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Abstract 
 
Regarding effects of water stress on plant, many research reports have been release during recent years, but, 

studies on effects of this stress on biochemical parameters and mineral content at an early stage are scarce. This 

study investigated drought stress effects on some biochemical parameters and mineral content of mycorrhizal 

Vigna subterranea plant, in a randomized block design. The microbial material comprised of a mixture of locally 

selected arbuscular fungi. The four levels of watering expressed in % of field capacity were: 90, 60, 30 and 15; 

with or without mycorrhizal inoculation. Experiment was carried out on a sterilize substrate during 31days of 

water stress. Results showed that with increasing level of water stress, mycorhization increased: mineral content, 

both soluble sugars and acid phosphatase, but lessened proline content. Arbuscular mycorrhizal fungi (AMF) 

could thus be an effective tool in the alleviation of harmful effects of drought stress on plants, by improving their 

tolerance to this abiotic stress and consequently contributing to a better growth of V.subterranea. 
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Voandzou [Vigna subterranea (L.) Verdc.], 

commonly called Bambara groundnut, belongs to 

Fabaceae family which in term of importance come 

after that of Poaceae. It is grown within the limits of 

sub-Saharan Africa, where it is adapted to various 

climatic and ecological conditions (steppe, savanna 

and forest) (Yao Djè et al., 2005). Leguminous plants 

ameliorate agricultural practice worldwide due to 

their high content in nitrogen and their ability to fix 

molecular nitrogen in symbiosis with Rhizobia, 20-

100kg.ha -1 / year (Giller, 2001, Ncube et al., 2007). 

Furthermore, they can improve fertility of agricultural 

soils and thus reduce amount of mineral fertilizer 

used. This property is highly exploited in sustainable 

agriculture. Voandzou can give an average output 

production of 350-800 kg/ha in areas where soil is 

not fertile and rain fall is low (Linnemann, 1994). 

This production could be thanks to its remarkable 

capacity to adapt to tropical climate and the genetic 

diversity of seeds sown (Azam-Ali et al., 2001). 

Leguminous plants contribute highly in human 

nutrition, particularly through their seeds, which are 

very rich in good quality protein containing essential 

amino-acids. For this reason their seeds are often 

used in complementing diet based on cereals which 

are poor in nitrogenous compounds. The seeds of V. 

subterranea contain 63 % carbohydrate, 19 % 

proteins and 6.5 % fat. Voandzou is a good source of 

fiber, calcium, iron and potassium (Hillocks et al., 

2012).             

 

In their natural environment leguminous plants in 

general and voandzou in particular are regularly 

subjected to biotic and abiotic constraints which 

interfere with their growth and development, amount 

them drought stress is most frequent because of 

scarcity of water unpredicted rain fall and global 

warming. Water is one of the factors that plants need 

in sufficient quantities to manufacture carbohydrates, 

to transport mineral elements (Mg, K, P, N), 

moreover, several biological processes such as cell 

division and cell elongation depend on it. The 

reduction of water availability for a plant subjects it to 

a condition of drought stress, which according to 

Mamoudou Dicko (2005) is an environmental 

constraint to which the crop plants in arid and semi-

arid regions are subjected.  Maggio et al., (2000) 

showed that in these arid and semi-arid regions, 

water deficit limits the productivity of plants. Water 

stress is the major cause of the loss of more than 50 % 

of plants productivity in the world (Wang et al., 

2003). V. subterranea is mainly cultivated from 

sahelian region of the far north to the peri-forest 

savanna of Center Region of Cameroon, where water 

scarcity is an important limiting factor for its plants 

growth. It was shown that the microbial community 

and particularly mycorrhizal fungi may play a 

significant role in water and mineral uptake by plants 

(Nwaga et al., 2010). 

 

It is however noted that mycorrhiza constitutes an 

effective widespread symbiosis with more than 80 % 

of mycorrhizal terrestrial plants (Oehl et al., 

2011).This association  may contributes  to alleviate 

drought or salinity stress effects on plants (Juniper 

and Abott, 1993) by enhancing plant water relations 

(Allen and Allen, 1986, Nelsen, 1987), increasing 

nutrients uptake (Abdelmoneim et al., 2014). 

