

RESEARCH PAPER

OPEN ACCESS

Evaluation of super AB A200 hydrogelapplication and irrigation interval on available water and some rooting indices in *Juniperus exelsa*

Kamran Parvanak^{1*}, Hadi Chamheidar²

'Department of Soil Science, Yadegar-e-Imam Khomeini(RAH) Branch, Islamic Azad University, Tehran, Iran

²Department of Soil Science, Shoushtar branch, Islamic Azad University, Shoushtar, Iran

Article published on September 10, 2014

Key words: Super AB A 200 hydrogel, Rooting indices, Irrigation interval, Juniperus exelsa.

Abstract

Super absorption polymers could be considered as an approach to increase water availability in rainfed and irrigated farming. This study aimed to evaluate the impact of four Super AB A 200 hydrogel rates (zero, 0.15, 0.3 and 0.6%w/w) and four irrigation intervals (1, 2, 3 and 4days) on the amount of available water and some rooting indices of *Juniperus exelsa*. The experimental layout consisted of factorial arranged in a complete block randomized design with three replicates. The results of variance analysis showed that various hydrogels rates, irrigation interval and their interactions had significant effects on the amount of available water and rooting indices (rooting percentage, fresh and dry weight, length, diameter and number of root) (pr \leq 0.01). Based on the mean comparison, the applying hydrogels independently as much as 0.3% increased rooting indices of cuttings significantly, while the irrigation interval had negative effect on the rooting indices of the plant. Interaction of irrigation interval and the use of hydrogels showed the highest rooting percentage (83.3%), root fresh and dryweight (5.3 and 3.9 g respectively), root elongation and diameter (7.5 and 3 cm respectively) in treatment 0.3% hydrogel and 2days irrigation intervals that had significant difference relative to control and other treatments (pr \leq 0.01). According to these results, applying of 0.3% hydrogel with 2days irrigation intervals also produced cuttings with good rooting and saving 50% irrigation water resources costs as compared to the daily irrigation.

*Corresponding Author: Kamran Parvanak 🖂 kparvanak@iausr.ac.ir

Introduction

The genus of Juniperus consists of 55 species, all of which occur throughout the northern hemisphere of the world (Farjon, 1998). Juniperus exelsais an evergreen tree with a height of 2 to 7 m, which is visible everywhere in Iran. Their leaves, needles, bark, roots, wood and fruit have medicinal properties and used broadly in most cities to create green area for parks hedge, boulevards, highways margin and green belts. Some factors such as long period dormancy of seeds and high amount of hollow and dead seedsreduce germination percentage of the different Juniperus exelsaspecies.So its vegetative propagation has particular importance for seedling production of the plant (Merkle and Nairn, 2005).Rooting cuttings replication media of nurseries of this plantincludes a large coarse minerals portion to raise the proportion of large pores filled with air, butexistence of course minerals (such as sand and gravels), which have low water holding capacity and high deep water percolation, cause moisture which is the most important factor in rooting of cuttings, easily be drained. Water depletion could loss irrigation water resources and also reduced the physiological and metabolic processes which are effective in rooting of cuttings.The moisture content of the replication media sometimes reduced to less than the demand of cuttings so thatmay reduce the water content of cuttings to the extentthat the cuttings driedbefore theirroots formation(Akhter et al., 2004). According to the high capability of hydrogels inabsorbing and increasing water holding capacity, it seems necessary touse hydrogels tooptimize moisture of cuttings rooting culture(Peterson, 2002). Their application in seedling rooting media couldeliminate moisture stress and helping adaption of planted crops with environment. The hydrogel also raised the water efficiency and therefore could increase the irrigation interval (Hüttermannet al., 1999). Jandagheyan, 2001 investigated the effect of polyacrylamide hydrogel and irrigation interval on the rooting of geranium and philodendron. The results showed that with the increasing usage of hydrogels from zero to 50 percent by volume, rooting percentage, plant height, fresh and dry root weight increased. The maximum value of these indices were observed in geranium in 0.3% hydrogel with 6days irrigation intervals and in philodendron in 0.5% hydrogel with 3days irrigation intervals. Ghasemi Khoshkhoe,2007 studied the effect of and superabsorbent polymers on irrigation interval and growth and development of Chrysanthemum morifoliumramat. The results showed that using the hydrogel had a significant effect on vegetative parameters. All vegetative mean parameters except the ratio of root to shoot did not significantly differ in 0.6% hydrogel in 4days irrigationintervals treatments with control treatment (no hydrogel) in the 2daysirrigation intervals.Assarehet al.,2007 investigatedyew rooting and causes of their hard and late rooting of cuttings. Results showed that the highest rooting was in pure sand and absorbent hydrogel in addition of indole butyric acid hormone treatment.Farokhzadet al.,2009 studied the effect of polyacrylamide polymer and indole butyric acid treatments on rooting of cuttings of Magnolia soulongena. The results showed that the percentage of rooting of cuttings increased from 26.66% in control to 70 percent in the 3000 ppm indole butyric acid with 0.8% super absorbent treatment.Meghaniet al.,2010 investigated the effect of media culture on rooting of Bougainvillea glabra cuttings. Results indicated that the highest rooting percentage with an average of 75% was obtained from 50% sand with 0.5% moisture absorbent material.Research conducted by Hüttermannet al.,1999 indicated that with addition of stockosorbhydrogels to soil to 0.4%w/w after 17days, all 45 seeds germinated. Literature review revealed that there was no enough researches on the use of hydrogels to water optimization ofrooting cuttings media of Juniperus exelsa.Most studies has been conducted on seasonal and apartments plants which vary in terms of Juniperus exelsarooting.With respect to the need ofkeeping optimummoisture in the rootingmedia of Juniperus exelsa cuttings that used extensively in the urban landscape of the country and also due to the limited water resources in Iran, this study aimed to evaluate the application of the hydrogel to supply optimal moisture needed for rooting of Juniperus

