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Abstract 
 
The physiological effect of drought on the 30-days-old Triticumaestivum plants was assessed and the alleviating 

role of seaweed extracts (Sargassumlatifolium, Ulvalactucaandtheir mixture) on drought stress was evaluated. 

Drought treatment (40% and 20% field capacity) resulted in a significant decrease in some growth criteria, 

photosynthetic pigments and activity. Furthermore, it led to oxidative stress and increased cell membrane 

leakage in the stressed wheat plants and resulted in the increase of antioxidant (enzymatic and non-enzymatic) 

defense mechanism. Pretreatment with seaweed extract of Sargassum (1.5%) or Ulva (1%) led to the alleviation 

of the above mentioned damaging effects of drought on Triticumaestivumduringvegetative stage while a mix of 

the two types of seaweed extracts resulted in antagonistic effect. Seaweed extractof Sargassumor Ulva 

antagonizes the oxidative damaging effects of drought not only directly through activating the antioxidative 

system, such as catalase, peroxidase and ascorbate, but also  through providing hormones and micro nutrients 

essential for wheat growth.  
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Introduction 

Drought stress induces several physiological, 

biochemical and molecular responses in crop plants, 

which would help them to adapt to such limiting 

environmental conditions (Arora et al., 2002; 

Shehabet al., 2010). Drought impacts include growth, 

plant structure, membrane integrity, pigment 

content, tissue osmotic potential and the antioxidant 

defense mechanism and photosynthetic activity 

(Benjamin and Nielsen, 2006; Duanet al., 2007; 

Praba et al., 2009).The susceptibility of plants to 

drought stress varies depending on thestress degree, 

different accompanying stress factors, plant species, 

and their developmental stages (Demirevskaet al., 

2009). At the physiological and metabolic levels, 

drought causes inhibition of shoot growth, 

adjustment of leaf area, stomatal closure and 

reduction of transpiration, inhibition of 

photosynthesis, shifts in carbon and nitrogen 

metabolism, synthesis of compatible solutes, and 

secondary oxidative stress (Xoconostle-Cázareset al., 

2011). 

 

Drought induces oxidative stress in plants by 

generation of reactive oxygen species (ROS) such as 

O2−, H2O2 and OH• radicals which can directly attack 

membrane lipids and increase lipid peroxidation and 

the content of malondialdehyde (MDA) which is 

considered as an indicator of oxidative damage 

(Mittler, 2002; Moller et al., 2007; Farooq et al., 

2009).To keep the levels of active oxygen species 

under control, plants have non-enzymatic and 

enzymatic antioxidant systems to protect cells from 

oxidative damage (Mittler, 2002).The non-enzymatic 

antioxidants include  β-carotenes, ascorbic acid (AA), 

α-tocopherol (α-toc)and reduced glutathione 

(GSH),while the enzymes include superoxide 

dismutase (SOD), guaiacol  peroxidase (POD), 

ascorbate peroxidase (APX), catalase (CAT), 

polyphenol oxidase (PPO) and glutathionereductase 

(GR) (Xuet al., 2008). The balance between ROS 

production and activities of antioxidative enzymes 

determines whether oxidative signaling and/or 

damage will occur (Moller et al., 2007). The capability 

of scavenging ROS and reducing their damaging 

effects may correlate with the drought tolerance of 

plants (Tsuganeet al., 1999). 

 

Seaweeds are macroscopic algae, growing in intertidal 

and subtidal regions of the sea, and serve as an 

excellent source of food, fodder, fertilizer, and 

industrial raw material (Parthiban et al., 2013). 

Recently, bioactive substances extracted from marine 

algae are used in agricultural and horticultural crops 

as bio-fertilizers to improve their yield and quality 

and to reduce the negative environmental impact 

(Houssien et al.,2011). Seaweeds provide an excellent 

source of bioactive compounds such as essential fatty 

acids, vitamins, amino acids, minerals, and growth 

promoting substances. They have alsobeen reported 

to stimulate the growth and yield of plants (Bhasker 

and Miyashita, 2005), enhance antioxidant 

properties, and develop tolerance to drought stress 

(Spann and Little, 2011). 

 

Although numerous studies have been carried out on 

the taxonomy, distribution, photochemistry and 

antibacterial activities of seaweeds, little work has 

been done on the influence of their extracts on the 

growth of wheat grown under drought stress. 

Therefore this study was planned to determine the 

effect of priming of wheat grains by presoaking in the 

extract of Sargassumlatifolium,Ulvalactucaand their 

mixture and grow under drought stress during the 

vegetative stage through recording some changes in 

the photosynthetic pigments and activity and some 

enzymatic and non- enzymatic antioxidant defense 

mechanism. 

