

**RESEARCH PAPER** 

OPEN ACCESS

Species/geographicboundariesandevolutionaryinterrelationships of cultivated linden-trees (*Tilia* L.) based onmorphological and nrDNA ITS characteristics

I. Melosik<sup>1</sup>, M. Ciupińska<sup>2</sup>, K. Winnicka<sup>1</sup>, G. Koukoulas<sup>1</sup>

<sup>1</sup>Department of Genetics, <sup>2</sup>Department of Plant Ecology and Environmental Protection, Adam Mickiewicz University in Poznań, Umultowska Str. 89, 61-614 Poznań, Poland

# Article published on November 11, 2014

Key words: Internal transcribed spacer (ITS), Tilia, morphology, geographic clustering, hybrids.

# Abstract

Nuclear ribosomal transcribed spacers (ITS1-5.8S rRNA-ITS2) is a popular marker that has superior taxa resolution in some groups of organisms. A taxonomic reassessment of 27 Tilia taxa combining a molecular marker (ITS1-5.8S rRNA-ITS2) and morphological characters (40 characteristics of 1,307 leaves and 1,146 fruits) was performed to: (1) evaluate nrDNA ITS as a potential barcode for Tilia species-level identification, (2) detect geographic differentiation pattern of Tilia trees originated from Europe, Asia, and North America and cultivated in common garden conditions, (3) compare *Tilia* hybrids and their putative parental species. We demonstrate that: (1) intra-individual and intra- morphospecies site polymorphism (2ISP) in ITS sequences occurs; (2) ITS variants in vegetatively propagated hybrids differ from variants in putative parental species; (3) geographical patterns of genetic and morphological differentiation were detected; (4) the majority of hybrids clustered around one of the parental species. The resulting poorly resolved relationship in the phylogenetic analyses (Maximum Parsimony and Maximum Likelihood) can be explained in terms of data quality (low number of parsimony informative sites, high level of homoplasy), the influence of hybridization on the phylogeny, or other issues. The ITS spacers should be excluded as a potential single barcode due to the existence of 2ISPs. We concluded that our ITS survey is not exhaustive because ITS variants in vegetatively propagated hybrids differ from variants in their parental species. A dichotomous key based mainly on qualitative morphological traits is constructed for the cultivated Tilia taxa.

\*Corresponding Author: Iwona Melosik 🖂 melosik1@amu.edu.pl

# J. Bio. & Env. Sci. 2014

#### Introduction

Linden- (lime-) trees (Tilia L, Tiliaceae) are a widespread and taxonomically complex genus with a complicated evolutionary history. Tilia is native to three parts of the northern hemisphere: Europe and western Asia, eastern Asia, and eastern North America. Four species are native to Europe and western Asia: T. cordata Mill., T. platyphyllos Scop., T. dasystyla Steven, and T. tomentosa Moench. These species are further divided into several subspecies and varieties (Pigott, 2012). Moreover, several cultivars are described, e.g., T. platyphyllos Laciniata or T. p. Vitifolia, and T. tomentosa Varsaviensis (Borowski and Solecka, 1980; Boratyńska and Dolatowski, 1991; Seneta and Dolatowski, 2008). European species naturally hybridize, e.g., T. cordata and T. platyphyllos produce hybrid swarms T. xeuropea L. (Wicksell and Christensen, 1999; Fromm and Hattemer, 2003), whereas T. cordata and T. dasystyla are parental species to a hybrid Tilia x euchlora K. Koch. There are two eastern North American species: T. americana L. and T. caroliniana Mill., which are further divided into subspecies or varietas, e.g., T. a. var. americana, T. caroliniana ssp. heterophylla (Vent.) Pigott., or the controversial T. a. var. neglecta (Spach) Fosberg. Tilia americana and T. c. ssp. *heterophylla* are parental species to a hybrid T. x stellata Hartig. (=T. neglecta sensu Braun) located in the southern part of the distribution range of T. americana. Tilia. a. var. neglecta Spach is presumably a hybrid between T. americana and T. caroliniana ssp. caroliniana. (Pigott, 2012). There are several hybrids between American and European species that have arisen in cultivation. For example, Tilia a. x moltkei Spaeth ex C.K. Schneid. is presumably derivative of T. tomentosa and T. americana, whereas T. a. x moltkei Zamoyskiana is a hybrid between T. tomentosa Moench Petiolaris and T. americana (Boratyńska and Dolatowski, 1991). Tilia x flaccida Host ex Bayer is a derivative of T. americana and T. platyphyllos (Pigott, 2012). According to the recent treatment, 17 species and five subspecies were recognized in eastern Asia (Pigott, 2012). Besides the widespread species that have an inevitable impact on forests, e.g., T. amurensis Rupr., T. mandshurica Rupr. et Maxim., T. japonica (Miq.) Bayer., several other species of local importance were described, which include, among others, two Japanese endemic species T. kiusiana Shiras., T. maximowicziana Shiras, and the Chinese species T. chinensis Maxim, T. miqueliana Maxim., T. henryana Szyszyl., T. paucicostata Maxim., and T. olivieri Szyszyl. The latter could be one of the parental species of the more widely distributed and variable T. tuan Szyszyl. (Pigott, 2012). The status of some taxa or their origin are uncertain (e.g., T. hupehensis Cheng ex Chang is morphologically similar to Tilia tuan or T. insularis Nakai, see Szymanowski, 1970; Pigott, 2012). The recurrent formation of polyploids makes the situation even more complicated. In Tilia, two major classes of polyploids can be found. The large variation in chromosome numbers may indicate autopolyploidization in Tilia maximowicziana (2n=164), whereas hybridization coupled with allopolyploidyzation is postulated, e.g., for T. x euchlora K. Koch. (Pigott, 2012, 2002).

