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Abstract 

Estimation of rivers suspended load is one of the major issues of topics related to river engineering, reservoirs 

management, schemes and hydrologic projects. The chaotic behavior of monthly precipitation time series is 

investigated using the phase-space reconstruction technique and the principal component analysis method. To 

reconstruct phase space, the time delay and embedding dimension are needed and for this purpose, average 

mutual information and algorithm of false nearest neighbors are used. Correlation dimension method is applied 

for investigating chaotic behavior of the daily suspended sediment statistics, which is the resultant of correlation 

dimensions, expresses chaotic behavior in the time series to illustrate efficiency of chaos theory for predicting 

suspended sediment, daily suspended sediment statistics of Maku Baron Chay River investigated for 5years. The 

delay time and optimum embedding dimension were obtained 8 and 5 respectively. The low amount of 

correlation dimension (d = 3) represents the chaotic behavior of sediment time series. 
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Introduction 

Study of river flow is important for designing, 

exploitation and study of water supply systems. River 

flow processes is dynamic, nonlinear, extremely 

complex, and are affected by several interconnected 

physical variables, so that different methods 

including hydrologic modeling, time series analysis, 

artificial neural networks, fuzzy logic, neuro-fuzzy, 

genetic programming and recently chaos theory are 

used for river flow modeling.The science of chaos is a 

burgeoning field, and the available methods to 

investigate the existence of chaos in time series are 

still in a state of infancy. However, the considerable 

attention that the theory has received in almost all 

fields of natural and physical sciences has motivated 

improvements in existing methods for the diagnosis 

of chaos and the proposal of new ones. 

 

In order to investigate dynamic precipitation in 

various time scales, Sivakumar(2001) carried out a 

study by chaos theory. To accomplish this, the 

participation data of  Leef River in Mississippi in 4 

time scales of daily, second, fourth and eighth day is 

analyzed during a 25 years period and used the 

method of correlation dimension to demonstrate the 

dynamic behavior of participation. Limited 

correlation dimension for each 4 scales is 82.4, 26.5, 

42.6, and 84.8 respectively which suggests the 

possibility of chaotic behavior in each 4 scales. 

 

Rigonda et al. (2004) discussed and investigated the 

data of three rivers in daily, third, and fifth day basis 

in regard to the ability of being chaotic. A number of 

data series showed chaotic behavior and investigate 

random behavior. 

 

Khan et al. (2005) studied the possibility of presence 

of chaotic signals of conceived time series from 

hydrological systems. In this study the amounts of 

daily discharge of Arkansas and Colorado Rivers 

during 4 years, are investigated which none of raw 

time series showed chaos. This study illustrates that 

hydrological data may or may not possess a certain 

chaos feature. 

Ng et al. (2007) studied the application of chaos 

analysis techniques on daily noised flow series. In this 

study, they investigated the effect of disorder on the 

complexity of a system by using the concepts of chaos 

visually and considering the quantity, and showed 

that the presence of disorder adds on the complexity 

of time series analysis. 

 

Ghorbani et al.(2011), by studying the data of 

suspending sediments of Lighvan River during 21 

statistical years, by using chaos theory, calculated the 

delay time (62 days) and based on the conceived delay 

time and for surrounding dimension of 34, the 

correlation dimension is calculated equal to 1.6, 

which is a reason to chaotic behavior of the Lighvan 

River’s sediment amount. 

 

The methods available thus far are the correlation 

dimension method (Grassberger, 1983), the nonlinear 

prediction method (Farmer, 1987) including 

deterministic versus stochastic diagram (Casdagli, 

1991), the Lyapunov exponent method (Wolf, 1985), 

the surrogate data method (Theiler, 1992), and the 

linear and nonlinear redundancies (Palus, 1995; 

Prichard, 1995). Among these the correlation 

dimension method has been the most widely used one 

for the investigation of deterministic chaos in 

hydrological phenomena (Hense, 1987; Puente, 1996; 

Sangoyomi, 1996; Sivakumar, 2000). In the present 

study, the correlation dimension method is employed, 

and the presence of a low-dimensional attractor (a 

geometric object which characterizes the long-term 

behavior of a system in the phase space) is taken as an 

indication of chaos. 