 

Materials and methods 

Growth conditions and treatments 

Grains of wheat (Triticumaestivum cv. Gemeza 9) 

were supplied by the Egyptian Ministry of Agriculture 

and selected for apparent uniformity of size and 

shape. Sargassumlatifolium was collected from the 

shore of AlTor City (28° 14’61” N; 33° 37’05” E) 

during November, 2013; while the 

seaweedUlvalactuca(sea lettuce) was collected from 

the National Institute of Oceanography and Fisheries 

from Suez Bay (29°58’10” N- 27°38’39” N; 
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32°21’43”E-34° 05’46”E).The collected algal species 

were identified according to Nasr (1940) and Jhaet al. 

(2009). 

 

Wheat grains were washed with distilled water and 

divided into four groups.Each group was sown in 

plastic pots (40 cm diameter and 45 cm depth) 

containing 20 kg untreated clay-sandy soil (2:1 w/w); 

5 pots were used for each treatment and 10 grains 

were sown in each pot. The first group of grains was 

pre-soaked in water for 3 h and considered as control. 

The second, third and fourth groups were pre-soaked 

for 3 h in 1.5% Sargassumlatifolium extract, 1% 

Ulvalactuca extract and a mixture of both, 

respectively. 

 

The grains were left to germinate and grow at the 

normal environmental conditions of 16/8 h. 

light/dark, at 25/15 ± 2 °C day/night, respectively and 

relative humidity of 65% and irrigated with tap water 

twice a week during their growth season. 

 

The drought stress was applied by calculating 60%, 

40% and 20% of the full field capacity (100% soil 

saturation with water). After 14 days of growth, the 

pots were irrigated every 5 days with 60% field 

capacity for the control, 40% field capacityas drought 

1 (D1) or with 20% field capacity  as drought 

2(D2).The 30-day old vegetative were collected for 

sampling. 

 

Physiological analyses 

Growth criteria as (root depth, shoot height, fresh and 

dry masses of root and shoot, and leaf area) were 

measured.The photosynthetic pigments, chlorophyll a 

(chl a), chlorophyll b (chl b) and carotenoids (carot.) 

were determined in the leaves of the 30-day old 

plantsaccording to Arnon (1949) for chlorophylls and 

according to Horvath et al. (1972) for carotenoids as 

adopted by Kissimon (1999). Photosynthetic activity 

(Fv/Fm) of dark-adapted leaves was measured with 

OS-30 p chlorophyll fluorometer (Hudson, NH 03051 

USA).  

 

Lipid peroxidation level was measured by  

determining malondialdehyde (MDA) content 

according to the method of Heath and Packer(1968) 

and calculated using the extinction coefficient (155 

mM-1 cm-1). For measurements of electrolyte leakage, 

fresh leaves were cut into small pieces; one-half g of 

them was immersed in 20 ml distilled water; after 24 

hours immersion, the electrical conductivity 

(µmohs/cm) was measured by EC meter in the 

leakage solution. Ascorbic acid was estimated 

according to Oser (1979) and calculated as mg/g f.m 

using a calibration curve. 

 

Activities of peroxidase [EC1.11.1.7] and catalase 

[EC1.11.1.6] were assayed according to Kato and 

Shimizu (1987) and they were expressed in units of 

µM / g f.m.   

 

Analysis of seaweed extracts  

A. Heavy metals 

The mixed acid–digestion method was used for 

element determination according to Allen et al (1974). 

The measurements were carried out using the Atomic 

Absorption flame emission Spectrophotometer 

(Model Perkin Elmer 2380 Atomic Absorption 

Spectrophotometer). 

 

B. Hormones  

According to Shindy and Smith (1975) the different 

aqueous phases were prepared for GLC determination 

of the acidic hormones asauxin (IAA), abscisic acid 

(ABA), gibberellins(GAs) and cytokinins. Computer-

controlled GLC-MS analyses of TMS (trimethylsilyl) 

derivatives of authentic standards or extract fractions 

were carried out with a Systems 150 output control 

module on a Finnigan mass spectrometer (Model 

1015C) interfaced to a Varian Aerograph GLC (Model 

1400) fitted with a Goelke all-glass separator. 

Retention time and temperature for each peak were 

recorded and compared to those of TMS derivatives of 

authentic standards. Chromatography of unknowns 

and standards was also done to facilitate 

identification. 

 

C. Glycinebetaine 

Concentrations of Glycinebetaine (GB) were 



Int. J. Agri. & Agri. R. 

 

Kasim et al.  

                                                                                                                                                        Page 176 

estimated in the seaweed extracts using a standard 

curve developed with different known concentrations 

of GB as described by Grieve and Grattan (1983).  

 

3.Statistical analyses 

The results were statistically analyzed using one way 

Analysis of Variance (ANOVA) to determine the 

degree of significance for the obtained variations by 

the used treatments. The analysis was carried out by 

COSTAT statistical program. 