Moreover it enhanced plant disease control 

(Linderman, 1994; Song et al., 2011) and makes 

osmotic adjustment fast in mycorrhizal plants 

compared to unmycorrhizal plants (Porcel and Ruiz-

Lozano, 2004).  

 

Although the physiological behavior of the plants 

inoculated with AMF in a situation of water stress has 

been studied for a long time that of V. subterranea 

remains less explored, particularly those targeting 

drought tolerance and how to alleviate water stress 

effects on their early growth phase. The aim of this 

study was to evaluate the effect of drought stress on 

mycorrhizal V. subterranea, mycorhization using a 

mixture AMF (Glomus hoï + Glomus intraradices + 

Gigaspora margarita + Scutellospora gregaria) 

strains. In order to achieve this objective we evaluated  

some biochemical and mineral parameters such as: 

total amino acids, proline, sugars, soluble proteins, N, 

P, K, Mg content;  and specific activity of phosphatase 

acid. 
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Material and methods 

Plant material and conditions of growth 

 Healthy seeds of V. subterranea were sorted and 

surface sterilized with sodium hypochloride 

containing 2.4° chlorine for 10 mn and then washed 

thoroughly 3 times with distilled water to remove all 

traces of chemical products. Afterwards, they were 

allowed to germinate in sterilized    plastic pots 

between two layers of Whatmann filter paper N°1 

regularly watered with distilled water, in the dark and 

under laboratory temperature for 7 days. Germinated 

seeds were transferred to culture plastic pots 

containing a sterilized substrate, the test pots 

contained mycorrhizal inoculated germinated seeds, 

while the control pots without mycorrhizal inoculum 

received bacterial filtrate of the inoculum. Watering 

was sustained every morning and evening to maintain 

the substrate at field capacity (FC). This phase that 

was carried out for 14 days permitted us to obtain 

seedlings that were then transferred to development 

pots and different levels of stress applied 

immediately. The FC of the substrate was calculated 

according to Guissou et al. (2001) method, the 

various levels of water stress were applied according 

to Tobar et al. (1994) method. The substrate consisted 

of  field soil  taken at 0-15 cm depth where the 

previous cultures included Manihot escuelenta and 

Zea mays  and coarse river sand, in  proportions ½ 

ground, ½ sand  and ¾ ground, ¼  sand respectively  

for culture substrate and development  substrate. The 

substrate was autoclaved at 120°C during 1hour 

(Oyun et al., 2010) with a pressure of 1.5 bar and was 

oven dried at 105°C for 24 hours (Petard, 1993) in 

order to obtain a substrate with 0% moisture. The 

characteristics of the soil used consisted of: pH (H2O) 

5.79; available phosphorus 0.34 µg/g; available 

potassium,  sodium,  magnesium and  calcium in 

order 0.26 cmol(+).kg -1, 0.37 cmol(+).kg-1, 1.06 

cmol(+).kg -1 and 3.06 cmol(+).kg-1;  nitrogen,  

carbon,  ratio carbon/nitrogen and organic matter: of 

0.34 %, 2.71 %, 7.98 % and 4.63 % respectively. The 

experiment  was  carried out in a transparent plastic 

shelter (length:3 m, width 2.5 m and height: 2.20 m) 

built in the University of Yaoundé I, with an average 

minimum temperature of 22°C and maximum 

temperature of 42°C; sun light 12 hours  at 65.74 - 

89.82µmol m-2 s-1. The experiment was carried out on 

a sterile substrate containing only known micro-

organisms. .     

