
Hamouda et al. Page 46 
 

 

 
 

RESEARCH PAPER                                                                                  OPEN ACCESS 
 

Molecular and physiological responses of Pisum sativum and 

Vicia faba to sodium azide 
 

M. Hamouda, K.M. Saad-Allah, W.A. Kasim* 
 

Botany Department, Faculty of Science, Tanta University, 31527 Tanta, Egypt 

 
Article published on June 16, 2014 

 
Key words: Antioxidants, isozymes, ISSR finger printing, lipid peroxidation, Pisum sativum, Vicia faba. 

Abstract 
 
Seeds of Pisum sativum and Vicia faba were pre-soaked in either  1.0, 2.0 or 4.0 mM  of sodium azide (NaN3) for  

30 min, 1 h or 2 hs  then, sown in clay soil in plastic pots under conditions of 25/18°C day/night and natural light 

(16/8 h day/night) and the seedlings were harvested after 21 days. The results revealed that total phenols, H2O2, 

malondialdehyde and the activities of catalase, peroxidase and DPPH scavenging activity in both plant were 

gradually increased with the increase in NaN3 concentration and soaking time. The isozymes of α- and β- 

esterases and α-amylase had number of loci ranged from two (α-amylase) to four (α-esterase) in pea, while  in 

bean, it was three  for the three investigated enzymes. The ISSR analysis revealed that both plants showed highly 

significant increase in the appearance of bands by the highest treatment of NaN3, especially with the longest 

duration. Pea produced 14 polymorphic, 9 monomorphic and 4 unique bands, while bean produced 14 

polymorphic, 8 monomorphic and 3 unique bands. 
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Introduction   

Faba bean (Vicia faba L.) is a major food and feed 

legume, a crucial source of protein and can be used as 

a winter or spring cover crop, green manure, silage, 

forage, hay and vegetable (Crepona et al., 2010). Pea 

(Pisum sativum L.) is a field crop grown for its edible 

seeds. They are nutritious legumes, containing 15 to 

35% protein, and high levels of the essential amino 

acids lysine and tryptophan (Elzebroek and Wind, 

2008). 

 

Sodium azide (NaN3) is a common bactericide, 

pesticide and industrial nitrogen gas generator known 

to be highly mutagenic in several plants such as 

barley and some other crop species (Ilbas et al., 

2005). Kleinhofs and Sander (1975) reported that 

NaN3 induced a wide range of morphological and 

physiological mutants in barely. The azide ions are 

strong inhibitors of cytochrome oxidase, which in 

turn inhibits the oxidative phosphorylation process. 

In addition, it is a potent inhibitor of the proton 

pump (Kleinhofs et al., 1978), alters the 

mitochondrial membrane potential and changes the 

metabolic activity (Zhang, 2000). The toxicity of 

NaN3 and most of its physiological effects can be 

traced to its reversible inhibitory effect on enzymes 

containing a coordinated divalent ion, such as those 

of cellular respiration (Kleinhofs et al., 1978). Maxim 

et al. (2009) found that NaN3 resulted in an increase 

in the activities of the antioxidant enzymes catalase 

and peroxidase. 

 

Mutagenicity of NaN3 is arbitrated through the 

formation of an organic metabolite of azide which 

enters the nucleus, interacts with DNA and generates 

point mutations in the genome (Owais and Kleinhofs, 

1988). Sodium azide causes meiotic aberrations and 

their genetic consequences result in the appearance 

and disappearance of some protein bands depending 

on its concentration and duration (Saad-Allah et al., 

2014). Soliman (2003) and Shehab et al. (2004) 

attributed such changes of mutational events to the 

loss of some genetic material due to induction of 

laggards, breaks and micronuclei or changes in gene 

sequences. Inter Simple Sequence Repeat–

Polymerase Chain Reaction (ISSR-PCR) method 

permits the detection of some mutational events as 

polymorphisms in inter-microsatellite loci, using a 

primer designed from di-nucleotide or tri-nucleotide 

simple repeats, and possesses some advantages of 

stability and reproducibility (Gupta et al., 1994). 

 

Phenolic compounds are ubiquitous in plant food, 

and have been associated with the sensory and 

nutritional quality of fresh and processed plant foods 

(Ho et al., 1992). Foods rich in phenolic compounds 

have been shown to impart anti-mutagenic, anti-

inflammatory and antioxidant properties (Friedman, 

1997). Most of the antioxidant substances in plants 

are phenolic compounds which serve as oxidation 

terminators by scavenging radicals to form resonance 

stabilized radicals (Rice-Evans et al., 1997). Jeng et 

al., (2010) found that the total phenolics level is 

enhanced in bean subjected to NaN3 treatments. 