 

Results 

Exposure of wheat plant during the vegetative stage to 

drought stress (40% and 20% filed capacity) resulted 

in a general reduction in growth. Data shown in Table 

1 indicated that, in the 30-day-old seedlings, 

treatment of D1 caused highly significant decrease in 

each of root depth, shoot height and leaf area, where 

the percentages of decrease were 10%, 18% and 37% 

relative to the control, respectively; while in case of 

the treatment of D2, the percentages of decrease were 

24%, 35% and 66 %, respectively. 

 

Table 1. Effect of drought stress on the root depth, shoot height and leaf area of 30-day-old 

Triticumaestivum(L.) grown in clay sandy soil (2:1w/w) and irrigated with 60% of water field capacity as a 

control (cont.), with 40% of water field capacity as drought 1 (D1), with 20% of water field capacity as drought 2 

(D2)) after soaking the grains for 3 hours in 1.5% Sargassum extract (Ext.1), 1% Ulva extract (Ext.2) and 1:1 

mixture of them (Ext.1+Ext.2). 

Treatments Length cm/plant Fresh mass g/plant Dry mass g/plant Leaf area cm2/leaf 

Root Shoot Root Shoot Root Shoot 

Cont 26.9 ± 0.2 30.1 ± 0.2 0.29±0.01 1.2±0.01 0.043±0.002 0.19±0.001 5.4 ± 0.1 

D1 22.1 ± 0.2 27    ± 0.1 0.14±0.005 0.9±0.05 0.024±0.002 0.15±0.002 3.4 ± 0.1 

D2 16.6 ± 0.1 22.8 ± 0.3 0.13±0.002 0.6±0.01 0.023±0.0005 0.11±0.001 1.8 ± 0.2 

Ext1 30.7 ± 0.3 33.9 ± 0.6 0.33±0.006 1.3±0.03 0.046±0.0005 0.2±0.002 6.5 ± 0.1 

Ext1+D1 22.7 ± 0.5 30.8 ± 0.2 0.19±0.007 1.4±0.05 0.03±0.001 0.23±0.005 5.2 ± 0.2 

Ext1+D2 22.9 ± 0.2 26.5 ± 0.2 0.18±0.002 0.8±0.02 0.035±0.001 0.16±0.002 3.8 ± 0.2 

Ext2 32.2 ± 0.4 34.2 ± 0.2 0.29±0.002 1.3±0.05 0.049±0.002 0.23±0.003 5.4 ± 0.2 

Ext2+D1 25.4 ± 0.4 28.7 ± 0.3 0.29±0.001 1.1±0.01 0.056±0.002 0.19±0.006 4.9 ± 0.1 

Ext2+D2 22.1 ± 0.1 26.8 ± 0.2 0.19±0.003 0.7±0.001 0.036±0.001 0.14±0.006 2.8 ± 0.2 

Mix 29.7 ± 0.7 28.9 ± 0.4 0.3±0.006 1.3±0.01 0.043±0.002 0.19±0.003 5.7 ± 0.1 

Mix+D1 22.4 ± 0.1 26.7 ± 0.6 0.13±0.001 0.9±0.001 0.022±0.001 0.14±0.004 2.6 ± 0.2 

Mix+D2 18.3 ± 0.2 24.9 ± 0.2 0.09±0.002 0.5±0.03 0.019±0.001 0.09±0.003 1.5 ± 0.1 

 

The combined treatments of drought with priming by 

presoaking of wheat grains in the extract1 

(Sargassum1.5%) or extract 2 (Ulva 1%) resulted in a 

significant recovery from the harmful effects of 

drought stress where the root depth, shoot height and 

leaf area were increased compared with the single 

treatment of drought stress but the values remained 

lower than those of the control;the mixture resulted 

in ahigh decrease in the measured criteria. 

 

Priming of wheat grains by presoaking in the mixture 

of seaweed extracts were not effective where the shoot 

height was slightly decreased compared with the 

control. Drought treatment resulted in a highly 

significant decrease in wheat root and shoot fresh 

masses, where the percentages of decrease were 51% 

and 25% with D1; while with D2,they were 55% and 

50%, respectively, relative to the control. Similarly, 

root and shoot dry masses were significantly 

decreased by drought stress and the percentages of 

decrease were 44%and 21 % with D1,while with 

D2,they were 47% and 42% respectively, compared  

with the control. 

 

The combined treatments of drought with the 

priming of wheat grains with seaweed extracts 

completely overcame the inhibitory effects of drought 

stress, except in case of the mixture of the two 

extracts which resulted in a decrease in both fresh 
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and dry masses of root and shoot, compared with the 

single treatment of drought stress (Table 1). 