There have been a growing number of studies that aim to improve and clarify the systematics of the genus (e.g. Fromm and Hattemer, 2003; Fineschi et al., 2003; Liesebach and Sinkó, 2008; Yousefzadeh et al., 2012). However, in some studies, taxon sampling has had a strong influence on the results. A molecular study has recently been undertaken on microsatellite loci in the Tilia species to investigate further the phylogeography and hybridization in the genus (Phuekvilai and Wolff, 2013). Several studies have also provided estimates of Tilia morphology (Banerjee, 1976; Białobok, 1991; Pigott, 2012, 2008, 1997, and references therein) using traits such as the size and shape (asymmetry) of a leaf blade, shape of marginal teeth, types of hairs and veins, structure of bracts and cymes, and size of fruits and their wall structures.

Here, nrDNA variation [ITS1-5.8S rRNA-ITS2 region (ITS)], the most frequently used marker for DNA barcoding and phylogenetics (Álvarez and Wendel,

2003; China Plant BOL Group, 2011, Schoch et al., 2012, Stern et al., 2012), was used to check the utility of this region as a DNA barcode for Tilia species-level identification and molecular phylogenetics. The Tilia phylogeny was inferred with maximum parsimony (MP) and maximum likelihood (ML) analyses. The MP analysis has been already successfully applied by Yousefzadeh et al. (2012) for inferring phylogeny and molecular identification of the Tilia species from the Hyrcanian Forest. Moreover, here a phylogenetic network method has been used, as a valuable alternative to the regular phylogenetic analyses (Bryant and Moulton, 2004, see also Chen et al., 2013), for the first time in *Tilia*. This method is based on a criterion similar to that used in the neighborjoining algorithm for tree construction.

To reveal possible differences in morphological traits (qualitative and quantitative) between *Tilia* taxa, and to check the accuracy of their identification, morphometric analyses of morphological traits of leaves and fruits were performed. Specifically, we tested the hypothesis, that *Tilia* hybrids are intermediate between their parents with respect to these traits. If true, this may offer an explanation for the blurring of species boundaries in the genus *Tilia*. Furthermore, in a biological monograph of the genus *Tilia* (Pigott, 2012), taxa are sorted out by their broad-scale geographic distribution. Thus, we have

tested, whether the cultivated trees analyzed here, differ by geography in terms of leaf and fruit morphology.

# Methods

# Taxon sampling

Analyzed materials were obtained from Linden-trees growing in the Adam Mickiewicz University Botanical Garden in Poznań (BG) (52° 25' N 16° 53' E) and the Kórnik Arboretum (KA) (52°14' N 17° 5' E), which is a part of the Institute of Dendrology of the Polish Academy of Science (Poland). The materials have been collected from the trees under cultivation, but in the majority of cases of known wild provenance. Details of the plant material are shown in Table 1. The full documentation of analyzed Tilia trees (their origin and way of propagation) is available upon request in the investigated botanical gardens. Herbarium samples of analyzed taxa, available upon request, are preserved in the Department of Genetics, Adam Mickiewicz University in Poznań, Poland. Numbers of herbarium accessions are provided in Table 1. The taxa representation used in this investigation covers almost the entire geographical range of the genus, as well as the different ploidy levels (diploids and tetraploids, 2n=82 and 2n=164, respectively), varied taxonomic ranks (species, subsp, var.), and origin (hybrids/cultivated variety).