 

A chaotic system is defined as a deterministic system 

in which small changes in the initial conditions may 

lead to completely different behavior in the future. 

Signal from the chaotic system is often, at first sight, 

indistinguishable from a random process, despite 

being sensitive to initial conditions behavior of many 

systems was observed by many researchers for a 

number of decades, but was first described as such by 

Lorenz (Wilks (1991)). During the past two decades, 
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the theory of chaos showed its applicability in solving 

a wide class of problems in many areas of natural 

sciences. The discovery that very simple deterministic 

systems can produce seemingly irregular time series 

pushed researchers to try identifying such systems 

and apply chaos theory in order to predict their 

behavior. However, chaotic signal analysis is still a 

novel approach in many areas related to civil 

engineering and to water-related problems in 

particular. In literature, many researchers have 

investigated the stream flow modeling with chaos 

theory. The papers by Jayawardena& Lai (1994); 

Porporato&Ridolfi (1997); Stehlik (1999) have shown 

the presence of low dimensional deterministic 

behavior in the stream flow process. Islam & 

Sivakumar (2002), Lisi& Villi (2001), have suggested 

the possibility of accurate stream flow predictions 

using nonlinear deterministic approaches. 

Elshorbagyet al.(2002) has performed noise 

reduction and missing data estimation 

Qingfang&Yuhua (2007) has developed a new local 

linear prediction model for chaotic stream flow series. 

 

The goals of the study includes determining the 

chaotic potential of discharge data in daily scale, 

modeling the flow by chaos theory, and predicting the 

amount of flow discharge using chaos theory. this 

study is focused on the chaotic behavior of river flow 

and then by using chaos theory it estimates the river’s 

flow. 

 

Material & methods 

It is relevant to note that the application of chaos 

identification methods, particularly the correlation 

dimension method, to hydrological time series and 

the reported results have very often been questioned 

because of the fundamental assumptions with which 

the methods have been developed, that is, that the 

time series is infinite and noise-free. Important 

issues, in the application of chaos identification 

methods to hydrological data, for example, data size, 

noise, delay time, etc., and the validity of chaos theory 

in hydrology have been discussed in detail by 

Sivakumar (2000) and therefore are not reported 

herein. It is relevant to note, however, that the studies 

by Sivakumar reveal that the presence of noise in the 

data does not significantly influence the correlation 

dimension estimates (though it significantly influence 

the prediction accuracy estimates). This suggests that 

the correlation dimension may be used as a 

preliminary indicator to identify the existence of 

chaos in the monthly precipitation time series. 

 

Reconstruction of phase space 

While for stochastic systems there is no specific rule 

for phase-space reconstruction except some physical 

and/or statistical considerations, the optimal phase-

space reconstruction of a Deterministic 

uni/multivariate nonlinear system is obtained by 

“embedding” the dynamics of the process utilizing the 

so-called delay time method. The first step in the 

process of chaos theory is reconstructing the 

dynamics in phase space. The concept of phase-space 

is a powerful tool for characterizing dynamic system, 

because with a model and a set of appropriate 

variables, dynamics can represent a real world system 

as the geometry of a single moving point .A method 

for reconstructing phase-space from a sight time 

series has been presented by Takens (1981).The time 

series is assumed to be generated by a nonlinear 

dynamic system with m degrees of freedom. It is 

therefore necessary to construct an appropriate series 

of state vectors Yt with delay coordinates in the m-

dimensional phase space: 

(1) 

Where   is referred to as the delay time and for a 

digitized time series is a multiple of the sampling 

interval used, while m is termed the embedding 

dimension. If the dynamics of the system can be 

reduced to a set of deterministic laws, the trajectories 

of the system converge towards the subset of the 

phase space, called the attractor. For a scalar time 

series t xt , where t = 1,2,…,N  ,  the phase space can be 

reconstructed using the method of delays (Takens, 

1980). where j = 1 , 2,… , N − (m −1) / Δt, m  is the 

dimension of the vector Yt, also called the embedding 

dimension, and is a delay time taken to be some 
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suitable multiple of the sampling time 

Δt(Packard,1980). Take a scalar time series 

 in system phase-space as an example. 