Flavonoids act as mild pro-oxidants and stimulate the 

endogenous antioxidant defenses which reduce the 

impact of oxidative stress (Al-Qurainy and Khan, 

2009). However, Jain and Agrawal (1990) stated that 

the total flavonoids content is increased in two 

Trigonella species to their maximum value under the 

effect of 0.0001M and decreased at 0.001M of NaN3. 

 

Isozymes are functionally similar enzymes with 

different molecular forms and they are very useful as 

genetic marker to distinguish mutants (Allendorf and 

Luikart, 2007, Talukdar (2010). Esterases are 

lipolytic enzymes which are widely used for the 

hydrolysis of ester bonds and transesterification 

(Brady et al., 1990). Amylases are calcium 

metalloenzymes, completely unable to function in the 

absence of calcium (Yamaguchi et al., 2004). It is 

stated that α-amylase breaks down long-chain 

carbohydrates by acting at random locations along 

the starch chain, ultimately yielding maltotriose and 

maltose from amylose, or maltose, glucose and "limit 

dextrin" from amylopectin (Pandey et al., 1999).  

 

All stress types bring about important alterations in 

the reactive oxygen metabolism; among these 

alterations is the disappearance of catalase activity 
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and over production of H2O2 (Bailly et al., 1996). 

Some of these stresses enhanced the active oxygen 

species which can oxidize biological molecules such as 

DNA, proteins and lipids (Murthy et al., 2003). Free 

radicals have the potential to change the membrane 

structure and function; as a result membrane 

integrity is gradually disrupted causing increased 

permeability of the plasma membrane and loss of 

compartmentation of cytoplasmic organelles (Kumar 

and Knowles, 1993, Bailly et al., 1996).  

 

The present study aimed to assess the impact of the 

treatment with different concentrations of the 

mutagen NaN3 for different time intervals on some 

molecular and physiological responses of the two 

legume plants, Pisum sativum and Vicia faba. 

 

Materials and methods  

Germination 

Seeds of the two legume crops pea (Pisum sativum L.) 

and bean (Vicia faba L.) were kindly provided by the 

Agriculture Research Centre (ARC), Giza, Egypt, and 

grown for one season (December 2012 to April 2013). 

The seeds were surface sterilized using 0.01% (w/v) 

mercuric chloride (HgCl2) for 8 min., with continuous 

stirring, rinsed thoroughly several times in distilled 

water, then three groups of them were soaked in three 

concentrations of NaN3 (1.0, 2.0 or 4.0 mM) for 

different time intervals (30 min., 1 h. or 2 h.) beside 

the control which was maintained by pre-soaking the 

seeds in distilled water. The soaked seeds were then 

washed under running tap water and sown in plastic 

pots (35 cm diameter x 18 cm depth), each containing 

6 kg clay soil. The experiment was carried out in 

randomized complete block design (RCBD) with split-

plot arrangement in the green house under conditions 

of 25/18°C day/night temperature and natural light 

(16/8 h day/night). Phosphate fertilizer was applied 

at 20 lb/acre, as a side band with the seed. The 

seedlings were harvested after 21 d., a group of them 

was kept fresh for the biochemical analysis of 

flavonoids, H2O2, catalase, perodidase, malon 

dialdehyde (MDA), isozymes and ISSR finger 

printing. Another group of seedlings was dried in an 

oven at 50 ˚C for the analysis of total phenolics and 

DPPH activity.  

 

Total Flavonoids and Total Phenolics 

Total flavonoid content was estimated using 

aluminium chloride colorimetric technique according 

to Chang et al. (2002) and was calculated as mg/g 

f.wt. Total phenolic content was estimated 

quantitatively using the method described by Jindal 

and Singh (1975) and was expressed as mg/g d.wt.  

 

Antioxidant activity 

The total antioxidant activity (percentage of 

scavenged DPPH) was evaluated by the method 

described by Brand-Williams et al. (1995) and Bondet 

et al. (1997). H2O2 content was determined using the 

method given by Velikova et al. (2000) and its 

amount was expressed as nmol g–1 f.wt. Two 

antioxidant enzymes, catalase [EC1.11.1.6] and 

peroxidase [EC1.11.1.7] were extracted according to 

Beauchamp and Fridovich (1971) and their activities 

were assayed according to Kato and Shimizu (1987) 

and were expressed in units of µM of the substrate 

converted min-1. g1 f.wt. The concentration of lipid 

peroxides was determined by the method of Mihara 

and Uchiyama (1978) and the MDA content was 

expressed as μmol g–1 f.wt. 