 

Microbial material 

The microbial inoculum from selected mycorrhizal 

fungi stocks obtained from cultures of sorghum and 

groundnut (as host plants) was provided by the Soil 

Microbiology laboratory of the Biotechnology Center 

of the University of Yaoundé I. The microbial material 

was a mixture of spores of Glomus hoï (4 spores/g of 

soil), Glomus intraradices (5 spores/g of soil), 

Gigaspora gregaria (7 spores/g of soil) and 

Scutellospora gregaria (9 spores/g of soil); soil and 

roots fragments. The bacterial filtrate was elaborated 

from the inoculum: 25 g of AMF inoculum in one liter 

of sterile distilled water, homogenized for 30 mn 

before sieving through sieve of 10 µm. The 

inoculation of the AMF was carried out in 2 phases, 

according to the recommendations of Soil 

Microbiology laboratory (Anonyme, 2007): phase 1 

was conducted in culture  pots with 5 g of mycorrhizal  

inoculum /germinated seed; Phase 2 was conducted 

in  development pots with an inoculation of 10 g of 

AMF   in the rhizosphere for each treated seedling  

while the control  pots did not have the mycorrhizal 

inoculum, but received 5 ml and 10 ml/germinated 

seed  of  bacterial filtrate respectively  in culture pots 

and  development pots. 

 

Experimental design 

The experiment was conducted in transparent plastic 

shelter, on a flat: 40 cm high from the ground level 

under controlled conditions, in completely 

randomized blocks design (2 blocks) with 3 factors: 

1. leguminous plant specie (V. subterranea); 

2. treatments (mycorrhizal plant and nonmycorrhizal 

control); 

3. watering regime:   control (90% of FC), low stress 

(60% of FC), average stress (30% of FC) and severe 

stress (15% of FC). 

 

The experimental design was composed of 8 

treatments and 5 replication for each,    5 plants/pots 
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that makes 25 plants/treatment and 200 plants in the 

entire design. The quantity of water corresponding to 

the various level of water stress expected were 90 % 

for the control, 60 % for low stress, 30 % for average 

stress and 15 % for severe stress, which in terms of FC 

corresponded to 774 ml, 516 ml, 258 ml and 129 ml 

respectively. Drought stress lasted 31 days and the 

various levels of water stress were maintained by a 

daily control of the weight of the pot in order to adjust 

the suitable quantity of water in each pot.       

 

Evaluation of total amino acid and proline content                                                                                                                                                                                                                                                                                                                                                     

To do that, 1 g of fresh leaves was crushed in 5 ml of 

80° ethanol and centrifuged at 5000 rpm at 4 °C 

during 15 mn.  The supernatant was used for titration. 

The total amount of amino acids and proline were 

determined    using ninhydrin reaction according to 

Yemm and Cocking, (1955). The absorbance of the 

complex formed was read at 440 nm for the proline 

and at 570 nm for the total amino acids using a 

spectrophotometer Jenway model.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   

 

Evaluation of the total soluble sugars                                                                                                                                             

The extraction of total soluble sugars was carried out 

by crushing  1 g of fresh leaves in 10  ml of  ethanol-

water mixture: 80-20 (v/v) and then centrifuged at 

5000 rpm  at 4°C during 15 mn. The supernatant 

containing sugars was recovered by titration of total 

sugars according to the Anthron method (Yemm and 

Willis, 1954).The absorbance of the green solution of 

furfural complex obtained was read at 620 nm by 

using a spectrophotometer Jenway model.         

 

Evaluation of soluble proteins content  

Extraction of soluble proteins was made by crushing  

0.5 g plant samples (leaves and fresh roots) in a 

mortar in the presence of Fontainebleau sand,  5 ml of 

tris-HCl 0.4M (pH = 6,8 ) buffer, containing 1.5 M  

NaCl  followed by centrifugation at 5000 rpm at 4 °C 

during 10 mn. The supernatants was recovered and 

the titration of proteins by the colorimetric method of 

Bradford (1976).The optical density of the blue 

complex formed was read at 595 nm with a 

spectrophotometer Jenway model. 