*exelsa*cuttingsand adjust the irrigation intervalto result in the saving of irrigation water.

Materials and methods

Research treatments of statistical plan

In order to investigate the effect of Super AB A 200 hydrogeland irrigation interval on available water and some rooting properties of cutting of *Juniperus exelsa*, an experimental layout consisted of factorial arranged in a complete block randomized design with three replicates and each replication consist of six cuttings was carried out in the greenhouse in Isfahan city in2012-2013. Treatments were four hydrogel levels consists of o (control), 0.15, 0.3, 0.6%w/wand four irrigation intervals (1, 2, 3 and 4days).

Research Methods

At the bottom of each pot (10×10 cm), 1 cm thick of bran was added to helping drainage. Then, the hydrogel treatments and sand mixtures which mix to a depth of 8 cm of pots was poured into the pots.Taking of cuttings of the young shoots were performed in early autumn and about 3 to 4 inches awav from the bottom of the cuttings immediatelyentered the 2/1000 concentration of Benomyl fungicides for disinfectionand then were planted in pots cultures.After establishment of cuttings the amounts of irrigation water by 40% allowable depletion of soil moisture for the sand that used in the rooting context, were calculated by the moisture content by volume of the sand field capacity, permanent wilting point and pot sizes and were distributed for each pot and each irrigation interval on the pot surface.While careful monitoring of pots during rooting, factors such as rooted cutting percentage in each treatment, the root fresh and dry weight, root diameter, root length and number of roots in the final of rooting procedure were recorded. Also at the end of the experiment, samples were taken from the rooting media and the amount of available determined from water was the difference betweenwater contentatfield capacityandpermanent wilting point measured by pressure plates.Statistical analysis of the data for the hydrogel rates and irrigation interval was performed by analysis of variance (ANOVA), comparing the mean by the LSD method with using MSTAT-C and drawing diagrams by EXCEL.