 

Electrophoresis of Isozymes 

Isozyme-PAGEs were prepared by extracting 0.2 g 

fresh leaves of 21-day-old seedlings according to El-

Fadly et al. (1990). α-Amylase was determined in the 

extract by the method of Pasteur et al. (1988) and 

Esterases (EST) were estimated by the method of 

Soltis et al. (1983) using α-naphthyl acetate for α-

esterase and β-naphthyl acetate for β-esterase. The 

isozyme electrophoretic banding patterns were scored 

for analysis and coded as 0 or 1 depending on their 

absence or presence, respectively, in the two studied 

plants. 

 

ISSR- Analysis 

The ISSR finger-printing procedures were based on 

the method described by Dogan et al. (2007). Five 

ISSR primers (Operon Nippon EGT CO. LTD) were 
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screened for the production of polymorphic products 

from all samples of the two plant species. The 

sequences of the primers and their properties are 

mentioned in Table (1). The ISSR fingerprinting was 

visualized using a Gel Works 1D advanced gel 

documentation system (UVP, UK) and photographed 

under UV light. The size of each band was estimated 

using 100 bp DNA ladder (Fermentas) as a standard 

marker, using Lab Image software program version 2.7 

produced by Kapelan GmbH Co, Germany. 

 

 

Table 1. Primers ID, sequences, length in bp and annealing temperature (Tm) of the selected ISSR primers with the 

number of polymorphic bands and percentage of polymorphism in Pisum sativum and Vicia faba. 

Ser ID Sequence (5'→3') 
Length 
(base 
pair) 

Tm (ºC) 

Number of polymorphic 
bands 

Polymorphism 
percentage (%) 

Pisum 
sativum 

Vicia 
 faba 

Pisum 
sativum 

Vicia 
faba 

01 17899 A CACACACACACAAC 14 42 2 2 50 40 
02 HB-10 GAGAGAGAGAGACG 14 44 2 2 33.3 40 
03 HB-11 GTGTGTGTGTGTCG 14 44 3 4 50 66.6 
04 HB-12 CACCACCACGC 12 38 2 2 50 66.6 
05 HB-13 GAG GAG GAG GC 11 38 5 4 71.4 66.6 

 

Results and discussion 

Total Flavonoids 

The total flavonoid content of methanolic extract of 

Pisum sativum and Vicia faba under the effect of 

different sodium azide concentrations and different 

soaking time intervals were shown in Fig.1. It 

increased gradually with the increase in both 

concentrations and soaking time in NaN3. The highest 

flavonoid content was achieved with the highest NaN3 

concentration (4 mM) at soaking time 2 hours. Dixon 

and Paiva (1995) and Grace and Logan (2000) 

reported that flavonoids are frequently induced by 

abiotic stress and promote roles in plant protection. 

Moreover, the modifications of flavonoid structure 

i.e., glycosylation, prenylation and methylation could 

affect their antioxidant properties, thus they may help 

inhibit lipid peroxidation in stressed-plants (Caturla 

et al., 2003, Potapovich and Kostyuk, 2003). It is 

known that the natural substances such as flavonoids 

and tannins or their derivatives possess 

antimutagenic properties and these metabolites could 

be involved in mutagen deactivation (Edenharder et 

al., 1993, Yen and Chen, 1996, Hornl and Vargas, 

2003). The possible mechanism of the demonstrated 

antimutagenic behaviour of flavonoids could be due 

to inactivation of the reactive intermediates formed 

from mutagens (Gowri and Chinnaswamy, 2011). 
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Fig. 1. Effect of presoaking of pea (Pisum sativum) and bean (Vicia faba) seeds in different concentrations (1, 2 

and 4 mM) of  NaN3 for different time intervals (0.5 h, 1h and 2 hs) on the total flavonoid contents of 21-days old 

seedlings. 
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Total Phenolics 

The total phenolic content in the two plant species 

gradually increased with the increase in NaN3 

concentration and soaking time (Fig. 2). Generally, 

the total phenolic compound contents of Vicia faba 

was greatly higher (about four-fold) than that of 

Pisum sativum either in the control or in sodium 

azide treatments. Soaking of Vicia faba seeds in the 

highest concentration of NaN3 (4 mM) for 2 hs 

resulted in 24.4% increase in the total phenolic 

contents, while in Pisum sativum it was increased by 

62.6% compared with their controls. These results 

manifested the correlation between the concentration 

of the mutagen and the accumulation of the phenolic 

compounds. Several reports stated that phenolic 

compounds have many biological activities; they can 

act as antioxidants (Kagan and Tyurinov, 1998), 

scavengers of active oxygen species and electrophiles 

(Zhou and Zheng, 1991) and chelators of metals 

(Brune et al., 1989). Birosov et al. (2005) found that 

phenolic acids inhibited the mutagenic activity of 

sodium azide in Salmonella typhimurium by 82%. 