 

Evaluation of the activity of acid phosphatases  

The determination of the activity of acid phosphatases 

was carried out according to Hooley (1984).  Fresh 

root (1 g) was crushed at 4°C in a mortar with 10 ml of 

extraction buffer (0.4 M acetate-HCl, pH = 5) and 1 g 

of Fontainebleau sand. The crude extract was 

centrifuged at 5000 rpm for 15 mn at 4°C. The 

supernatant obtained was used for the determination 

of the specific activity of acid phosphatases. The 

optical density was read at 410 nm with a 

spectrophotometer Jenway model. 

 

Evaluation of mineral content of leaves  

The extraction and proportioning of mineral elements 

were conducted at the soil laboratory of IITA 

(International Institute of Tropical Agriculture).The 

cationic bases of magnesium and potassium were 

extracted from dried leaves using a mixture of diluted 

HCl / HNO3 acid. This hot extraction was conducted 

in a muffle furnace at 500°C; after mineral content 

was performed using atomic absorption 

spectrophotometer model Buck Scientific (Benton 

and Vernon, 1990). Extraction of phosphorus (P) was 

performed in a similar way like above in the presence 

of   Murphy Riley reagent (Murphy and Riley, 1992), 

and titration was conducted with the same 

equipment. Total nitrogen (N) was extracted using a 

two-step digestion with hydrogen peroxide (H2O2), 

boiling sulfuric acid (H2SO4) (Buondonno et al., 1995)    

and titration done with a colorimeter Lovibond. 

 

Statistical Analysis 

 The data obtained in a completely randomized design 

with five replications was analyzed using ANOVA and 

SPSS 18.O software. The means was then separated 

using DUNCAN’s test with an experimental error of 5 

%. Means obtained were compared according to water 

stress level (60, 30 and 15% of FC) within each 

treatment (mycorrhizal and nonmycorrhizal), then 

between the treatments having received mycorrhizal 

inoculum and control according to the level of water 

supply.         

 

Results 

The total amino acid content (Fig. 1a) of well watered 
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 plants was significantly low for nonmycorrhized 

plants compared to mycorrhized ones. For stressed 

plants it drops with the increase in the level of the 

water stress for low (60% of FC) and severe (15% of 

FC) water stress.  For average (30% of FC) water 

stress a significant improvement of total amino acid 

content of 19 and 12% for the nonmycorrhized and 

mycorrhized plants respectively was observed; the 

mycorhization alone having allowed an increase of 

25%. 

 

Fig. 1. Amino acids leaf content (a), Proline leaf content (b), Solubles sugars leaf content (c), Solubles proteins 

leaf content (d)  in mycorrhizal and non-mycorrhizal V. subterranea plants under severe (15%), moderate (30%), 

mild (60%) and no drought stress (Well-watered = 90%) conditions. 

For well watered plants (Fig. 1b), proline was present 

in leave of both plants, but it content was significantly 

high in nonmycorrhizal then in mycorrhizal plants. 

Under water stress the proline content was 

significantly high for nonmycorrhizal plants 

compared to mycorrhizal ones and increases with the 

level of water stress  except for non mycorrhized 

plants where it remain unchanged for low water 

stress. The proline content of nonmycorrhized plants 

increases of 155 and 269% for average and severe 

water stress respectively, for mycorrhizal ones, it 

increases of 107, 623 and 875% for low, average and 

severe water stress respectively. The increment of 

proline content is always high in mycorrhizal plants 

then nonmycorrhizal ones and increases with the 

stress level. 

      

In well watered plants, soluble sugars content (Fig. 

1c) was present in leaves of both plants, but in 

significantly high amount in mycorrhizal plant than 

in nonmycorrhizal ones. Under water stress soluble 

sugars content increased in leaves of both plants with 

the level of stress; the increment was 14, 131 and 77% 

for nonmycorrhizal plant, 16, 98 and 41% for 

mycorrhizal plants respectively for low, average and 

severe water stress. The increase was significantly 
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high for average water stress. In well watered plants 

leave soluble proteins was present (Fig.1d). The foliar 

content was significantly high for mycorrhized plants 

compared to nonmycorrhized ones. Under stress, for 

all plants soluble proteins increased for low and 

average stress and dropped for the severe stress. The 

increment was 17 and 13% for mycorrhized plants, 19 

and 15% for mycorrhized ones, for low and average 

stress respectively. The decrement was 3% for 

nonmycorrhized plants and 5% for mycorrhized ones.  