|     | Tilia spe                              | cies names                                                     |                  |                                                   |                                              |
|-----|----------------------------------------|----------------------------------------------------------------|------------------|---------------------------------------------------|----------------------------------------------|
| no. | BGª/KA <sup>b</sup> /<br>GenBank       | Pigott <i>et al.</i> 2012<br>(* Seneta and<br>Dolatowski 2008) | Section          | Tree number/<br>herbarium<br>number (IM-<br>XXXX) | Accession<br>number<br>(GenBank<br>database) |
|     |                                        | Europe                                                         | and western Asia |                                                   |                                              |
| 1   | dasystyla Steven                       | dasystyla Steven                                               | Anastraea        | <sup>a</sup> 8006_7738,<br><i>IM-7161</i>         | KF897531-33                                  |
| 2   | dasystyla Steven                       | <i>dasystyla</i> Steven                                        | Anastraea        | -                                                 | HQ439433.1*                                  |
| 3   | <i>platyphyllos</i> Scop.<br>Vitifolia | <i>platyphyllos</i> Scop.<br>Vitifolia⁴                        | Anastraea        | <sup>a</sup> 8963_1294,<br><i>IM-7159</i>         | KF445425                                     |
| 4   | <i>platyphyllos</i> Scop.<br>Laciniata | <i>platyphyllos</i> Scop.<br>Laciniata⁺                        | Anastraea        | <sup>b</sup> 204, <i>IM-7155</i>                  | KF445421                                     |
| 5   | platyphyllos Scop.                     | platyphyllos Scop.                                             | Anastraea        | <sup>a</sup> 8XXX_0089,                           | KF897516-18                                  |

**Table 1.** *Tilia* taxa (n=27) used for morphological and molecular analyses (ITS), tree number in the field, GenBank accession number, and places of cultivation of *Tilia* trees.

J. Bio. & Env. Sci. 2014

|     | <i>Tilia</i> spec                              | cies names                                                              |                                   |                                                   |                                              |
|-----|------------------------------------------------|-------------------------------------------------------------------------|-----------------------------------|---------------------------------------------------|----------------------------------------------|
| no. | BGª/KA <sup>b</sup> /<br>GenBank               | Pigott <i>et al</i> . 2012<br>(* Seneta and<br>Dolatowski 2008)         | Section                           | Tree number/<br>herbarium<br>number (IM-<br>XXXX) | Accession<br>number<br>(GenBank<br>database) |
|     |                                                |                                                                         |                                   | IM-7163                                           |                                              |
| 6   | platyphyllos Scop.                             | platyphyllos Scop.                                                      | Anastraea                         | -                                                 | AF250292.1*                                  |
| 7   | tomentosa Moench                               | tomentosa Moench                                                        | Astrophilyra                      | <sup>b</sup> 2724, <i>IM-7174</i>                 | KF694727                                     |
| 8   | tomentosa Moench                               | tomentosa Moench                                                        | Astrophilyra                      | <sup>D</sup> 201, <i>IM-7133</i>                  | KF445417                                     |
| 9   | tomentosa Moench                               | tomentosa Moench                                                        | Astrophilyra                      | -                                                 | AF250023.1*                                  |
| 10  | cordata Mill.                                  | coraata Mill.                                                           | Anastraea                         | <sup>a</sup> 8925_0192,<br>IM-7158                | KF897519-21                                  |
| 11  | cordata Mill.                                  | cordata Mill.                                                           | Anastraea                         | <sup>a</sup> 8008_7914,<br><i>IM-7168</i>         | KF445434                                     |
| 12  | cordata Mill.                                  | cordata Mill.                                                           | Anastraea                         | <sup>b</sup> 200, <i>IM-7150</i>                  | KF445416                                     |
| 13  | <i>hyrcana</i> Tabari &<br>Colagar             | -                                                                       | ?                                 | -                                                 | JX051606.1*                                  |
|     | -                                              | ]                                                                       | Eastern Asia                      |                                                   |                                              |
| 14  | amurensis Rupr.                                | amurensis Rupr.                                                         | Anastraea                         | <sup>a</sup> 8969_1850,<br><i>IM-7160</i>         | KF445426                                     |
| 15  | henryana Szyszyl.                              | henryana Szyszyl.                                                       | Henryana                          | <sup>b</sup> 6953, <i>IM-7153</i>                 | KF445419                                     |
| 16  | henryana Szyszyll.                             | henryana Szyszyl.                                                       | Henryana                          | <sup>a</sup> 8964_0559,<br><i>IM-7157</i>         | KF445423                                     |
| 17  | <i>japonica</i> (Miq.)<br>Simonk.              | <i>japonica</i> (Miq.)<br>Bayer.                                        | Anastraea                         | <sup>b</sup> 1094, <i>IM-7171</i>                 | KF694724                                     |
| 18  | <i>insularis</i> Nakai                         | amurensis Rupr.                                                         | Anastraea                         | <sup>a</sup> 8989_3356,<br>IM-7166                | KF445432                                     |
| 19  | <i>kiusiana</i> Makino et<br>Shiras.           | <i>kiusiana</i> Shiras.                                                 | Anastraea                         | <sup>b</sup> 13505, <i>IM-7149</i>                | KF445415                                     |
| 20  | <i>miqueliana</i> Maxim.                       | <i>miqueliana</i> Maxim.                                                | Astrophilyra                      | <sup>a</sup> 8XXX_6565,<br><i>IM-7165</i>         | KF445431                                     |
| 21  | <i>miqueliana</i> Maxim.                       | <i>miqueliana</i> Maxim.                                                | Astrophilyra                      | _                                                 | DQ120724.1*                                  |
| 22  | <i>mongolica</i> Maxim.                        | <i>mongolica</i> Maxim.                                                 | Anastraea                         | <sup>a</sup> 8006_7811,<br><i>IM-7164</i>         | KF445430                                     |
| 23  | olivieri Szyszyl.                              | olivieri Szyszyl.                                                       | Astrophilyra                      | <sup>a</sup> 8937_0605,<br><i>IM-7178</i>         | KF897522-24                                  |
| 24  | olivieri Szyszyl.                              | olivieri Szyszyl.                                                       | Astrophilyra                      | <sup>b</sup> 3006, <i>IM-7179</i>                 | KF897525-27                                  |
| 25  | tuan Szyszyl.                                  | tuan Szyszyl.                                                           | Astrophilyra                      | <sup>b</sup> 3009, <i>IM-7175</i>                 | KF694728                                     |
| 26  | <i>hupehensis</i> Cheng ex<br>H. T. Chang      | tuan Szyszyl.                                                           | Astrophilyra                      | _                                                 | AF46019_7.1*                                 |
| 27  | paucicostata Maxim                             | . paucicostata Maxim                                                    | Anastraea                         | _                                                 | AF460198.1*                                  |
|     |                                                | N                                                                       | orth America                      |                                                   |                                              |
| 28  | americana L.                                   | americana L                                                             | Astrophilyra                      | <sup>a</sup> 8937_1052, <i>IM-7156</i>            | KF445422                                     |
| 29  | americana v.<br>heterophylla (Vent.)<br>Loud   | <i>caroliniana</i> Miller<br>ssp. <i>heterophylla</i><br>(Vent.) Pigott | Astrophilyra                      | <sup>b</sup> 198, <i>IM-7170</i>                  | KF694723                                     |
| 30  | americana v.<br>heterophylla (Vent.)<br>Loud.  | caroliniana Miller<br>ssp. heterophylla<br>(Vent.) Pigott               | Astrophilyra                      | _                                                 | AF174639.1*                                  |
|     |                                                |                                                                         | Hybrids                           |                                                   |                                              |
| 31  | <i>tomentosa</i> Moench<br>Varsaviensis        | tomentosa<br>Varsaviensis<br>(x varsaviensis<br>Kobendza) <sup>◆</sup>  | T. tomentosa x<br>T. platyphyllos | <sup>a</sup> 8966_1404,<br><i>IM-7172</i>         | KF694725                                     |
| 32  | x <i>europaea</i> L.<br>Euchlora<br>Dolatowski | x euchlora K. Koch                                                      | T. cordata x<br>T. dasystyla      | <sup>a</sup> 8XXX_3825,<br><i>IM-7180</i>         | KF897528-30                                  |