Results

Hydrogel application rates and irrigation interval effect on the amount of available water

The results (Table 1) showed that the main effect of hydrogel application, irrigation interval and interaction of hydrogel application and irrigation interval had a significant effect on available water (pr \leq 0.01). The results of meancomparison (Fig. 1)showed that different irrigation interval had significant difference about this property, so that the maximum amount of available water related to 1day irrigation interval and with increasing irrigation interval significantly decreased.Based on the comparison of different hydrogel levels impact on the amount of available water (Fig. 1), it was seen that the greatest amount of available water is related to 0.6% hydrogel treatment.Interaction of hydrogel application and irrigation interval on available water showed that the 0.3% hydrogel in 1day irrigation interval has the highest mean. The minimum amount of available water was relevant to control treatment in 3 and 4days irrigation interval (Fig. 1).

Percentage of rooted cuttings

Analysis of variance of irrigation interval and hydrogel rates on percentage of rooted cuttings of *Juniperus exelsa* included in table (1). As the results show, the main effects of the use of hydrogels, irrigation interval and interactions effects of hydrogels and irrigation interval applications on percentage of rooted cuttings was significant (pr \leq 0.01). A mean comparison of hydrogel rates and irrigation interval application effects on percentage of rooted cuttings is shown in fig. (2). As it can be seen, the different irrigation interval had a significant effect on the average percentage of rooted cuttings and the highest percentage of rooted cuttings relate to 1day irrigation interval. Hydrogel application in culture media have a significant effect on average of rooted cuttings, so that with increasing hydrogel rates from zero to 0.3%, the percentage of rooted cuttings has increased. With increasing hydrogels from 0.3 to 0.6%, the percentage of rooted cuttings was significantly decreased (Fig. 2). The interaction between the hydrogel and of irrigation interval on the mean of percentage of rooted cuttings showed that the highest mean of rooted cuttings (83.3%) is relevant to 0.3% hydrogel with 1day irrigation interval which with the same amount of hydrogel and 2days irrigation interval not be significant. The lowest mean of rooted cuttings (15%) was related to control treatment (without hydrogel) in irrigation interval of 3 and 4days (Fig. 2).

Table 1. Data analysis and statistics of the measurement indices of Juniperus exelsa cuttings under the experimental treatments.

Mean of square								
SOV	Df	Amount of available water (%)	Percentag e of rooted cuttings	Dry weight of cuttings root (g)	Fresh weight of cuttings root (g)	Root length (cm)	Root diameter (cm)	The number of roots per cuttings
Hydrogel rate	3	21.015**	2704.572**	4.690**	5.432**	11.235**	0.954**	5.300**
Irrigation interval	3	43.905**	6040.466**	20.457^{**}	19.351*	67.461**	4.464**	69.031**
Hydrogel rate * Irrigation interval	9	4.250**	326.643**	0.587**	0.598**	1.987**	0.248*	7.589**
Error	32	0.099	1.847	0.098	0.078	0.086	0.049	1.982
*. ** Significant at P=0.05 and P=0.01 levels, respectively.								

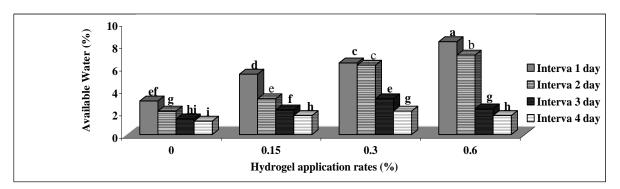


Fig. 1. Mean comparison of the different hydrogel rates and irrigation interval on the available water percentage. (Bars within a hydrogel class having the same letter are not different at P = 0.01).

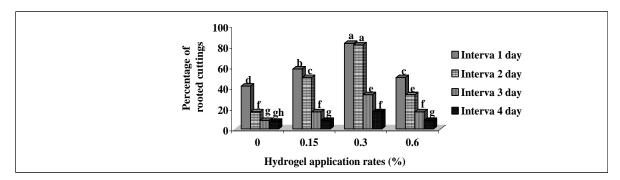
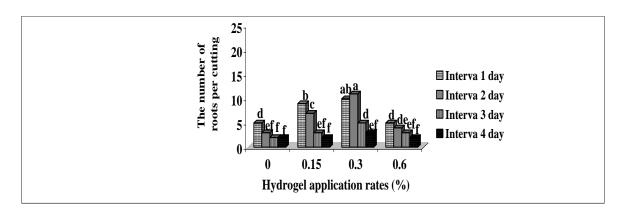



Fig. 2. Mean comparison of the different hydrogel rates and irrigation interval on the Percentage of rooted cuttings. (Bars within a hydrogel class having the same letter are not different at P = 0.01).