     

For well watered plants the activity of acid 

phosphatases (Fig.2a) was present and was 

significantly high for mycorrhizal plants compared to 

nonmycorrhizal ones. Under water stress acid 

phophatases activity increased with the level of stress 

for all plants. The increment was 40, 87 and 345% for 

nonmycorrhizal plants, 22, 81 and 293% for 

mycorrhizal plants for low, average and severe water 

stress respectively. Acid phophatases activity 

increment was significantly high in nonmycorrhizal 

plants than in mycorrhizal ones. 

 

The mineral element content (Fig. 2b) showed that 

the concentration of P and N was significantly lower 

with increase in the level of water stress for 

nonmycorrhized plants; while for   mycorrhized 

plants the drop is significant only for the average 

(30% of FC) and severe (15% of FC) water stress. The 

Mg and K content increased significantly with the 

level of water stress in the absence of mycorhization. 

For the mycorrhized plants the Mg concentrations 

dropped with increase in water stress level, whereas K 

was relatively constant and increased significantly 

only for severe stress. However for the low (60% of 

FC), average (30% of FC) and severe (15% of FC) 

stresses, the mycorhization increases significantly by 

14 %, 24 % and 25 % respectively fort Mg content. In 

addition, an increase of 50 % of P for the low and 

average stress, 39 % for the severe stress was 

recorded.  An improvement of nitrogen content by 17 

% for low stress, 30 % for average stress and 22 % for 

severe stress, was noted for mycorrhized plants. In 

the case of K, a significant increase in its content was 

observed only on the level of the low and severe  

stress. 

 

Discussion 

In conditions of water stress, plants accumulate 

organic and inorganic osmolytes (Wu and Xia, 2006), 

it is in accordance with results of this experiment. 

Among organic osmolytes we have total amino acids 

(TAA); proline; total soluble sugars (TSS); the leaves 

total soluble proteins (LTSP) and for inorganic ones 

we have K+ and Mg2+ ions. Low-molecular weight 

nitrogenous compounds such as proline, increased 

probably because, plants under water stress, showed 

enhanced activities of proteases (Mukherjee and 

Choudhuri, 1985). The increase of synthesis of TAA 

by inoculated plant and in particular on the level of 

the average water stress, is in accordance with 

previously reported findings of Hanson and Hitz 

(1982) on stressed maize; these amino acids may play 

a significant role in osmotic adjustment which is an 

important mechanism of drought tolerance.  The 

osmotic adjustment observed in this study may 

minimize harmful effects of drought (Morgan, 1990), 

delay dehydrative damage in drought stressed plants 

by continued maintenance of cell turgor and 

physiological processes (Taiz and Zeiger, 2006). High 

turgor maintenance may also lead to higher 

photosynthetic rate and growth (Ludlow and 

Muchow, 1990). In contrast,  it has been shown that 

the amino-acid content  in plants under water stress 

increased (Subramanian and Charest, 1995) or 

decreased (Augé et al., 1992) according to the state of 

the symbiosis carried out with AMF. 

 

The increase in proline on leaves is a good indicator of 

the exposure of plant to water stress (Abdelmoneim et 

al., 2014).  Proline is an important compatible 

osmolyte normally produced in higher plants in 

response to environmental stresses (Rhodes et al., 

1999, Ozturk and Demir, 2002). This osmolyte is 

maximum in soybean plants under drought stress and 

is altered owing to mycorrhizal symbiosis (Porcel and 

Ruiz-Lozano, 2004). This amino acid has roles as: 

energy, carbon and nitrogen source, and enhances 

tissues recovery in the relive of stress in sorghum 

(Blum and Ebercon,1976) and barley (Singh et al., 
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1973a); photodamage reducing in thylakoid 