 

Drought treatments led to negative effects on 

photosynthetic pigments and photosynthetic activity 

in 30-day-old wheat seedlings (Table 2).Both 

treatments of D1 and D2 caused highly significant 

reduction in chl a, chl b, and carotenoids, where the 

percentages of decrease in case of D1 were 20 %, 86 % 

and 40 %, respectively, and in case of D2 they were 26 

% , 43 % and 28 %,  respectively compared with the 

control. The chl (a/b) ratio showed a highly 

significant increase in case of D1 treatment which was 

represented by 447 %, relative to the control.The 

photosynthetic activity (Fv/Fm) was largely inhibited 

by drought treatments compared with the control, 

where D2 treatment caused a highly significant 

decrease which was 15 % it was 9% in case of D1 

(Table 2). 

 

Table 2. Effect of drought stress on chlorophyll a (chl a), chlorophyll b (chl b), carotenoids (carot.), Chl(a/b) 

ratio and photosynthetic activity of 30-day-old Triticumaestivum(L.) grown in clay sandy soil (2:1w/w) and 

irrigated with 60% of water field capacity as a control (cont.), with 40% of water field capacity as drought 1 (D1), 

with 20% of water field capacity as drought 2 (D2)) after soaking the grains for 3 hours in 1.5% Sargassum 

extract (Ext.1), 1% Ulva extract (Ext.2) and 1:1 mixture of them (Ext.1+Ext.2). 

Treatments Chl a Chl b Carot. Chl (a/b) Photosynthetic activity 

mg/g d.m (µ mol m-2 s-1) 

Cont 8.6±0.07 5.8±0.08 2.50±0.05 1.5 ± 0.02 0.68 ± 0.008 

D1 6.9±0.03 0.83±0.03 1.50±0.05 8.2 ± 0.52 0.62 ± 0.006 

D2 6.4±0.18 3.3±0.03 1.80±0.09 2.0 ± 0.18 0.58 ± 0.006 

Ext1 9.3±0.15 5.3±0.07 2.20±0.04 1.8 ± 0.12 0.72 ± 0.005 

Ext1+D1 8.7±0.19 1.7±0.09 1.90±0.12 5.3±0.36 0.64 ± 0.005 

Ext1+D2 7.7±0.16 4.7±0.03 2.80±0.04 1.7±0.14 0.61 ± 0.004 

Ext2 10.4±0.23 3.7±0.09 5.10±0.03 3.0 ±0.09 0.76 ± 0.006 

Ext2+D1 8.6±0.25 1.8±0.14 1.99±0.08 4.9±0.02 0.66 ± 0.004 

Ext2+D2 6.5±0.03 3.8±0.15 1.93±0.07 1.9±0.19 0.66 ± 0.006 

Mix 7.6±0.19 3.5±0.14 1.30±0.06 2.2±0.6 0.63 ± 0.005 

Mix+D1 6.6±0.06 1.1±0.09 2.02±0.16 6.2±0.45 0.61 ± 0.006 

Mix+D2 5.4±0.17 3.7±0.16 2.60±0.11 1.4±0.11 0.58 ± 0.010 

 

One way ANOVA analysis (P ≤ 0.01) (*** highly significant). 

Parameter LSD F Significance 

Chl a 0.29 212.12 *** 

Chl b 0.22 455.83 *** 

Carotenoids 0.13 458.62 *** 

Chl (a/b) 0.42 248.35 *** 

Photosynthetic Activity 0.011 234.37 *** 

Priming of wheat grains by pre-soaking them in 

Sargassum or Ulva resulted in alleviation of the 

negative effects of drought on both the photosynthetic 

pigments and photosynthetic activity in the vegetative 

stage(Table 2). The seaweed extracts treatment alone 

had a significant positive effect on chlorophyll 

contents; however, priming with Ulva caused an 

increase of carotenoid content.  

 

Fig. 1 shows that drought treatments caused highly 
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significant increases in the MDA content and 

electrolyte leakage, where the percentages of these 

increases were 8 % and 30% with D1, while they were 

351 % and 93%with D2, respectively, compared with 

the control(Figs. 1A and 1B).In case of the single 

treatment by presoaking of wheat grains 

inSargassum or Ulva extract, the MDAcontent was  

decreased while the electrolyte leakage was slightly 

increased relative to the control. 

 

Drought treatments resulted in an increase in 

peroxidase and catalase activities by 13% and 44% for 

D1 and 50% and 100% for D2, respectively relative to 

the control (Table 3). Similarly, ascorbic acid content 

was increased after drought treatments by 21 % for 

D1, and 40 % for D2, relative to the control (Table3). 

However, in case of the combined treatment of 

drought and priming of wheat grains by presoaking in 

Sargassumor Ulva extract, the catalase and 

peroxidase activities were increased, compared with 

D1and D2. On the other hand, compared with the 

control, great reduction in the peroxidase activity was 

detected in case of single treatment of priming of 

wheat grains by presoaking in Ulva extract, while it 

increased the catalase activity; however, the single 

treatment of priming with Sargassum resulted in a 

noticeable increase in the activities of both peroxidase 

and catalase. 