The number of roots per cuttings

The analysis of variance and meancomparison resultsof number of roots per cuttings grown indifferent percentages of hydrogelsare presented respectively in table (1) and Fig. 3.As shown in table (1), the effect of different percentages of hydrogel, irrigation interval, as well as their interaction on the number of roots per cuttings of Juniperus exelsawas statistically significant(pr \leq 0.01). The highest mean number of roots per cuttings related to 1day irrigation interval and with increasing of irrigation intervalthis index was significantly decreased (Fig. 3). Application of hydrogel effect on the number of roots per cuttings

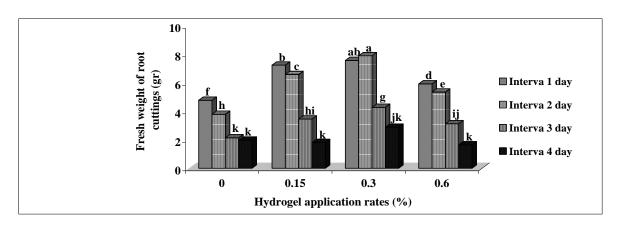

and the highest number was related to application of 0.3% hydrogel and the lowest was related to control and 0.15% of the hydrogel.Interaction of hydrogel application and irrigation interval showed that the highest mean number of roots per cuttings was related to the use of 0.3% of the hydrogel in the 1day irrigation interval which had not significant difference with 0.3% hydrogel in 2days irrigation interval.The lowest mean number of roots per cuttings was relevant to control with irrigation interval of 3 and 4days and 0.15% of the hydrogel with 4days irrigation interval (Fig. 3).

Fig. 3. Mean comparison of the different hydrogel rates and irrigation interval on the number of roots per cuttings (Bars within a hydrogel class having the same letter are not different at P = 0.01).

Fresh weight of cuttings root

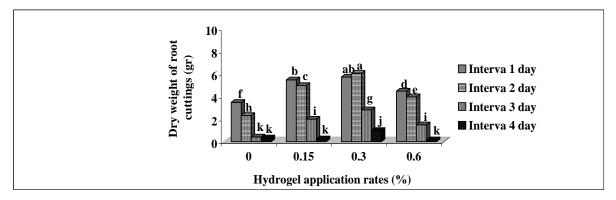

The results of analysis of variance (Table 1) showed that the main effects of the application of Super AB A 200 hydrogel, irrigation interval and also interaction of them had significant effect on root fresh weight of cuttings of 0.01).The Juniperus exelsa(pr ≤ mean comparisonresults (Fig. 4) showed that different irrigation intervalhad significant difference aboutfresh weight of root of cuttings, so that the highest root fresh weight was associated with 1day irrigation intervaland showed significant decrease with increasing of irrigation intervals. According to mean comparison of different rates impact on root fresh weight (Fig. 3), it is understandablethat the highest root fresh weight is related to 0.3% hydrogel treatment.Interaction between application of the hydrogel and irrigation interval of the mean weight of roots per cuttings showed that 0.3% hydrogel in 2days irrigation interval had the maximum mean that did not have significant difference in 0.3% hydrogel in 1day irrigation interval.The lowest root fresh weight was in control in 3 and 4days irrigation interval and also 0.15, 0.3 and 0.6% hydrogel rates for 4days irrigation interval (Fig. 4).

Fig. 4. Mean comparison of the different hydrogel rates and irrigation interval on the fresh weight of cuttings root (Bars within a hydrogel class having the same letter are not different at P = 0.01).

