calculation of NDVI 
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Fig. 5. MODIS global land cover.  

 

Results and discussions 

Land Cover Classification 

land cover grouping is a fundamental piece of 

distinguishing proof of yields through remote 

detecting. Because of un-accessibility of a public data 

set. The information used in the ongoing review was 

gathered from various resources  

 

Wet and Dry Areas Estimation 

The wet regions were distinguished utilizing the most 

minimal tenth percentile of the backscatter saw by the 

satellite. The dry regions were distinguished utilizing 

the most noteworthy tenth percentile of the 

backscatter saw by the satellite. It was seen that 

because of the calculation being applied to individual 

pictures, rather than the mosaic in general.  

 

 

Fig. 6. 10th percentile wet area.  

 

Fig. 7. Land use classification.  

 

 

Fig. 8. 10th percentile dry areas. 

 

Identification of Wet Rice Zones 

The rice regions characterized by most noteworthy 

likelihood were recognized by taking away the 

presumably wet regions from the most likely dry 

regions utilizing straightforward picture deduction. 

Individual picture mosaic lines were again seen 

because of the way that pictures are mosaic-ed after 

the estimation work has been applied. 

 

NDVI Calculation 

To produce the NDVI of the review region in the 

harvest planting fleeting window, comparative strategy 

for handling the Sentinel 2 information is utilized. Be 

that as it may, for this situation Near Infrared (NIR) 
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and Red (R) groups are utilized for computing the 

standardized distinction vegetation list. 

 

 

Fig. 9. Probable wet rice field areas.  

 

 

Fig. 10. NDVI calculated in sowing period. 

 

Wet Zones for Cropped Zones 

The likely wet rice, right off the bat, fields were 

joined. The outcomes got from the explained for an 

enormous scope in maps (Kuri, 2014; Ban, 2017; 

Holzman, 2014). 

 

Land Use, Wet Areas and NDVI for Cropped Areas 

As revealed by different researchers, a NDVI of under 

1 at the time planting can be utilized. A similar model 

was used to sift through all the area having NDVI is 

more noteworthy than one at the time-frame of the 

yield being contemplated. 

�_��� Processing and Mapping 

Albeit the Google Earth Engine allows us to finish the 

coping with without imagining the statistics, the 

imported statistics from numerous satellites is first 

imported and its genuineness is checked by 

envisioning something very similar. Since the f_PAR 

dataset is imported as an assortment, a middle of the 

gathered information is pictured by adding the 

assortment into the guide (Bandaru, 2013; Lobell, 

2003; Xin, 2013). 

 

Fig. 11. Probable wet rice.    

 

 

Fig. 12. NDVI filtration.    
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Fig. 13. Median f��	.  

 

Photo synthetically Active Radiation (PAR) 

The net shortwave radiation transition is separated from 

the information and scaled regarding the hypothesis. 

The said information is acquired with a fleeting goal of 

multi month, and is cut to the limit of the review region 

(Bandaru, 2013; Lobell, 2003; Xin, 2013). 

 

Wind Power 

Crop Biomass is then determined utilizing the google 

earth engine pictures registered over the yield time 

duration. Pictures from fleeting assortment of google 

earth engine are then aggregated into a solitary 

picture assortment, arranged with the duration of the 

assortment alongside the light use proficiency. A 

visual portrayal where blue regions address the fields 

with the most elevated biomass gathered though red 

regions address least biomass amassing. 

 

 

Fig. 14. Median net shortwave flux.  

 

Fig. 15. Monthly APAR.  

 

 

Fig. 16. Accumulated biomass. 

 

The results obtained using the novel approach differ by 

the estimated amounts of crop reporting service, Punjab 

by -3% in identification of rice cropped area and 28.8% 

for the crop produce achieved from said areas.  

 

Table 1. Summary of Results for the Year 2018-2019. 

Description 

Crop 
Reporting 
Service, 
Punjab in 
the year 
2018 

Statistics 
gathered 
from current 
study in the 
year 2018 

Percentage 
Difference 

in 2018 

Area cropped 
for Rice in 
Study 
Districts 

307.6 sq. 
km 

298 sq. km -3% 

Estimated 
Produce 

65.39 
Thousand 
Tonnes 

84.24 
Thousand 
Tonnes 

28.8% 
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Same algorithm was applied for the year 2019-20. A 

difference of -36% in identification of crops and -17% 

in produce was observed.  

 

Table 1. Summary of Results for the Year 2019-2020. 

Description 

Crop 
Reporting 
Service, 
Punjab in 
the year 
2019 

Statistics 
gathered 
from current 
study in the 
year 2019 

Percentage 
Difference 

in 2019 

Area cropped 
for Rice in 
Study 
Districts 

339 sq. km 214 sq. km -36% 

Estimated 
Produce 

73.56 
Thousand 
Tonnes 

60.84 
Thousand 
Tonnes 

-17% 

 

Since the algorithm developed can be applied to any 

year by only changing the year of study in the code, 

results for the year 2017-2018 were also obtained and 

are summarized in table 

 

Table 2. Summary of Results for the Year 2017-2018. 

Description 

Crop 
Reporting 
Service, 
Punjab in the 
year 2018 

Statistics 
gathered 
from 
current 
study in the 
year 2018 

Percentage 
Difference 

in 2018 

Area cropped 
for Rice in 
Study 
Districts 

307.4 sq. km 182 sq. km -40% 

Estimated 
Produce 

58 Thousand 
Tonnes 

58.46 
Thousand 
Tonnes 

0.8% 

 

Conclusions 

The fPAR statistics assembled from remotely sensed 

data sets. While overseeing crop fields at a greater 

confined size, this dataset brought on issues; 

However, it's far predicted that for a survey location 

having diverse yields with a more property district, 

the computation will paintings perfectly, but that isn't 

always what goes on whilst overseeing farms on a 

community or public scale. The evaluation of 

transferring closer to solar organized from the 

remotely sensed imagery is furthermore at a low 

spatial goal of round 1km; which once more impacts 

effects from fields in which property sizes are in or 3 

segments of land, maximum perfect situation. 
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