 

Table 3. Effect of drought stress on peroxidase and catalase activities and ascorbic acid content of 30-day-old 

Triticumaestivum (L.) plants grown in clay sandy soil (2:1w/w) and irrigated with 60% of water field capacity as a 

control (cont.), with 40% of water field capacity as drought 1 (D1), with 20% of water field capacity as drought 2 

(D2) after soaking the grains for 3 hours in 1.5% Sargassum extract (Ext.1), 1% Ulvaextract (Ext.2) and 1:1 

mixture of them (Ext.1+Ext.2) 

Treatments Peroxidase (µM / g f.m) Catalase (µM / g f.m) Ascorbic acid (mg/g f.m) 

Cont 0.032 ± 0.001 0.009 ± 0.0002 116.3±1.7 

D1 0.036 ± 0.001 0.013 ± 0.0006 140.5±1.5 

D2 0.048 ± 0.001 0.018 ± 0.0004 162.6±2.9 

Ext1 0.035 ± 0.001 0.014 ± 0.0001 108.4±4.5 

Ext1+D1 0.046 ± 0.001 0.011 ± 0.0005 136.9±4.5 

Ext1+D2 0.054 ± 0.001 0.013 ± 0.0006 149.8±6.2 

Ext2 0.021 ± 0.001 0.014 ± 0.0006           102.0±1.5 

Ext2+D1 0.039 ± 0.001 0.018 ± 0.0005 184.8±1.5 

Ext2+D2 0.042 ± 0.001 0.014 ± 0.0004 202.6±4.4 

Mix 0.041 ± 0.001 0.015 ± 0.0004 214.4±1.5 

Mix+D1 0.055 ± 0.001 0.012 ± 0.0006 230.6±2.9 

Mix+D2 0.065 ± 0.001 0.013 ± 0.0005 294.5±4.5 

  

One way ANOVA analysis (P ≤ 0.01) (*** highly significant). 

Parameter LSD F Significances 

Peroxidase  0.002 331.42 *** 

Catalase 8.1 87.29 *** 

Ascorbic acid Content 6.03 771.89 *** 

 

It was noticeable that, the combined treatment of 

drought stress after the presoaking of wheat grains in 

Sargassum extract resulted in the decrease in the 

ascorbic acid contents, relative to D1 and D2 

treatments although they were still higher than that of 

the control. Compared with the control, the single 

treatment of only priming of wheat grains by 

presoaking in Sargassum or Ulva extract resulted in a 

decrease in the ascorbic acid, relative to the control. 

However, a notable increase in the ascorbic acid 

contents was recorded in case of priming with the 

mixture of the two extracts of seaweeds (Table 3).
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Table 4. Heavy metals content (ppb), hormones content (mg/ 100ml) and glycinebetaine (GB) as µg/g dry 

weight of seaweed extract for Sargassum1.5%(Ext1), Ulva 1%(Ext2) and mixture of them. 

Treatments ppb mg/100ml (µg/g d.wt) 

Zn Pb Cd Cu Fe Cr Ni Mn Cytok. Gibber. auxin GB 

Ext1  (Sargassum) 1.75 0.16 0.064 0.83 4.42 0.027 0.149 0.17 0.185 12.65 0.103 0.16 

Ext2 (Ulva) 1.74 0.38 0.063 1.46 7.99 0.025 0.358 0.15 0.130 12.44 0.202 0.428 

Mixture 

Ext1+Ext2  

1.55 Undetected 0.073 0.39 5.72 0.021 0.211 0.22 0.511 25.54 0.355 0.641 

 

The analysis of seaweed extracts of Sargassum,Ulva 

and their mixture indicated that the seaweed extracts 

containeddifferent concentrations of micronutrients 

(Zn, Pb, Cd, Cu, Fe, Cr, Ni, and Mn(Table 4).  It was 

obvious from the resultsthat Pb was not detected in 

the mixture of seaweed extracts, while high 

concentrations of Cd and Mnwere detected (Table 4). 

The results in Table 4 also showed that the extract of 

Sargassum or Ulvaand their mixture containdifferent 

concentrations ofphytohormones (cytokinin, 

gibberellins and auxins), but it was observed that the 

mixture contained hormones with higher 

concentrations (about two folds) than that present in 

the single extract of Sargassum or Ulva. Table 4 

indicated that the extract of Sargassum or Ulvaand 

their mixture contained glycinebetaine with different 

concentrations, but the concentration in case of 

mixture was higher than that present in the individual 

extract of Sargassum or Ulva.   

 

Discussion 

Drought stress induces several physiological, 

biochemical and molecular responses in several crop 

plants, which would help them to adapt to such 

limiting environmental conditions (Bajaj et al., 1999; 

Arora et al., 2002). 