Dry weight of cuttings root

The results showed that root dry weight was affected by irrigation interval (Table 1), and based on mean comparison the highest cuttings root dry weight was related to 1day irrigation intervaland root dry weight decreased significantly with increasing irrigation interval (Fig. 5). The hydrogel rates had a significant effect (pr \leq 0.01) on cuttings root dry weight (Table 1). With increasing hydrogels up to 0.3% the root dry weight was significantly increased and the highestroot dry weight relevant to 0.3% hydrogel treatment (Fig. 5). The results of the mean comparison relating to the interaction of the hydrogel rates and irrigation interval indicated that the highest root dry weight was in 0.3% hydrogel with 1day irrigation interval which were not significantly different in same amount of hydrogel in 2days irrigation interval. The lowest root dry weight was related to the control in 3 and 4days interval irrigation that did not show significant difference with 0.15, 0.3 and 0.6% hydrogel rates for4days irrigation interval (Fig. 5).

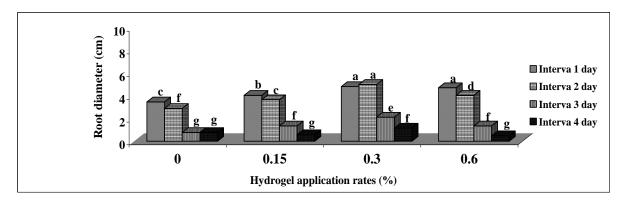
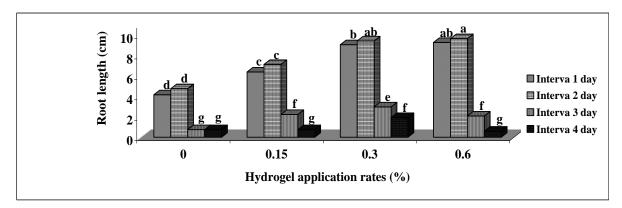


Fig. 5. Mean comparison of the different hydrogel rates and irrigation interval on the dry weight of cuttings root (Bars within a hydrogel class having the same letter are not different at P = 0.01).

Root diameter growth

The analysis of variance and mean comparison results of diameter of root growth in cuttings grown inmedia impregnated with different percentages of hydrogel rates respectively presented in table (1) and fig. 6. As shown in table (1), the effect of different percentages of hydrogel and irrigation intervalas well as their interactions on root diameter growth of *Juniperus exelsa* cuttings was significant (pr \leq 0.01). According to the mean comparison (Fig. 6), the mean diameter of roots per cuttings in 1 to 2 days irrigation interval were not significantly difference and this index decreased significantly with increase of the irrigation interval. The maximum diameter of the roots was


related to 0.3% hydrogel treatment and minimum was related to control and 0.15% of the hydrogels rates.Interaction of irrigation interval and hydrogel rates had significant effect on root diameter and showed that the greatest root diameter were in 0.3%hydrogel in 2days irrigation intervaland so that was not significantly different with this and 0.6% hydrogel ratesin 1day irrigation interval (Fig. 6).

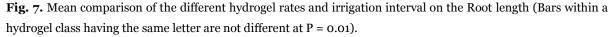


Fig. 6. Mean comparison of the different hydrogel rates and irrigation interval on the root diameter growth (Bars within a hydrogel class having the same letter are not different at P = 0.01).

Root length

The analysis of variance results (Table 1) showed that the main effects of hydrogel application, irrigation interval and also interaction of hydrogel application and irrigation interval had significant effect on root elongation of *Juniperus exelsa* cuttings (pr \leq 0.01). The mean comparison results (Fig. 7) showed the greatest elongation of roots were related to 1 and 2days irrigation interval and this index significantly with decreased increasing of irrigation interval.Application of hydrogel effect on root elongation so that the maximum root length was related too.6% hydrogel treatment which was not significantly different with 0.3%treatment but had significantly different with control and other values.The mean comparison of interaction between irrigation interval and hydrogel rates (Fig. 7) showed the greatest root length was related too.6% hydrogel with 1day irrigation interval which there was no significant difference withthe same amount of hydrogel in 2days irrigation interval and 0.3% hydrogel in 1 to 2daysirrigation interval.The lowest mean was relevant to control in 3 and 4days irrigation interval and also 0.15 and 0.6%hydrogel in irrigation interval of 4days.