|     | Tilia spec                                             | eies names                                                      |                                                                   |                                                   |                                              |
|-----|--------------------------------------------------------|-----------------------------------------------------------------|-------------------------------------------------------------------|---------------------------------------------------|----------------------------------------------|
| no. | BGª/KA <sup>b</sup> /<br>GenBank                       | Pigott <i>et al</i> . 2012<br>(* Seneta and<br>Dolatowski 2008) | Section                                                           | Tree number/<br>herbarium<br>number (IM-<br>XXXX) | Accession<br>number<br>(GenBank<br>database) |
| 33  | x <i>europea</i> L.<br>Euchlora Dolatowski             | x <i>euchlora</i> K. Koch                                       | T. cordata x<br>T. dasystyla                                      | <sup>a</sup> 8XXX_6564,<br><i>IM_7181</i>         | KF897534                                     |
| 34  | x zamoyskiana<br>Wróbl.                                | americana x moltkei<br>Zamoyskiana                              | <i>T. americana</i> x<br><i>T. tomentosa</i> Moench<br>Petiolaris | <sup>b</sup> 2723; <i>IM-7173</i>                 | KF694726                                     |
| 35  | x <i>flaccida</i> Host                                 | x <i>flaccida</i> Host ex<br>Bayer                              | T. americana x<br>T. platyphyllos                                 | <sup>a</sup> 8990_3476,<br><i>IM-7167</i>         | KF445433                                     |
| 36  | x spaetchi (?)                                         | _                                                               | ?                                                                 | <sup>b</sup> 7082, <i>IM-7152</i>                 | KF445418                                     |
| 37  | x <i>neglecta</i> Spach <sup>◆</sup>                   | americana L. v.<br>neglecta (Spach)<br>Fosberg                  | T. americana x<br>T. caroliniana ssp.<br>heterophylla (?)         | <sup>a</sup> 8000_7497,<br><i>IM-7176</i>         | KF694729                                     |
| 38  | americana L.<br>Moltkei                                | T. americana x.<br>moltkei Späth ex<br>C.K. Schneid.            | ?                                                                 | <sup>a</sup> 8XXX_6383,<br><i>IM-7162</i>         | KF445428                                     |
|     |                                                        |                                                                 | Rootstock                                                         |                                                   |                                              |
| 39  | <i>olivieri</i> rootstock                              | platyphyllos Scop.                                              | ?                                                                 | <sup>a</sup> 8937_0605,<br><i>IM-7148</i>         | KF445414                                     |
|     |                                                        |                                                                 | Outgroup                                                          |                                                   |                                              |
| 40  | <i>Craigia yunnanensis</i><br>W.W. Sm. & W.E.<br>Evans | -                                                               | _                                                                 | -                                                 | AF460199.1                                   |