 

The data presented herein showed that drought 

treatments caused significant decrease in the 

measured growth criteria of wheat as fresh and dry 

masses, root depth, shoot height, and leaf area during 

the vegetative stage.These results were in accordance 

with those of Chartzoulakiset al., (2002);Abedi and 

Pakniyat(2010) and Fleuryet al.(2010) for various 

plant species.Such decline in shoot and root lengths 

in response to drought might be due to either 

decrease in cell elongation, cell turgor, cell volume 

and eventually cell growth (Banonet al., 2006), 

and/or due to blocking up of xylem and phloem 

vessels thus hindering any translocation through 

(Mohamed and Akladious, 2014). 

 

Photosynthesis is one of the most drought-sensitive 

plant processes; it is harmfully affected by drought 

stress (Pan et al., 2012). The present results showed 

that drought treatments reduced the content of 

chlorophylls a and b, compared with the control. The 

decrease in chlorophyll content under drought stress 

has been considered a typical symptom of oxidative 

stress and may be the result of pigment photo-

oxidation and chlorophyll degradation (Ashraf and 

Harris,2013).Decreases in photosynthetic pigments 

were due to instability of protein complexes and 

destruction of chlorophyll by increased activity of 

chlorophyll degrading enzymes and chlorophyllase 

under stress condition (Sayyari et al., 2013). 

Chlorophyll a/b ratio was increased in drought-

treated wheat seedlings indicating a more negative 

effect of drought 1 on chlb (the main chl in PSII) than 

on chl a. In addition, drought treatments led to a 

decrease in carotenoid content compared with the 

control .Generally, many studies have reported 

drought-induced reductions in the levels of 

photosynthetic pigments ((Liu et al., 2006; Zlatev, 

2009).As a consequence, it was demonstrated from 

this study that exposure of Triticumaestivumto 

drought stress resulted in a decrease in the 

photosynthetic activity and this was in harmony with 

the results of Huseynova(2012)on wheat. 

 

The recorded reduction in photosynthesis, might be 

arises by a decrease in leaf expansion, impaired 
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photosynthetic machinery, premature leaf senescence 

and associated reduction in food production (Wahid 

and Rasul,2005). However, stomatal closure was 

generally accepted to be themain determinant for 

decreased photosynthesis under mild to moderate 

drought (Cornic and Massacci, 1996; Yokota et 

al.,2002; Flexaset al., 2004). It also reported that 

drought inhibits the photochemical activities and 

decreases the activities of the enzymes of Calvin Cycle 

in photosynthesis (Monakhova and Chernyadev, 

2002), decreased leaf area which is considered as one 

of the most important plant organs due to their role 

in capturing light and achieving photosynthesis (Xuet 

al., 2009). 

 

Fig. 1. Effect of drought stress on malondialdehyde (MDA) content (A) ,and electrolyte leakage (B), of 30-day-old 

Triticumaestivum(L.) grown in clay sandy soil (2:1w/w) and irrigated with 60% of water field capacity as a 

control (cont.), with 40% of water field capacity as drought 1 (D1), with 20% of water field capacity as drought 2 

(D2)) after soaking the grains for 3 hours in 1.5% Sargassumextract (Ext.1), 1% Ulva extract (Ext.2) and 1:1 

mixture of them (Ext.1+Ext.2).  (Different letters indicate significancy ,similar letters indicate non significancy).

Drought lead to excessive production of ROS causing 

progressive oxidative damage and ultimately cell 

death(Sharma et al., 2012).The effect of drought on 

growth and photosynthesis reported above in wheat 

during the vegetative stage could be due to the 

oxidative stress caused by drought treatments.The 

results presented here showed that drought 

treatments led to an increase in malondialdehyde 

(MDA) content (lipid peroxidation product)and 

membrane leakage in the drought treated wheat 

leaves during the vegetative stage (Fig.1A&1B) which 

might be attributed to peroxidation of membrane 

lipids that could be monitored as increased MDA 

content. In accordance with these findings, the 

involvement of ROS in harmful effects including 

membrane lipid peroxidation in plants treated with 
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drought was detected by many researchers (EL-

Tayeb, 2006;Zlatevet al.,2006;Heynoet al., 2011; 

Sharma et al.,2012;Chakraborty and Pradhan,2012). 

Electrolyte leakagefrom damaged tissues was 

commonly usedto assess cell membrane stability 

(Farooq and Azam, 2006; Sikder and Paul, 

2010).Membrane damagemight be a result of 

initiated oxygen stress and the accumulation of 

reactive oxygen species leading to disturbances in 

membrane configuration (Hoekstra and Golovina, 

1999; Foyer and Noctor, 2005)andoxidation of cell 

membrane fatty acids (Hong et al., 2006; Dacosta 

and Hoang, 2007).Such damage can result from 

various mechanisms including oxidation and cross-

linkage of protein thiols, inhibition of key membrane 

proteins as H+-ATPase, and changes to the 

composition and fluidity of membrane lipids (Farouk, 

2011). 