Several mechanisms have been proposed for the 

action of phenolic compounds as antimutagens, 

however, the two main mechanisms include the 

inhibition of enzyme systems such as the cytochrome-

P450-dependent bioactivation of the various 

mutagens and the scavenging of metabolically 

generated mutagenic electrophiles (Del Pozo-Insfran 

et al., 2004). In addition, Hour et al. (1999) proposed 

a third mechanism which includes the blocking of the 

mutagen transfer into the cytosol by phenolic binding 

or insertion into the transporters of the outer 

membrane of the cell.  As concluded by de Mejia et al. 

(1999), phenolic compounds can interact directly and 

non-enzymatically with the mutagen or form a 

complex between themselves and the mutagen 

thereby reducing the mutagen bioavailability. Phapale 

and Misra-Thakur (2010) reported that Feronia 

limonia has high antimutagenic effect against sodium 

azide due to its high content of phenolic compounds. 
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Fig. 2. Effect of presoaking of pea and bean seeds in different concentrations (1, 2 and 4 mM) of NaN3  for 

different time intervals (0.5 h, 1 h and 2  hs) on the total phenolic content of 21-days old seedlings. 

 

Antioxidant activity 

The DPPH radical scavenging activities of Pisum 

sativum and Vicia faba extracts under the different 

concentrations of NaN3 and different soaking time 

intervals wer showed in Fig. 3. The DPPH scavenging 

activity of Vicia faba was higher than that of Pisum 

sativum under control treatments (81.6% and 62.0%, 

respectively). However, the DPPH scavenging activity 

of Pisum sativum was more affected by NaN3 

treatments than Vicia fava. In both plant species, this 

activity was increased proportionally with the 

increases of NaN3 concentration and the soaking 

period. The highest increase was recorded with 4 mM 

NaN3 after 2 hs of soaking, where it caused 32.4% and 

4.3% increase in the DPPH scavenging activity in 

Pisum sativum and Vicia faba, respectively. The 

results of this study indicated that sodium azide 

treatments might have induced some antioxidant 

compounds as phenolics that are capable of donating 

hydrogen to a free radical in order to remove the odd 
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electron, which is responsible for the radical’s 

reactivity (Singh et al., 2007, Olayinka and Anthony, 

2010, Duhan et al., 2011). Phenolics and flavonoids 

are the major constituents noted in most plants and it 

has been reported by many researchers that they 

posses antioxidant and free radical scavenging 

activity (Yerra et al., 2005). The observed antioxidant 

activity in this study may be due to the neutralization 

of free radical character of DPPH, either by 

transferring of an electron or hydrogen atom (Naik et 

al., 2003). The ability of the extract to scavenge the 

DPPH radical has also been related to the inhibition 

of lipid peroxidation (Rekka and Kourounakis, 1991). 

Sodium azide treatments significantly increased H2O2 

content in the leaves of both Pisum sativum and Vicia 

faba (Fig. 4). However H2O2 content of Vicia faba 

was relatively higher than that of Pisum sativum 

under the control and sodium azide treatments. The 

increase in H2O2 content was proportional to the 

increase in sodium azide concentration and soaking 

period. The highest increase in H2O2 content was 

recorded for both seeds with soaking in 4 mM NaN3 

for 2 hs; however, it was 2 folds in Pisum sativum and 

2.5 folds in Vicia faba, compared with their controls. 

These results were in agreement with those of 

Szatrowski and Nathan (1991) who reported that the 

presence of sodium azide in the reaction mixture 

prevents the competitive action of catalase on H2O2 

leading to the accumulation of H2O2, while they 

disagreed with those obtained by Francisco et al. 

(2008), who reported that sodiume azide treatments 

decreased the level of H2O2 in grapevine buds. 
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Fig. 3. Effect of presoaking of pea and bean seeds in different concentrations (1, 2 and 4 mM) of NaN3  for 

different time intervals (0.5 h, 1h and 2 hs) on DPPH radical scavenging activity of 21-days old seedlings. 
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Fig. 4. Effect of presoaking of pea and bean seeds in different concentrations (1, 2 and 4 mM) of NaN3  for 

different time intervals (0.5 h, 1 h and 2 hs) on H2O2 content of 21-day old seedlings. 