<sup>a</sup> Botanical Garden of Adam Mickiewicz University, Poznań, Poland, <sup>b</sup> Kórnik Arboretum near Poznań, Poland

# DNA extraction, ITS amplification, cloning, and sequencing

The total DNA was extracted from freeze tissue of leaves following the CTAB (Hexadecyl trimethylammonium bromide) method (Doyle and Doyle, 1987). A homogenization of the frozen material was performed in 2 ml tubes with steel beads using a mixer mill. The CTAB extraction buffer was modified by adding 2% (w/v) polyvinylpyrrolidone and 0.2% (v/v) beta-mercaptoethanol. The ITS1-5.8S-ITS2 rDNA region was amplified using nested PCR with primer pairs published by Shaw et al. (2003). PCR fragments were purified using Exonuclease I-Shrimp Alkaline Phosphatase (Thermo Scientific). These fragments were directly sequenced in both directions using the BigDye Terminator Mix and ABI 3130xl automated sequencer (Applied Biosystems, California, USA) at the Faculty of Biology, Adam Mickiewicz University, Poznań, Poland.

Several individuals, including parental species and hybrids, were cloned to detect any (and presumably *all*) base pair variants in the ITS region. Amplified DNA was ligated in pGEM ®-TEasy vector (Promega) overnight at room temperature. The ligated DNA was subsequently transformed in DH5 $\alpha$  competent cells. The Blue-White screening method was used for the detection of recombinant bacterial clones. The presence of inserted DNA in the recombinant clones was confirmed by the colony PCR. The inserted DNA was sequenced.

The DNA sequence edition was performed using DNA sequence chromatogram trace viewer FinchTV v.1.3.1 (Geospiza, Inc., www.Geospiza.com/Products/ finchtv.shtml). Contigs were assembled using Lasergene-DNAstar (www.dnastar.com). The molecular genetic analysis and sequence alignment were conducted using MEGA 5.2.2. for Windows (Tamura *et al.*, 2007). The initial automated

alignment was further adjusted manually. Sequences were submitted to GenBank through Bankit Submission Tool (accession numbers, Table 1).

# Phylogenetic analysis

The ITS sequences were successfully collected from 39 accessions representing 27 taxa (nine sequences were gained from GenBank, www.ncbi.nlm.nh.gov). Molecular analyses were performed in two stages. For a small subset of samples, i.e., *T. euchlora* (BG, 3825), *T. platyphyllos* (BG, 0089), *T. cordata* (BG, 0192), *T. dasystyla* (BG, 7738), and *T. olivieri* (BG 0605, KA 3006), intra- and inter-array heterogeneity at a site and variation at the species-level were evaluated by molecular cloning. This analysis was followed by phylogenetic analyses, which were performed on the whole dataset.

homogeneity/incongruence-length The partition difference test (ILD) implemented in the TNT (Tree analysis using new Technologies) program (Goloboff et al., 2003) was used to investigate whether different partitions of the ITS data have significantly different signals. Sequence identity was calculated in the program Geneious v. 7.0.4 created by Biomatters (www.geneious.com). The average number of nucleotide differences per site between two sequences (Nei, 1987) was calculated in a program called DnaSP v. 5.10.1 (Rozas et al., 2003). The Maximum Likelihood (ML) framework implemented in the RAxML (Randomized Axelerated Maximum Likelihood) program 7.2.6 (Stamatakis, 2006) was employed, as recommended by Potts et al. (2014). This particular option (-m MULTIGAMMA -k GTR) allows us to treat each IUPAC nucleotide code as a unique character. Moreover, the ML analysis was performed using the program PHYML v.3.0. (Guindon et al., 2010) under different substitution models. The model choice was based on the Akaike information criterion (AIC) implemented in the programs jModelTest 2.1.4 (Darriba et al., 2012) and PartitionFinder v. 1.1.1 (Lanfear et al., 2012). The latter program was used for selecting the best model of molecular evolution for different sets of sites.

These two datasets were also analyzed using maximum parsimony (MP) criterion implemented in the TNT program (heuristic searches with 1000 replicates, using TBR branch swapping and equally weighted characters). The exclusion or inclusion of hybrids allows the researcher to assess their influence on a phylogeny.

As an alternative to these regular phylogenetic analyses, the phylogenetic network was created using SplitsTree v. 4.8 (Huson and Bryant, 2006) for the entire set of sequences and for ITS variants detected in a subset of individuals by molecular cloning. A general structure of molecular data was visualized employing a distance-based Neighbor-Net method (Bryant and Moulton, 2004). The network was constructed employing the "Average" option for calculated uncorrectedP distances and the equal angle splits transformation. Gaps were coded as informative sites. Moreover, a network from the NJ tree (in the bootstrap network) was constructed based on 1000 replicates. In all analyses, the nearest neighbor, *Craigia yunnanensis*, was used as an out-group.