216 | Parvanak and Chamheidar

Discussion

Rooting of Juniperus exelsacuttings is an important step in the reproduction of the plant and is sensitive to the lack of moisture.Effect of moisture stress can cause failure or delay rooting that is different based on degree ofmoisture lack.Studies of hydrophilic hydrogel in rooting media ofplants indicated that with quick absorption of water and keeping it, could decrease moisture stress and increase the water absorption efficiency. The amount of this increasing depending on the application of the hydrogel and irrigation interval (Hüttermann et al., 1999). The results of this study showed that, in the absence of hydrogel, with increasing irrigation interval from 1 day to 4days all parameters measured included the percentage of rooted cuttings, fresh and dry root weight, root length, root diameter growth, number of roots per cuttings showed a significant reduction in each cuttings (Fig. 2 to 7). In fact, the reduction in these parameters with increasing irrigation interval is due to the lack of available water in the bed of cuttings. The results of present study is corresponding results ofTavakoliet al.,2011, to Abediand AsadKazemi,2006 and Taylor and Halfacre,1986that rooting index decreased withincreasing of irrigation interval. With increasing hydrogel rates from zero up to 0.3%, rooting indices showed a significant increase and reached its maximum value in the 0.3% hydrogel concentration (Fig. 2 to 7). The reasons of increasing of rooting indices due to applying hydrogels up to 0.3% could be attributed topotentially high moisture absorption of hydrogel and storage of water in its network and due to increasing of available water 2 times versus control (Fig. 1).With increasing of hydrogels up to 0.6%, the percentage of rooting and fresh and dry weight of cuttings decreased significantly.It appears that the reason for this decline is that with the large amounts of hydrogel, the water amount in the rooting media of cuttings too (2.75 times compared to no use of hydrogels, Fig. 1) increases. This increase is primarily a result of reduced air-filled pore space for cuttings media because of hydrogel swelling by water (Still, 1976).Second, excessive moisture can cause the slime J. Bio. & Env. Sci. 2014

of rooting media and resulting of decrease of physiological and metabolic processes of root. These results are compatible with the results of Assarehet al.,2007, Meghaniet al.,2009, Farokhzadet al.,2009 Hüttermann*et* al.,1999.Based and on the meancomparison results of interaction between irrigation interval and hydrogel rates at each irrigation interval (Fig. 2 to 7), it was found that with the increasing use of hydrogels up to 0.3%, the measured rooting's cuttings indices increasedand the maximum value was related to 2days irrigation interval. The reason of increasing of these indices in low irrigation interval (2days compared with the control and 1day) could be that the addition of hydrogel to media culture of cuttingscould act like a storage water tank during the dry period and increasedrapidly the moisture retention period of cuttings media andwetting and redistribution of water in the rooting zone of cuttings after irrigation.The results of this study is coincide with results of Jandagheyanet al.,2001 about rooting of *Phylodendronscandens* and Pelargonium hortorum,Ghasemi Khoshkhoe,2007 and of Chrysanthemum morifolium ramat, Gehring and Lewis,1980 of Zinnia elegans and Callendula officinalis, El-Hady and Wanas, 2006 of greenhouse cucumbersand Woodhouseand Johnson,1991ofCupressusarizonica thatthe improved rooting index quantities derived from the interaction of the hydrogel and irrigation interval.

Conclusion

According to the present results can be stated that the use of hydrogels based on rates of 0.3 and 0.6, the amount of available water increased 2 to 2.75 times respectively. The independently hydrogels usage as much as 0.3% increasedrooting of Juniperus exelsa cuttings and improved root morphological characteristics, while irrigation interval alone has had a negative effect on rooting of cuttings of this plant.Interaction between the hydrogel and irrigation interval in the presence of 0.15, 0.3 and 0.6% hydrogel and 2days irrigation interval improved rooting and root cuttings of Juniperus exelsaand morphological characteristics compared to the control treatment.But the highest rooting percentage, root fresh and dry weight and length and diameter of roots were observed in the 0.3%hydrogel and 2days irrigation interval.According to these results, applying of0.3%Super AB A 200 hydrogel with 2days irrigation interval can be suggested for optimum rooting of cuttings of *Juniperus exelsa* plant.