 

In addition to the well-known oxidative damages 

caused by increase in ROS levels in plant tissues 

especially H2O2, they play an important role as a 

signalling molecule produced and controlled by 
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metabolism, being beneficial at low concentrations 

and harmful when produced in excess (Foyer and 

Noctor, 2005, Gechev and Hille, 2005, Quan et al., 

2008). It was proposed that H2O2 contributes to the 

increase in antioxidant enzyme activity (Azevedo Neto 

et al., 2005), the  decrease in lipid peroxidation and 

chloroplast ultrastructure protection in Cucumis 

sativus (Gao et al., 2010).  

 

Results in Fig. 5 showed that NaN3 treatments 

significantly increased catalase activity in both Pisum 

sativum and Vicia faba, compared with the control. 

This increase was proportional with NaN3 

concentration and treatment duration. This was 

consistent with the results reported by Maxim et al., 

(2009) which showed that catalase activity is varied 

depending on NaN3 treatment duration. Similarly, 

Mierlici1 et al. (2011) found that the high 

concentrations of the mutagen ethyl-methane-

sulfonate caused high catalase activity in Hordeum 

vulgare. In contrast, Santos et al. (2008) concluded 

that catalases directly catalyze the decomposition of 

H2O2 to ground-state O2 and can be non-specifically 

inhibited by NaN3.  

 

Peroxidase showed similar trend to that of catalase in 

both of Pisum sativum and Vicia faba (Fig. 6). It was 

clear from the results that the peroxidase activity of 

Pisum sativum was higher than that of Vicia faba 

under control and NaN3 treatments. The soaking in the 

highest concentration of NaN3 (4 mM) for 2 h resulted 

in six-folds and ten-folds increases in peroxidase 

activity in Pisum sativum and Vicia faba, 

respectively, compared with their controls. The 

increase in peroxidase activity under azide treatments 

might arise from the increased exertion of H2O2 

under the mutagenic effect of sodium azide. Zaka et 

al. (2002) reported that sodium azide induces the 

formation of reactive oxygen species, which indicates 

that this enzyme was involved in cell protection 

against oxidative stress However, the present results 

disagree with those obtained by Mydlarz and Harvell 

(2006), who pointed out that 1 mM and 10 mM NaN3 

inhibited peroxidase activity by 52% and 85% in 

Gorgonia ventalina, respectively. Similarly, sodium 

azide treatments competitively inhibited peroxidase 

activity in Luffa aegyptiaca (Yadav et al., 2011) and 

in Beta vulgaris (Chaurasia et al., 2013). 

 

The effect of pre-treatment with sodium azide on 

malondialdehyde (MDA) content in Pisum sativum 

and Vicia faba was shown in Fig. 7.The results 

indicated that MDA content was increased 

significantly with the increase in NaN3 concentration 

and soaking time. Where, soaking of Pisum sativum 

and Vicia faba seeds in 4 mM NaN3 for 2 hs. resulted 

in 43.6% and 54.0% increase in its content, 

respectively, compared with their controls. MDA is a 

common product of the peroxidation of unsaturated 

fatty acids by singlet oxygen and a sensitive diagnostic 

index of the oxidative injury (Janero, 1990, Bradley 

and Min, 1992).The recorded increase in MDA may be 

due to the increased generation of the oxidative 

molecules as a result of NaN3 treatment. Price and 

Hendry (1991) stated that oxidative molecules initiate 

damage in the chloroplast including chlorophyll 

destruction and lipid peroxidation. 

 

Isozymes 

In this study, the enzymes of α- and β- esterase and α-

amylase had potential as a biochemical marker to 

detect different responses for the effect of the 

mutagen NaN3 on gene expression (Fig. 8 and Table 

2). It is known that enzymes which are coded by 

different alleles of a distinct locus or those coded by 

separate loci frequently show different electrophoretic 

mobilities and these differences were due to 

variations in the amino acids content of the enzyme 

molecules, which in turn dependent on the sequences 

of nucleotides in DNA (Micales et al., 1992).  
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Table 2. Scoring of isozymes produced by different three enzymes after presoaking of Pisum sativum and Vicia 

faba seeds in different concentrations (1, 2 and 4 mM) of sodium azide for different time intervals (0.5, 1.0 and 

2.0 h) in 21- day old seedlings. 