# Morphological analysis

Accessible taxa of Tilia were studied in terms of 40 characteristics of leaves and fruits. A total of 1,307 leaves and 1,146 fruits from 44 trees belonging to 27 taxa were studied. The measured traits and their codes are presented in Table 2, Fig. 1. Of these features, eight were continuous, 15 described percentages, and 17 were coded as binary or multistate. Some quantitative variables were a Lag10 transformed to approximate normality better (Howell, 2007; Tabachnick and Fidell, 2007). To test the normality and homogeneity of variances in the morphological data, the Lilliefors (Kolomogorov-Smirnov) and Levene's tests were employed. A canonical discriminant analysis (DA) was applied to the additive, transformed data (eight traits) to determine which variable allows for the best discrimination between the geographical groups of taxa and the group of hybrids. Coefficients of determination were calculated as the square of the

multiple correlation coefficient multiplied by the percentage of variation for discriminant function DF1 and DF2, respectively. Squared Mahalanobis distances were used as a measure of the separation of these groups. Moreover, percentages of well-classified samples were presented (Stanisz, 2007).

| No | Trait                                | description                                                    | Character<br>abbreviation | Type of<br>characters:<br>discrete (D)<br>continuous (C) | Units of<br>measurements<br>/ coding |
|----|--------------------------------------|----------------------------------------------------------------|---------------------------|----------------------------------------------------------|--------------------------------------|
| 1  | Leaf –blade (LB)                     | length                                                         | L-LB                      | С                                                        | mm                                   |
| 2  |                                      | maximum width                                                  | MW-LB                     | С                                                        | mm                                   |
| 3  |                                      | length of LB apex                                              | AL-LB                     | С                                                        | mm                                   |
| 4  |                                      | no of pairs of transverse                                      | VN-LB                     | С                                                        | 4-35                                 |
|    |                                      | veins                                                          |                           |                                                          |                                      |
| 5  |                                      | length of petiole                                              | L-LP                      | С                                                        | mm                                   |
| 6  |                                      | shape of LB base                                               | BS-LB                     | D                                                        | 1-5                                  |
| 7  |                                      | presence/absence of<br>additional extensions<br>(lobule)       | E-LB                      | D                                                        | 0-1                                  |
| 8  | Marginal teeth on                    |                                                                | TN-LB                     | С                                                        | 2-14                                 |
|    | the middle part of<br>LB             | number of teeth per 2cm                                        |                           |                                                          | ·                                    |
| 9  |                                      | shape                                                          | TS-LB                     | D                                                        | 1-2                                  |
| 10 | Presence/absence                     | unnen side                                                     | H-LBU                     | D                                                        | 0-1                                  |
|    | of hairs on LB                       | upper side                                                     |                           |                                                          |                                      |
| 11 |                                      | on veins (upper side)                                          | HV-LBU                    | D                                                        | 0-1                                  |
| 12 |                                      | on lower side                                                  | H-LBL                     | D                                                        | 0-1                                  |
| 13 |                                      | on main veins on lower<br>side                                 | HV-LBL                    | D                                                        | 0-1                                  |
| 14 |                                      | in the axils of main veins<br>and at the base on lower<br>side | HF-LBL                    | D                                                        | 1-3                                  |
| 15 |                                      | on petiole                                                     | HP                        | D                                                        | 0-1                                  |
| 16 | Color of hairs                       | on lower side                                                  | HC-LBL                    | D                                                        | 0-3                                  |
| 17 |                                      | on main veins on lower side                                    | HCV-LBL                   | D                                                        | 0-1                                  |
| 18 |                                      | in the axils of main veins on lower side                       | HFC-LBL                   | D                                                        | 0-3                                  |
| 19 |                                      | on petiole                                                     | HC-P                      | D                                                        | 0-3                                  |
| 20 | Type of hairs on<br>lower side of LB | simple                                                         | SH-LBL                    | Р                                                        | %                                    |
| 21 |                                      | stellate with 2 arms                                           | STH-LBL                   | Р                                                        | %                                    |
| 22 |                                      | star-shaped (4 -armed)                                         | SRH4-LBL                  | Р                                                        | %                                    |
| 23 |                                      | star-shaped (6 -armed)                                         | SRH6-LBL                  | Р                                                        | %                                    |
| 24 |                                      | star-shaped (8 -armed)                                         | SRH8-LBL                  | Р                                                        | %                                    |
| 25 | on main veins on<br>lower side of LB | simple                                                         | SH-LBV                    | Р                                                        | %                                    |
| 26 |                                      | stellate with 2 arms                                           | STH-LBV                   | Р                                                        | %                                    |
| 27 |                                      | star-shaped (4 -armed)                                         | SRH4-LBV                  | Р                                                        | %                                    |
| 28 |                                      | star-shaped (6 -armed)                                         | SRH6-LBV                  | Р                                                        | %                                    |
| 29 |                                      | star-shaped (8 -armed)                                         | SRH8-LBV                  | Р                                                        | %                                    |
| 30 | on petiole                           | simple                                                         | SH-P                      | Р                                                        | %                                    |
| 31 |                                      | stellate with 2 arms                                           | STH-P                     | Р                                                        | %                                    |
| 32 |                                      | star-shaped (4 armed)                                          | SRH4-P                    | Р                                                        | %                                    |
| 33 |                                      | star-shap (6 -armed)                                           | SRH6-P                    | Р                                                        | %                                    |
| 34 |                                      | star-shap (8 -armed)                                           | SRH8-P                    | Р                                                        | %                                    |
| 35 | Fruits                               | length                                                         | FL                        | С                                                        | mm                                   |
| 36 |                                      | width                                                          | FW                        | С                                                        | mm                                   |
| 37 |                                      | surface ornamentation                                          | FSO                       | D                                                        | 0-2                                  |
| 38 |                                      | type of hairs                                                  | FH                        | D                                                        | 0-1                                  |
| 39 |                                      | longitudinal lines/ribs                                        | FR                        | D                                                        | 0-3                                  |
| 40 |                                      | apical cavity                                                  | FAC                       | D                                                        | 0-2                                  |