References

Abedi-Koupai J, Asadkazemi J. 2006. Effects of hydrophilic polymer on the field performance of anornamental plant (*Cupressusarizonica*) under reduced irrigation regimes. Iranian Polymer Journal **15**, 715-725.

doi.org/10.1016/j.scienta.2009.12.031

Akhter J, Mahmood K, Malik Mardan KA, Ahmad AM, Iqbal MM. 2004. Effects of hydrogel amendment on water storage of sandy loam and loam soils and seedling growth of barley, wheat and chickpea. Plant soil environment50(10), 463-469.

Assareh MH, Nikvash N, Ghorbanli M, Ghamarizare A. 2007. Investigation on anatomical structure of yew cuttings rooting and reasons of their hard and late rooting. Journal Pajouhesh and Sazandegi74 (2), 114-123.

El-Hady OA, WanasShA. 2006. Water and fertilizer use efficiency by cucumbergrowunder stress on sandysoiltreated with acrylamide hydrogels. Journal of Applied Sciences Research **2 (12)**, 1293-1297.

Farjon A. 1998. World Checklist and Bibliography of Conifers, Royal Botanic Gardens, Kew.

Farokhzad A, Asghari M, Ghasemzadeh R, Asadzadeh A, Hojattei Y. 2009. Effect of polyacrylamide polymer and indole butyric acid treatments on rooting of cuttings of *Magnolia soulongena*. cv. Violet. Journal Pajouhesh and Sazandegi**83**, 2-15.

Gehring JM, Lewis AJ. 1980. Effect of hydrogel on

wilting and moisture stress of bedding plants. Journal of the American Society for Horticultural Science**150** (4), 511-513.

Ghasemi M, Khoshkhoe M. 2007. Effect of Superabsorbent polymers on irrigation interval and growth and development of *Chrysanthemum morifoliumramat*. Journal of Horticultural Science and Technology**8 (2)**, 65-82.

HüttermannA, Zommorodi M, Reise K. 1999. Addition of hydrogels to soil for prolonging the survival of *Pinushelpensis* seedlings subjected to drought. Soil and Tillage Research**50**, 295-304. doi.10.1016/S0167-1987(99)00023-9

Jandagheyan M. 2001. Investigation of effect Polyacrilamid on *Phylodendronscandens* S and *Pelargonium hortorum* L rotting. MS Thesis, Islamic Azad University, Shiraz Branch, Iran, 81-92.

Meghani H, Solimanei A, Askarei N. 2010. Effect of substrate on rooting of *Bougainvillea glabra* cuttings. 6th Iranian Horticultural Science Congress. 345-350.

Merkle SA, Nairn CJ. 2005. Hardwood tree biotechnology. Journal of In Vitro Cellular and Developmental Biology-Plant41, 602-619. doi.10.1079/IVP2005687

Peterson D. 2002. Hydraulic polymers–effects and uses in the landscape. Restoration and reclamation review. University of Minnesota. St. Paul, Minnesota. 13-16.

Still SM. 1976. Growth of 'Sunny *Mandalay chrysanthemums* in hardwood-bark amended media as affected by insolubilized poly (ethylene oxide). HortScience11, 483-484.

Tavakoli A, Purreza M, Khodakarami Y. 2011. Preliminary investigation on possibility of rooting of Manna oak by layering in Zagros forests. Iranian Journal of Forest and Poplar Research **19 (3)**, 432-440.

Taylor KC, Halfacre RG. 1986. The effect of hydrophilic polymer on media water retention and nutrient availability to *Ligustumlucidum*. Horticultural Science**21(5)**, 1159-1161.

Woodhouse J, Johnson MS. 1991. Effect of superabsorbent polymers on survival and growth of crop seeding. Agriculture Water Management**20**, 63-70. doi.10.1016/0378-3774(91)90035-H