Band 
Number 

Species Pisum sativum Vicia faba 

Treatment NaN3  NaN3  

concentration 1mM 2mM 4mM  1mM 2mM 4mM 

 Soaking duration (h)  Soaking duration (h) 

Control 0.5h 1h 2h 0.5h 1h 2h 0.5h 1h 2h Control 0.5h 1h 2h 0.5h 1h 2h 0.5h 1h 2h 

 α-Esterase 

α-EST1 1 1 1 1 1 1 1 2 2 2 1 1 1 1 1 1 1 1 1 1 

α-EST2 1 1 1 1 1 2 2 0 0 2 1 1 2 2 2 2 0 1 1 1 

α-EST3 1 1 1 1 1 1 1 2 2 2 1 1 1 1 1 1 1 0 1 1 

α-EST4 1 0 0 0 0 0 0 0 0 0  0 0 0 0 0 0 0 0 0 

 β-Esterase 

β-EST1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

β-EST2 2 2 2 2 2 2 2 0 0 0 2 1 1 1 1 1 1 1 1 1 

β-EST3 2 0 0 2 0 1 2 2 2 2 2 0 0 0 1 1 1 1 1 1 

 α-Amylase 

α-AMY1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 

α-AMY2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

α-AMY3 2 2 2 1 2 1 1 1 1 2 1 1 0 0 0 0 0 1 1 1 

 

The data in Fig. 8 and Table 2 revealed that in the 

case of pea, the number of loci for the three tested 

isozymes varied between two and three in α- and β-

esterase and α-amylase or four in α-esterase. In case 

of bean, the number of loci was either two or three for 

the three investigated isozymes. These variations in 

allele number per locus reflect that, the effect of the 

mutagen differed from plant to another, which means 

a differential expression (Ashwani et al., 1998). These 

loci may vary in the intensity of their allele which 

reflects the number of subunits accumulation in each 

locus (Deka et al., 1999).  
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Fig. 5. Effect of presoaking of pea and bean seeds in different concentrations (1, 2 and 4 mM) of NaN3  for 

different time intervals (0.5 h, 1 h and 2.0 hs) on catalase enzyme activity of 21-day old seedlings. 
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Fig. 6. Effect of presoaking of pea and bean seeds in different concentrations (1, 2 and 4 mM) of  NaN3 for 

different time intervals (0.5 h, 1 h and 2 hs) peroxidase enzyme activity of 21-days old seedlings. 
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Fig. 7. Effect of presoaking of pea and bean seeds in different concentrations (1, 2 and 4 mM) of NaN3 for 

different time intervals (0.5 h, 1 h and 2 hs) on Malondialdehyde (MDA) content of 21-days old seedlings. 

 

Isozymes are widely used as molecular markers to 

distinguish mutants as reported by Talukdar (2010). 

For the isozyme α-esterase in pea, the three loci were 

expressed by only one allele similar to that of the 

control and it was revealed by two alleles with the 

highest treatment 4mM in the first and third locus, 

while it completely disappeared in the fourth locus. 

For bean, the first and third loci were expressed by 

only one allele similar to that of the control, while in 

the second locus, it was expressed by two alleles with 

1mM for 1 h and 2h, and with 2 mM for 0.5 and 1 h.  

 

For the isozyme of β-esterase, the results cleared that, 

in pea, the second locus was expressed by two alleles 

in all treatments similar to that of the control, and 

these alleles were disappeared with the highest 

concentration of NaN3 (4mM). However, it was 

expressed by only one allele with 1 and 4 mM of NaN3 

treatments, compared with the control, while they 

were disappeared with 2 mM NaN3 treatments. The 

third locus of the isozyme β-esterase in pea was 

expressed by two alleles with the highest 

concentration of NaN3 treatment for the longest 

duration similar to that of the control; it was 

expressed by only one allele with 2mM for 1h, while it 

was disappeared with each of 1mM for 0.5 and 1h and 

with 2mM for 0.5 h. In case of bean, the locus was 

expressed by only one allele with 1 mM and 4 mM of 

NaN3 treatments that differed with that of the control 

while they were disappeared completely in the lowest 

treatments (1mM).  

 

For α-amylase in pea, the first locus with 1mM  NaNo3 

for 0.5 h and the second locus expressed by only one 

allele similar to that of the control while disappeared 

completely in the other treatments of the first locus. 
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For the third locus, it was expressed by tow alleles 

with the longest duration for each treatment of 

NaNo3. In case of bean, the first locus, it was 

expressed by only one alleles with the highest 

treatments (4mM of NaNo3) which was not found in 

the control, while the second and third locus were 

expressed by only one allele for each one with the 

highest treatments (4mM of NaNo3) which was 

similar to that of the control. These results were 

almost in agreement with those of Bartosova et al. 

(2005) and Malaviya et al. (2006). The mutagenesis 

treatments seemed to activate expression of some 

genes which resulted in the appearence of some new 

bands (Talukdar, 2010). It was reported that 

mutations have been identified as one of the sources 

of isozyme variation in higher plants (El-Mokadem 

and Mostafa, 2014). On the other hand, the 

disappearance or reduction in the number of alleles 

may be due to the mutagenic effects of NaN3 (Aly and 

Elsayed, 2006) that resulted in a change in the 

metabolism of cells by forming oxygen radicals which 

acted as mediators of cell damage (Frigo et al., 2009). 