Table 2. Continuous and discrete characters used in morphometric analyses of Tilia leaves and fruits.



**Fig. 1.** Graphical descriptions of measured traits of leaves and fruits in *Tilia* (for detailed description see Table 2)

Leaf traits: L-LB – length of blade [mm], MW-LB – maximum width of blade [mm], AL-LB – length of leaf-blade apex [mm], L-LP – length of petiole [mm], VN-LB – number of pairs of transverse veins, BS-LB – shape of leaf blade base, E-LB – presence/absence of additional extensions (lobule)

Marginal teeth: TN-LB – number of teeth per 2 cm, TS-LB – shape of teeth

*Fruit traits*: FL – length [mm], FW – width [mm], FSO – surface ornamentation, FR – longitudinal lines/ribs, FAC – apical cavity, FH – type of hairs: 1 – simple, 2 – double, 3 – stellate (a – four-armed, b – six-armed, c – eight-armed), 4 –fasciculate.

The group of hybrids was composed of the following taxa: *T. a. x moltkei, T. euchlora, T. tomentosa* Varsaviensis, *T. a. x moltkei* Zamoyskiana, *T. x flaccida, T. x spaechi,* and *T. a.* var. *neglecta.* Two species - *T. insularis,* and *T. tuan* - were not considered as hybrids because their origins are uncertain (Pigott, 2012). To reveal possible differences in morphological traits among hybrids and putative parental species, a one-way MANOVA followed by Turkey's post-hoc tests for unequal

sample sizes were performed. The hybrids and parental species were included as a fixed factor, and continuous traits as random factors. However, *Tilia americana* Moltkei, a hybrid of unknown paternity, and *Tilia a. x moltkei* Zamoyskiana were not analyzed by MANOVA. For the latter, only one parental species was available – *T. americana*, whereas we did not have access to *T. tomentosa* Petiolaris, the second parental species.

For nominal discrete (qualitative) data, contingency tables were used to compute Pearson's chi-square test for independence. This test assessed the association between qualitative traits and native geographical distribution of species. Descriptive statistics were calculated for the quantitative variables of each species based on the entire dataset. For qualitative variables, mode values were computed. The percentage variables derived from count data were also included. All of these data served as a basis for the construction of the dichotomous key for *Tilia* taxa. Data management and analyses were performed using the program STATISTICA 10 package, (StatSoft Inc., Tulusa, OK, USA).

In our work, we treated the original *Tilia* species identifications as valid and reliable. However, to ensure the accuracy all of the examined samples, these identifications were additionally checked by the second author (MC) using the morphological characters of leaves and fruits. The species nomenclature follows that of Pigott (2012), and original identification derived from the BG and AK was also specified (Table 1). In the case of GenBank sequence records the original nomenclature was maintained.

#### Results

# Morphological analysis

The means of the samples (1-40) for which the full datasets were obtained are presented in the system of two discriminant variables (U1-U2), Fig. 2. As was shown in Fig. 2, analyzed *Tilia* trees formed three areas, relatively well isolated, which correspond to the

native geographical distribution of species, i.e., groups of trees from: (1) eastern Asia; (2) Europe and western Asia; and (3) North America. Based on the squared Mahalanobis distances, the centroids of these groups are significantly different (Table 3). Values of well-classified samples ranged from 85.71 to 100%. An insignificant Mahalanobis distance was detected between the group of hybrids and the group of trees that originated from Europe and western Asia ("European"). This seems to be justified since at least one parental species originated from this European group. The remaining Mahalonobis distances are significant, indicating separation between the hybrids and the eastern Asian and American taxa, the values of these distances are larger.