Supposing its dimension d is 1, its dimension of 

embedding phase-space should be 3. If here m = 

4, forms the first vector Y1of a four-

dimensional state space and then moving right one 

step, forms the second vector Y2. 

Just do in the same way, forms the 

time series of reconstruction phase-space. 

 

Correlation dimension 

Grassberger&Procaccia (1983) defined the correlation 

sumC(r) as: 

 

    (2) 

 

where H is the Heaviside step function with H (u) = 1 

for u , H(u) = 0 for u ≤ 0; N is the number of 

points in the vector time series {Y(t)}; Nref (≤ N) is the 

number of reference points taken from the vector 

time series Y(t); r is the radius of sphere centered on 

either of the points {Yi }or {Yj}. The norm 

may be any of the three usual norms, the 

maximum norm, the diamond norm, or the Euclidean 

norm, of which the Euclidean norm is widely used. 

Correlation sums are calculated for a series of 

embedding dimensions. If an attractor for the system 

exists, then, for small r, it can be shown that: 

 

(3) 

 

Where d is the correlation exponent. It may be 

estimated by the slope of a straight line in the plot of 

log (C(r)) vs. log (r) for each value of m. For random 

processes, d varies linearly with increasing m without 

reaching a saturation value, whereas for deterministic 

processes, the value of d levels off after a certain m. 

The saturation value of d is defined as the correlation 

dimension D of the attractor or the time series. The 

nearest integer above the saturation value of d 

provides the minimum number of embedding 

dimensions of the phase space necessary to model the 

dynamics of the attractor. When the optimal 

embedding dimension is not known, such as for 

example in a real time series, the correlation 

dimension is calculated for increasing embedding 

dimensions until it reaches a saturation value. It 

should be noted that in the plots of log (C(r)) vs. log r, 

there are large statistical errors for small and large 

values of r. In between, however, there is a region in 

which the value of d remains reasonably constant. 

This region is called the scaling region. 

 

The slope is generally estimated by a least-squares fit 

of a straight line over a certain range of r, called the 

scaling region. The presence/absence of chaos can be 

identified using the correlation exponent versus the 

embedding dimension plot. If the correlation 

exponent saturates and the saturation value is low, 

then the system is generally considered to exhibit 

low-dimensional chaos. The saturation value of the 

correlation exponent is defined as the correlation 

dimension of the attractor. The nearest integer above 

the saturation value provides the minimum number 

of variables necessary to model the dynamics of the 

attractor. On the other hand, if the correlation 

exponent increases without limit with increase in the 

embedding dimension, the system under 

investigation is generally considered as stochastic. 

 

Local prediction 

A correct phase-space reconstruction in a dimension 

m facilities an interpretation of the underlying 

dynamics in the form of an m-dimensional map fT , 

according to : 

 

             (4) 

 

Where and are vectors of dimension m, 

describing the state of the system at times j (e.g. 

current state) and j+T(e.g. future state), respectively. 

The problem then is to find an appropriate expression 

for fT(i.e. FT). Local approximation entails the 
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subdivision of the fTdomain into many subsets 

(neighborhoods), each of which identifies some 

approximations FT,valid only in that same subset. In 

other words, the dynamics of the system is described 

step by step locally in the phase space. By considering 

a time series of a single variable, it is possible to 

reconstruct the phase space. Before applying 

reconstruction procedure it is necessary to have some 

information, embedding dimension, delay time, etc., 

concerning the attractor .One of the independent 

coordinates mentioned above is taken as the time 

series itself. The remaining coordinates are formed by 

its(m-1) lagged time series shifted by (m-1) multiples 

of the correlation time τ, at which correlation between 

coordinates become zero. It is assumed that the time 

series data are generated from a chaotic dynamical 

system in the ν-dimensional space (ν is dimension of 

attractor). In this m-dimensional space, prediction is 

performed by estimating the change of Xiwith time. 