 

Moreover, drought increased antioxidant metabolism 

including antioxidant enzymes such as catalases, 

peroxidases, superoxide dismutases and non-enzymic 

antioxidants such as reduced glutathione and 

ascorbate that scavenge the ROS(Li et al., 2012).Such 

changes were assumed to demonstrate plant tolerance 

to drought. As presented here, drought treatments 

increased peroxidase and catalase activities (Tabl 3). 

Similarly, ascorbic acid content was increased after 

drought treatments, compared with the control (Table 

3). These findings led to the suggestion that the 

maintenance of a high antioxidant capacity might be 

essential for tolerance of plants to drought exposure 

(Milleret al.,2010; Xu et al.,2010). 

 

Seaweed components such as macro- and 

microelement nutrients, amino acids, vitamins, 

cytokinins, auxinsand abscisic acid (ABA)-like growth 

substances affect cellular metabolism in treated 

plants leading to enhancedgrowth and crop yield 

(Stirket al.,2003; Ördöget al.,2004). Seaweed 

extracts are bioactive at low concentrations (diluted 

as 1:1000 or more)(Crouch and vanStaden,1992). 

 

Therefore, the combined treatments of drought with 

priming by presoaking of wheat grains in the extract1 

(Sargassum1.5%) or extract 2 (Ulva 1%) resulted in a 

significant recovery from the harmful effects of 

drought. The favorable effect of seaweed due to its 

endogenous auxins as well as other compounds in the 

extracts(El-Miniawy et al.,2014) and its content of a 

high cytokines activity, which could be responsible for 

the many effects such as plant growth, flowering and 

chemical constituents. These cytokines are active at 

very low concentrations and regulate a number of 

plant functions including cell division, protein, 

enzyme formation, leaf aging and senescence, shoot 

elongation, and fruit set (Abdel Aziz et al.,2011). 

Seaweeds extract also contain glycinebetaine 

(Ramyaet al.,2010), which improved growth and yield 

in Gossypiumhirsutum(Gorham et al., 2000)and 

mitigated the adverse effects of drought stress on 

wheat (Mahmoodet al.,2009).Gibberellic acid is one 

of most important growth stimulating substance used 

for promoting cell elongation, cell division and thus to 

promote growth and development of many plant 

species (Mahmoody and Noori, 2014). So that, 

seaweeds extract could alleviated the drought stress 

and also enhance growth under normal conditions. 

The present results indicated that treatment with 

priming by presoaking of wheat grains inSargassum 

or Ulva ameliorated the harmful effect of drought 

stress on the photosynthetic pigments, where it 

significantly increased chl a, chl b, and carotenoids; 

whereas the chla/b ratio was reduced. This result was 

consistent with those of Khan et al. (2009).The 

improvement of photosynthetic activity in case of 

priming with sea weed extract may also duo to that 

these extracts were rich of glycinebetaine which 

delays the loss of photosynthetic activity by inhibiting 

chlorophyll degradation (Latiqueet al., 2013).Also, 

extract of Sargassum orUlva contain iron. It is a key 

component ofbiosynthesis of chlorophyll; it affects 

chlorophyll synthesis indirectly by affecting its 

precursor δaminolevulinicacid(ALA) (Kumawatet al., 

2006). In the photosynthetic cell, there is a 

requirement of iron in photosynthetic and respiratory 

electron transport, nitrate assimilation and nitrogen 

fixation (Paerl et al., 2001).It is also required for iron 

containingcompounds in the electron transport chain, 

for the biosynthesis of pigments, and for the assembly 
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of the photosynthetic apparatus (Wang et al., 2010).  

Also, carotenoids were increased with the priming 

with Ulva extract. These results may be due to the 

combination of the two metals, cadmium and lead, 

which increased the carotenoid content (Singh et al., 

2012). An increase in carotenoid content may be 

attributed also to the strategy of plants to overcome 

the metal induced oxidative stress (Kenneth et al., 

2000; Vajpayee et al., 2001). 

 

Interestingly, seaweed extract of Sargassum or Ulva 

pretreatment led to decreased levels of MDA contents 

in the drought stressed Triticumaestivum. These 

results were in agreement with those of Mansoriet al. 

(2014) who reported that spraying of bean plants with 

seaweed extract could alleviate the inhibitory effect of 

drought stress.These positive anti-stress effects of 

seaweed extract may be related to the cytokinin 

activity of seaweed extract as reported by Zhang and 

Ervin (2004). Cytokinins mitigate stress-induced free 

radicals by direct scavenging and by preventing 

reactive oxygen species (ROS) formation by inhibiting 

xanthine oxidation (Fike et al., 2001).Auxins 

diminished lipid peroxidation through the 

stimulation of non-enzymatic (ascorbate, glutathione) 