The greater sensitivity of the enzymes to the higher 

mutagenic levels might be attributed to various 

factors such as changes in the metabolic activity of the 

cells, inhibitory effects of mutagens and disturbance 

of balance between promoter and inhibitors of growth 

regulators (Padmanaban et al., 2013).  

 

Fig. 8.  Effect of presoaking of pea and bean seeds in different concentration (1, 2 and 4 mM) of NaN3 for 

different time intervals (0.5, 1.0 and 2.0 h) on isozyme profile for three enzymes of 21-day old seedlings. 

 

ISSR-Analysis 

The data of the scoring of ISSR produced by different 

five primers after presoaking of pea and bean seeds in 

different concentrations shown in Table 3 and Figs. 

9A and 9b revealed that pea produced 27 bands (14 

polymorphic, 9 monomorphic and 4 unique), while 

bean produced 25 bands (14 polymorphic, 8 

monomorphic and 3 unique). 
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Table 3. Scoring of ISSR fingerprinting produced by 5 primers  and their band type as polymorphic (P) 

monomorphic (M  ( or unique (U) for presoaking of pea and bean seeds in different concentrations (1,2 and 4 mM) 

of sodium azide for different time intervals (0.5,1 and 2 h) of 21-days old seedlings.   

Band 
No. 

Mol. 
Size 
(bp) 

Species Pisum sativum 

Band 
type 

Mol. 
Size 
(bp) 

Vicia faba 

Ban
d 

type 

Treatment NaN3 concentration (mM) Treatment NaN3 concentration (mM) 

concentration 1mM 2mM 4mM Concentration 1mM 2mM 4mM 

 Soaking duration (h)  Soaking duration (h) 

Control 0.5h 1h 2h 0.5h 1h 2h 0.5h 1h 2h Control 0.5h 1h 2h 0.5h 1h 2h 0.5h 1h 2h 

Primer 17899 A  sequence 5`CAC ACA CAC ACA AG 3  
01 471 0 0 0 0 0 1 1 0 0 0 P 801 0 0 0 0 0 0 0 0 0 1 U 

02 401 1 1 1 1 1 1 1 1 1 1 M 657 0 0 0 0 0 0 1 1 1 1 P 

03 303 0 0 0 0 1 0 1 1 1 0 P 530 0 0 0 0 1 1 1 1 1 1 P 

04 207 1 1 1 1 1 1 1 1 1 1 M 439 1 1 1 1 1 1 1 1 1 1 M 

05             345 1 1 1 1 1 1 1 1 1 1 M 
Primer HB-10  sequence 5` GAG AGA GAG AGA CC 3` 

01 279 0 0 0 0 0 0 0 0 0 1 U 645 1 1 1 1 1 1 1 1 1 1 M 

02 255 0 0 0 0 0 0 0 0 0 1 U 621 1 1 1 1 1 1 1 1 1 1 M 

03 224 0 1 1 1 1 1 1 1 1 1 P 531 0 0 1 1 0 1 1 0 0 1 P 

04 186 0 0 0 1 0 0 1 0 0 1 P 467 0 0 1 0 0 0 0 0 0 0 U 

05 157 1 1 1 1 1 1 1 1 1 1 M 385 0 0 0 0 0 1 0 1 1 1 P 

06 116 1 1 1 1 1 1 1 1 1 1 M             

Primer HB-11  sequence 5` GTG TGT GTG TGT CC 3' 