Considering the relation between the points XtandX 

t+pat time p later on the attractor is approximated by 

function F as: 

 

(5) 

 

In this prediction method, the change of X twith time 

on the attractor is assumed to be the same as those of 

nearby points,( , h=1,2,3,…,n). Here in, Xt+pis 

determined by the dth order polynomial F(Xt) as 

follows: 

(6) 

 

Using n of X Thand for which the values are 

already known, the coefficients f are determined by 

solution of the following equation, Where: 

X (7) 

 =( (8) 

 

f=( (9) 

 

And A is the      Jacobian matrix which in its 

explicit form is: 

 

A=   (10) 

 

 

Fig. 1. Local Prediction Mechanism and Model. 

 

Study Area and Data Used 

Maku is a city in the West Azerbaijan Province, Iran. 

At the 2006 census, its population was 41,865, in 

10,428 families. It is situated 22 kilometers (14 mi) 

from the Turkish border in a mountain gorge at an 

altitude of 1634 meters. The Zangmar River cuts 

through the city. Maku Free Trade and Industrial 

Zone is Iran’s largest and the world’s second largest 

free trade zone and will encompass an area of 5000 

square km when it will open in 2011. 

 

Plantation Hydrometery Station was established on 

the Baron Chay River in 1989 Years.Its height from 

sea level is 1712 meters. Surface catchment basin of 

654 square kilometers and is home to the Caspian 

Sea. 
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Fig. 2. Location of Baron Chay Maku Basin. 

 

Fig. 2 shows the variations of daily river flow time 

series and Table 1 presents some of the important 

statistics of the time series. 

 

Results  

In order to reconstruct the original phase space, we 

first estimate reconstruction parameters, the delay 

times  and embedding dimension m. The method 

used for the determination of the sufficient 

embedding dimension is based on the calculation of 

the percentage of false nearest-neighbors for the time 

series. 

 

Table 1. Statistics of Daily River flow data from Baron Chay River 

Data Type Minimum Maximum Mean Variance 
Standard 
deviation 

The coefficient of 
skewness 

Elongation 
factor 

 

0.018 14.56 2.84 8.40 2.89 1.46 1.84 

Suspended 
sediment 

( ) 
0.00 7901.41 2132.68 

 

1305.78 0.98 1.77 

 

 

Fig. 4. Mutual information function of suspended sediment in the from Baron Chay River daily time scale. 

 

 

Fig. 5. False nearest neighbors for different values offrom Baron Chay River. 
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Fig. 6. The daily suspended sedimentfrom Baron Chay River. 

 

 

Fig. 7. Changes correlated with an increase in the surrounding plot of suspended sediment. 

 

 

Fig. 8. RMSE graphs for various dimensions of the inscribed. 

 

 

Fig. 9. R2graphs for various dimensions of the inscribed 
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Fig. 10. Comparison of the calculated and observed sediment graph from Baron Chay River with chaos theory 

model. 

 

 

Fig. 11.  The scatter plot of estimated and observed precipitation data and the regression line data. 

 

Table 2. Statistical forecasting of daily suspended 

sediment component dimensions, inscribed with the 

from Baron Chay River. 

daily suspended sediment 
ED RMSE R2 ED RMSE R2 

1 286.88 0.948 7 303.2 0.942 
2 291.57 0.946 8 316.21 0.937 
3 345.11 0.925 9 326.42 0.933 
4 336.85 0.929 10 337.19 0.928 
5 295.84 0.944 11 334.54 0.929 

6 310.87 0.939 12 308.92 0.939 

 

Conclusion and discussion 

Delay time obtained by average mutual information 

method for baroon chay river of Maku. The best 

appropriate embedding dimension determined by 

false nearest neighbor method equal to 5. Correlation 

dimension for time series was  3.1 it is mean that a 

number of the necessary variable for description the 

system is  3.  A little of  obtained correlation 

dimension at daily time scale display existence of 

chaos on suspended sediment time series of the 

Baron chay river. 

 

As at the this  paper outcome embedding dimension 

is somewhat high, to do prediction process use from 

embedding dimension d≤ m˂d+1 (from 4 to 7) that 

result the best prediction on the  appropriate 

embedding dimension. RMSE and R2calculated 

295.84 and 0.944 respectively at Table (2) to the 

optimum embedding dimension (=5) by Tisean 

software. 
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