and enzymatic (SOD, CAT, APX) antioxidants tightly 

regulating ROS homeostasis(Niczyporuk and Bajguz, 

2013).The present results indicated also thatseaweed 

extracts contain glycinebetaine (GB) with different 

concentrations. This GB is considered as one of the 

compatible soluteswhich contributes to stress 

tolerance by acting as osmoregulators, since their 

high solubility in water acts as a substitute for water 

molecules released from leaves; and in some cases, 

they also act as active oxygen scavengers or thermo 

stabilizers (Akashi et al., 2001; Kaushik and Bhat, 

2003;Mahmoodet al., 2009). The defensive role of 

glycinebetaine (GB) may either have a positive impact 

on enzymes and integrity of membranes or may act as 

an osmoprotectant that helps in protecting against 

environmental stress indirectly through the 

mechanism of signal transduction (Subbarao et al., 

2001; Chen and Murata, 2011); and protects proteins 

against the destabilizing effects of dehydration during 

abiotic stress (Ashraf and Foolad, 2007). 

The present data indicated that both POX and CAT 

activities were significantly suppressed by 

pretreatments with seaweed extract which was in 

agreement with the results of Gharib et al. (2014) for 

Rosemary. The recorded increment of the enzyme 

activities of drought stressed seedlings after 

presoaking indifferent concentrations of algal extract 

could be attributedto the presence of anti-oxidative 

compounds such as ascorbicacid , proline, betaine 

and glutathione in seaweedextract (Deivanaiet 

al.,2011; Tuna et al., 2013; Hemidaet al.,2014). 

Marschner(1995) suggests that mineral-nutrient 

status of plants plays a critical role in increasing plant 

resistance to environmental stress factors and it is 

known that, seaweed extract contain micronutrients 

with different concentration (Bhasker and Miyashita, 

2005).One of micronutrients detected in seaweed 

extract is zinc. The positive effect of Zn on the 

antioxidant enzymes activity were reported 

by(Hajiboland and Beirmzadeh,2008;Tavallaliet al., 

2010).It's protective effect has been reported to be 

due to its ability to inhibit NADPH oxidation and 

oxygen centered free radical generation (Abd El-

Motty and Orabi,2014).This alleviation may be due to 

the bioactive compounds within the seaweed extracts 

that lead to activation of the plant phytohormone 

biosynthetic pathways which enhancing stress 

tolerance in plants that stabilize proteins and cell 

structures, maintain cell turgor, and scavenge reactive 

oxygen species (Calvo et al.,2014). 

 

Although extract of Sargassum or Ulva result in 

lessening the effect of drought,but mixing of them 

result in antagonistic effect where the mixture inhibit 

pigment where sea weeds sometime become harmful 

due to the presence of salt which cause the slightly 

stress condition that’s why stress protein formed and 

amino acid concentration also abnormally increased 

to overcome this stressthese results reported 

by(Akhtaret al., 2014). 

 

The present results showed also that priming of wheat  

grains with the mixture of Sargassum and Ulva could 

not alleviate the harmful effects of drought stress. 

This result may be due to both of the cadmium and 
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manganese contents of the mixture of the two 

seaweeds extract, where the recoded value of Cd was 

0.414 ppb and that of the manganese content was 

1.302 ppb. which can be considered as high 

concentration. Cadmium is considered a trace 

element; and is one of the heavy metals and it is a 

strong phytotoxic element, which inhibits vegetative 

plant growth and even causes plant death (Sandalioet 

al., 2001). Common effects of Cd include; affecting 

water balance of plants by reducing root growth, 

limiting water uptake via a reduction in vessel size, 

and causing partial stomatal closure (Özyigit and 

Akinci, 2009). It also causes a decrease in tissue 

biomass, chlorosis, and effects on specific 

physiological (e.g., xylem transport) or biochemical 

(e.g., nitrogen fixation) processes (Kosmaet al., 

2004). 

 

Manganese (Mn) has been considered as one of the 

immediate toxic effect like other heavy metals in 

plants (Christofferset al., 2003). It reduces the 

growth of Viciafaba plant (Shashik and Roy, 2011). 

The recorded reduction in growth may be attributed 

to interference of Mn with photosynthesis as reported 

by Henriques (2003). Manganese (Mn) is reported to 

inhibit synthesis of chlorophyll by blocking a Fe-

concerning process and its toxicity, in some species, 

starts with chlorosis of older leaves moving toward 

theyounger leaves with time (Nagajyotiet al.,2010). 

Concerning Cd, it was also reported that Cd reduces 

ATP and chlorophyll concentrations in many species, 

decreases oxygen production and that significantly 

reduces transpiration rates (Özyigit and Akinci, 

2009). 

 

However, the results showed that the mixture of the 

two types of seaweed extract contain high 

concentration of gibberellic acid (25.54mg/100ml) 

which may be considered higher than the effective 

concentration. In this regard, Abdel-Kader 

(2001)stated that the lowest concentration of 

gibberellins was more effective on alleviating the 

adverse effect of drought than the highest one.So that, 

it could be concluded that the mixture of two types of 

seaweed extracts resulte in antagonistic effect on 

plant growth. 
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