01 561 0 0 0 0 0 0 1 0 1 1 P 559 0 0 0 0 0 0 0 0 1 0 U 

02 536 0 0 0 1 0 0 0 0 0 0 U 494 0 0 0 0 0 1 0 0 0 1 P 

03 463 0 0 1 0 1 1 0 1 1 1 P 476 0 0 0 0 1 0 0 1 0 0 P 

04 379 0 1 0 0 1 1 1 1 0 1 P 405 0 1 1 1 1 0 1 0 0 0 P 

05 315 1 1 1 1 1 1 1 1 1 1 M 349 0 0 0 0 0 0 0 0 1 1 P 

06 163 1 1 1 1 1 1 1 1 1 1 M 229 1 1 1 1 1 1 1 1 1 1 M 

Primer HB-12  sequence 5` CAC CAC CAC GC 3` 

01 381 0 0 0 0 0 1 0 0 1 1 P 472 0 0 0 1 1 1 1 0 1 1 P 

02 310 0 0 1 0 0 1 0 0 1 1 P 430 0 1 1 1 1 1 1 1 1 1 P 

03 249 1 1 1 1 1 1 1 1 1 1 M 354 1 1 1 1 1 1 1 1 1 1 M 

04 195 1 1 1 1 1 1 1 1 1 1 M             

Primer HB-13  Sequence 5` GAG GAG GAG GC 3` 

01 797 0 0 0 0 0 0 0 0 0 1 U 838 0 0 0 0 0 0 0 0 1 1 P 

02 708 0 0 0 0 0 0 0 1 1 1 P 705 0 0 0 0 0 1 1 1 0 1 P 

03 604 0 0 0 0 1 1 1 1 1 1 P 569 0 0 0 0 0 1 1 1 1 1 P 

04 510 0 0 0 0 0 0 0 1 1 1 P 466 0 0 0 0 1 1 1 1 1 1 P 

05 392 0 1 1 1 1 1 1 0 0 0 P 334 1 1 1 1 1 1 1 1 1 1 M 

06 324 0 0 0 0 0 0 0 0 1 1 P 228 1 1 1 1 1 1 1 1 1 1 M 

07 210 1 1 1 1 1 1 1 1 1 1 M             

 

The data revealed that both plants showed highly 

significant increase in the appearance of bands by the 

highest treatment of NaN3, especially with the longest 

duration treatments. In pea, the data showed four new 

positive unique bands appeared with the highest level 

of NaN3 treatment, one with molecular size of 797 bp 

with the HB-13 primer, two with molecular sizes of 279 

and 225 bp with the HB-10 primer. These three bands 

appeared with the treatment of 4 mM NaN3 for 2 h, 

and the fourth band with molecular size of 797 bp with 

the HB-11 primer appeared with the treatment of 1mM 

NaN3 for 1 h. However, in case of bean, the data 

reflected three positive unique bands with different 

treatments of NaN3, where there was a band with 

molecular size of 801 bp appeared with the 17899 A 

primer with the treatment of 4 mM for 2h, band with 

molecular sizes of 559 bp appeared with the HB-11 

primer with the treatment of 4 mM for 1 h, and a band 

with molecular size of 467 bp appeared with the HB-10 

primer with the treatment of 1mM for 1h. These unique 

bands were exclusive to particular concentration of 

NaN3, which made them distinct from the other 

treatments in the two species under study.  

 

The obtained data reflected the appearance of new 

bands with the highest concentrations of NaN3 for 

longest duration, such as the bands with molecular 

size of 708 bp, 604 bp and 510 bp with the HB-13 

primer with the treatment of 4 mM NaN3 for 2 h in 

case of pea. In case of bean, bands with molecular size 

of 657bp with 17899 A primer, 705 bp and 838 bp 

with the HB-13 primer with the treatment of 4 mM 
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for 2 h. The appearance of these new bands may be 

due to the formation of an organic metabolite by 

NaN3 which enters the nucleus, interacts with DNA 

and generates point mutations in the genome 

(Berenschot et al., 2008) and may damage or modify 

important components of plant cells and affect the 

biochemistry and physiology of plants (Sander et al., 

1978). These effects can include changes in the 

cellular structure and metabolism of the plants (Saad-

Allah et al., 2014).  

 

ISSR marker accesses variation in the numerous 

microsatellite regions dispersed throughout the 

various genomes (particularly the nuclear genome) 

and circumvents the challenge of characterizing 

individual loci that other molecular approaches 

require (Semagn et al., 2006, Sharma et al., 2008). 

The data revealed that the two bands with molecular 

size of 430 bp with HB-12 primer for bean and of 224 

bp with HB-10 primer for pea appeared in all 

treatments of NaN3, which were not detected in the 

control. The appearance or disappearance of different 

bands due to change during DNA replication causes 

changes in the DNA bands, where the main changes 

in the ISSR profiles according to the mutagenicity 

effect (Sander et al., 1978).  

 

Finally, it can be concluded that sodium azide was a 

powerful mutagen for the induction mutations in 

Pisum sativum and Vicia faba, and ISSR and isozyme 

analysis could act as useful biochemical markers for 

mutant identification. 

 

Fig. 9a. ISSR fingerprinting profile produced by five primers used for presoaking of Pisum sativum seeds in 

different concentration (1, 2 and 4 mM) of  NaN3 for different time intervals (0.5,1.0 and 2.0 h) of 21-day old 

seedlings.   
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Fig. 9b. ISSR fingerprinting profile produced by five primers used for presoaking of Vicia faba seeds in different 

concentration (1, 2 and 4 mM) of  NaN3 for different time intervals (0.5,1.0 and 2.0 h) of 21-day old seedlings. 
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