membranes by scavenging and/or reducing the 

production of O2 (Reddy et al., 2004); a free radical 

scavenger and may be more important in overcoming 

stress than in acting as a simple osmolyte (Reddy et 

al.,2004); protector of membranes and protein 

structures when relative water content decreases 

(Lawlor and Cornic,  2002). Also, it accumulation 

contributes to play an adaptive role in the tolerance of 

water stress (Ashraf and Iram, 2005, Mafakheri et al., 

2010, Din et al., 2011, Karimi et al., 2012). Thus, the 

increase in the foliar proline content of uninoculated 

plants according to the severity of water stress shows 

that harmful effect of water stress is severe on them 

compared to mycorrhizal plant. On the other hand 

within mycorrhizal plant, the content of proline is 

significantly low meaning that mycorhization impairs 

negative effects of drought stress. This result was 

allotted to a great resistance conferred by symbiosis 

between plant and AMF (Ruiz-Lozano and Azcón, 

1997).The low content of proline is an indication of 

the best tolerance to water constraint (Ruiz-Lozano et 

al., 1995). These results are similar to those of 

Abdelmoneim et al.(2014) on Zea mays which 

showed that after 7 weeks of water stress ( 33% of FC) 

and for an  inoculum containing a spores density of 

Glomus mosseae of 300 spores.pot -1, the foliar 

content of proline of  mycorrhized plants was reduced 

by 29%.  Mycorrhiza by ameliorating the uptake of 

water and nutrients by roots through extra radical 

fungus mycelia, which extend the root surface area 

(Bethlenfalvay et al., 1988) allowed drought stress 

plants to avoid it negatives effects and maintain their 

normal metabolism. This may explain the drop of 

proline content in mycorrhizal plants compared to 

nonmycorrhizal ones  as  it was observed for Zea 

mays (Abdelmoneim et al., 2014) and for V. 

subterranea in the present work. The induction of 

drought stress in plants decrease organs water 

content induced rapid stomatal closure follow by 

reduction of transpiration, accumulation of proline 

and drop in internal carbon dioxide content (Campos 

et al., 1999, Scotti et al., 1999). As consequence of 

stomatal closure there is drop in internal carbon 

dioxide content, decreased photosynthesis activity in 

leaves due to inhibition of photochemical activities of 

Calvin cycle enzymes (Monakhova and Chernyadèv, 

2002). The reduction in photosynthesis arises by a 

decrease in leaf expansion, impairing photosynthetic 

machinery, premature leaf senescence (Vahid and 

Rasul, 2005). The impairing of transpiration and 

photosynthetic machinery by drought stress may be 

sufficient to affect biochemical and nutrients 

parameters of V. subterranea in this study. 

 

According to the severity of water stress, cellular 

soluble sugars content recorded were significantly 

high with a maximum accumulation at the level of the 

average water stress. However for inoculated plants, 

the increase in sugars content was more significant 

compared to uninoculated plants. These results are in 

accordance with previously reported finding of Qiao 

et al.( 2011), who showed that, 90 days after sowing, 

the mycorhization of Cajanus cajan with Glomus 

mosseae enhanced its soluble sugars content by 44%  

for control (80% of FC) and  24% when watering with 

50% of FC. The increase of this soluble sugars in 

water deficient plants could be attributed to the 

stimulation of conversion of starch in sucrose at the 

carbon dioxide compensation concentration (Fox and 

Geiger, 1986) presumably for osmotic adjustment 

(Morgan, 1984, Shao et al., 2009) thereby helping the 

movement of water (Goicoechea et al., 2004, 

Mahajan and Tuteja, 2005) and may also contributes 

to maintain the size of metabolic pools of the 

photosynthetic carbon reduction cycle.  The water 

deficit could be the main reason for accumulation of 

soluble sugars observed in the present work.  High 

accumulation of sugars in mycorrhizal plants may be 

due to the amelioration of water and mineral uptake.  

The drop of soluble sugars observed for severe 

drought stress (15% of FC) may be explained by 

intensive inhibition of photosynthetic activity which 

is the main source of carbohydrates. In contrast stress 

and unstressed grapevine plants showed insignificant 

differences in the sugars content (Patakas et al., 

2002). 

 

The significant increase in the content of total leaves 

soluble proteins (TLSP) of inoculated plants observed 
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in the present experiment can be justified by the role 

of the AMF in the improvement of inoculated plants 

mineral-water nutrition. In fact AMF can 

substantially enhance the uptake of different 

nutrients under different conditions, because of their 

extensive network of hypha (Miransari et al., 2009).  

The findings of this experiment showed that the TLSP 

increased significantly for low and average water 

stress, decreased for severe level. This result could be 

due to the experimental conditions and according to 

Tardieu (2005) due to the fact that at the beginning of 

water stress, stressed plants react dynamically to 

restore their water status and their metabolism is not 

significantly affected. When water deficit becomes 

severe, metabolic changes in response to water stress 

include decreased of soluble proteins (Irigoyen et al., 

1992,  Guehl et al., 1993, Keller and  Ludlow, 1993). 

This decrement may be explained by a reduction in 

bio availability of some essential mineral element 

such as nitrogen (Costa and Lobato, 2011); the 

enhancement of proteases activities (Mukherjee and 

Choudhuri, 1985) and/or the inhibition of protein 

synthesis by oxidative stress (Feng et al., 2003).  

Rodriguez et al. (2002) reported a decrease in leaf 

soluble proteins in sunflower due to water stress.  In 

contrast, Ashraf and Mehmood (1990) reported that 

higher degree of drought resistance was associated 

with higher proteins content. However, the nature of 

plant species and the type of tissue modulate the 

concentration of soluble proteins under water stress 

(Irogoyen et al., 1992). 

 

Fig. 2. Roots phosphatase activity (a), leave mineral content (b) in mycorrhizal and non-mycorrhizal V. 

subterranea plants under severe (15%), moderate (30%), mild (60%) and no drought stress (Well-watered = 90%) 

conditions. 
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Mineralization of organic P occurs through the 

activity of acid phosphatase enzymes (Duff et al., 

1994, Chen et al., 2002, Georges et al., 2002), by 

means of these enzymes, AMF are able to transform 

organic P, which is not directly mobilize by plants,  

into useful form such as ortho- and  polyphosphates 

(Richardson et al.,2009). In the present study, the 

activity of acid phosphatases was weak in 

uninoculated plants and increased significantly when 

water deficit rose.  For V. subterranea  the  

mycorhization  increased the activity of acid  

phosphatases  by 18% (for 90% of FC), 6% (for 60% of 

FC), 16 % (for 30% of FC) and 7% (for 15% of FC). 

These results are in accordance with those of Kinfack  

Dongmo (2006) and Nwaga et al.,(2011) on plantlets 

of Musa sp. (Musaceae) mycorrhizal with  

Scutellospora  gregaria; their  results showed that 40 

days after the setting in the ground plantlets of 

banana from tissue culture (Elat variety), the activity 

of acid phosphatases of the inoculated plantlets 

increased by 42% (for 90% of FC), by 53% (for 60% of 

FC) and by 52% (for 30% of FC).The increase in the 

activity of acid  phosphatases  for stressed plants may 

improve their tolerance to water stress (Sharma et al., 

2005).  In mycorrhized plant under water stress, such 

as V. subterranea in this experiment, AMF enhanced 

production of different enzymes, among them acid 

phosphatases that enhanced the solubility of 

nutrients including P and the less mobile 

microelements and thus substantially enhanced  the 

uptake of different nutrients under different 

conditions owing to their extensive network of hypha 

(Miransari et al., 2009). 

 

Water deficit generally results in limited nutrient 

uptake and their diminished tissue concentrations in 

crop plants.  In order to optimize their hydro-mineral 

nutrition, most crop plants, may associate themselves 

with fungi, like AMF, which ensure efficient soil 

prospection.  AMF improves plant growth  by  

increasing  absorption of  inorganic nutrients  which 

enhance  their tolerance to water stress (Screenivasa 

and Bagyaraj, 1989); that is probably why  

mycorrhizal plants of  V. subterranea are rich  in 

mineral nutrients (Mg, P, N, K). 

Potassium (K) is essential for many physiological 

processes such as transpiration and photosynthesis 

(Marschner, 1995, Mengel and Kirkby, 1987). K has 

substantial effect on stomatal movement and water  

relation (osmotic potential and turgor regulation of 

the cell, osmotic adjustment) in plants (Marschner, 

1995,  Lindhauer, 1995) and regulates the stomatal 

functioning under water stress conditions (Kant and 

Kafkafi, 2002). Stomatal function is to control water 

loss from the plant through transpiration. When K+ is 

deficient, the stomata cannot function properly and 

transpiration may rich damaging levels (Gethings, 

1990). Lowered absorption of the inorganic nutrients 

can reduced transpiration flow (Garg, 2003, Mc 

Williams, 2003). Under water deficit conditions, K 

nutrition increases crop tolerance to water stress by 

utilizing the soil moisture more efficiently than in K-

deficient plants (lindhauer, 1995). The increase in the 

potassium content recorded with the severity of the 

stress could be an effective tolerance response of V. 

subterranea.  Potassium enhances photosynthetic 

rate under stress conditions (Egilla et al., 2001); 

without this element no photosynthetic activity can 

take place. Alleviation of detrimental effects of 

drought stress, especially on photosynthesis, by 

sufficient K supply has been shown in legumes 

(Sangakkara et al., 2000). K has important effect on 

enzyme activation, proteins synthesis and 

photosynthesis in plants (Marschner, 1995). Under 

water stress, the photosynthetic efficiency of plants is 

reduced drastically as a consequence of chloroplast 

dehydration (Sen Gupta and Berkowitz, 1987, 

Berkowitz and Kroll, 1988). The chloroplasts lose 

large amounts of k+ with a simultaneous decrease in 

photosynthesis.  The reason for the enhanced need for 

K by plant suffering from environmental stresses 

appears to be related to the fact that K is required for 

maintenance of photosynthetic carbon dioxide 

fixation (Waraich et al., 2011). It may be the case for 

V. subterranea used in the present study.  The pH of 

leaf sap, which can promote abscisic acid 

accumulation and concomitantly diminish stomatal 

conductance, is increased by environmental 

conditions that enhance the transpiration rate 

(Farooq et al., 2009). In plants suffering from 
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drought stress K plays protective role by maintenance 

of high pH in stroma and against the photooxidative 

damage to chloroplast (Cakmak, 1997). This may be 

one of the reasons of enhancement of K content V. 

subterranea observed in the present work.  The 

amelioration of mineral absorption observed in this 

study has already been noted for phosphorus in 

mycorrhized maize with Glomus fasciculatum 

(Subramanian et al., 2006), the improvement of 

nitrogen assimilation was also noted in mycorrhized 

soybean with Glomus fasciculatum (Patreze and 

Cordeiro, 2004). Phosphorus and nitrogen are both 

essential macronutrient, increased uptake of these 

element by drought stress plants can improve their 

drought tolerance (Waraich et al., 2011). 

 

Conclusion 

The aim of this study was to evaluate the early effects 

of AMF species mixture (Glomus hoï + Glomus 

intraradices + Gigaspora margarita + Scutellospora 

gregaria) on Vigna subterranea grown in various 

water stress regimes.  Mycorrhiza symbiosis alleviates 

detrimental drought stress effects on Vigna 

subterranea at early growth stage;  by means of 

osmotic adjustment, thus enabling more synthesis of 

sugar, acid phosphatases. Thus, the use of 

mycorrhizal biofertilizer can be considered as one 

effective mean to alleviate unfavorable environmental 

factors such as drought stress common in sahelian 

zones  or dry season in humid zones.   
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