**Table 3.** Values of squared Mahalanobis distances between centroids of *Tilia* geographical groups and hybrids.

|                | E Asia               | Europe<br>and W<br>Asia | N.<br>America        | Hybrids |
|----------------|----------------------|-------------------------|----------------------|---------|
| E Asia         | -                    |                         |                      |         |
| Europe &       | 7.09 <sup>a</sup>    | -                       |                      |         |
| W Asia         |                      |                         |                      |         |
| N.             | 20.81 <sup>a</sup>   | 9.51 <sup>c</sup>       | -                    |         |
| America        |                      |                         |                      |         |
| Hybrids        | 6.46 <sup>c</sup>    | 2.02                    | $13.57^{\mathrm{b}}$ | -       |
| a R < 0.001. b | сооц <sup>с</sup> в. | 0.05                    |                      |         |

<sup>a</sup> P < 0.001; <sup>D</sup> P < 0.01; <sup>C</sup> P < 0.05



Fig. 2. Scatter plot of the first two discriminant functions (U1, U2) discriminated among Tilia geographical groups and groups of hybrids, 93.64% for of accounting variance eight morphological continuous traits of leaves and fruits. Each dot on the scatter plot represents a single tree.

Based on the coefficients of the determination of the canonical variables, four traits affect the most in the geographical group classification: the number of pairs of transverse veins, the maximum width of the leaf blade, fruits' width, and the number of teeth per 2 cm on the middle part of the leaf blade (Tables 4 and 5).

**Table 4.** Coefficients of determination for analyzed

 variables of leaves and fruits in cultivated *Tilia* trees.

| Variable<br>(transformation) | DF 1  | DF2   |
|------------------------------|-------|-------|
| L-LB (Log10)                 | 3.99  | 6.06  |
| L-LP                         | 0.21  | 2.73  |
| MW-LB                        | 12.05 | 8.44  |
| AL-LB (Log10)                | 2.43  | 6.06  |
| VN-LB (Log10)                | 16.72 | 1.86  |
| TN-LB                        | 1.12  | 14.42 |
| FL                           | 3.94  | 1.45  |
| FW                           | 11.85 | 2.12  |
| % of variation               | 71.16 | 22.48 |

The third function obtained in this analysis accounted for 6.36% between-groups variance.

The MANOVA has revealed a significant main effect involving species factor — a hybrid and parental taxa (Table 6). Based on the Turkey's post-hoc tests for unequal sample sizes, *Tilia x europea* (=T. x *europea* Euchlora) shows intermediate morphological characteristics between the parental species (*T. cordata* and *T. dasystyla*), (P<0.01).

However, in the majority of cases, hybrids resemble one of their parental species, e.g. *T. tomentosa* var. *Varsoviensis* (hybrid variety) does not significantly differ in quantitative traits from one of its parent (*T. tomentosa*). There is also no significant difference between *T. x flaccida* and its parental species *T. platyphyllos*. Moreover, *T. x neglecta* does not differ significantly from *T. americana* (but also *T. platyphyllos*). On the contrary, significant differences in these traits are detected between these hybrids and the second parental species (P<0.05).

There is no such clear trend in qualitative traits based on analyses of contingency tables. Depending on considered traits, external resemblance between a hybrid and either the one or the second parental species is visible. For example, the mode values of BS- LB, H-LBL, HC-LBL are equal for *T. tomentosa* var. *Varsoviensis* and *T. tomentosa*, and E-LB, TS-LB for *T. tomentosa* var. *Varsoviensis* and *T. platyphyllos*. Some of qualitative traits are unique for a particular species (e.g. traits: H-LBU, HF-LBL).

Below, a key for *Tilia* species identification based on the morphological traits of leaves and fruits is presented. A summary of the statistics of the analyzed traits is shown in Table 1 in the Online Resources section.

**Table 5.** Mean (St. dev.) of variables with the highest coefficients of determination for geographical groups and hybrids of cultivated *Tilia* trees.

|                |                 | Mean ±s<br>(n     | St. dev.<br>1) |                 |
|----------------|-----------------|-------------------|----------------|-----------------|
| Group Variable | E Asia          | Europe and W Asia | America        | Hybrids         |
| MW-LB          | 62.06 ±19.98    | 67.83±22.39       | 95.27±38.19    | 62.81±13.00     |
|                | (557)           | (390)             | (150)          | (210)           |
| VN-LB          | 6.95±1.17       | 8.17±3.03         | 10.36±1.96     | 7.98±1.38       |
|                | (557)           | (390)             | (150)          | (210)           |
| TN-LB          | $7.02 \pm 2.35$ | 8.98±2.09         | 6.21±1.63      | 9.08±1.74       |
|                | (557)           | (390)             | (150)          | (210)           |
| FW             | $5.19 \pm 1.35$ | 5.95±1.40         | 7.86±0.83      | $5.77 \pm 1.23$ |
|                | (437)           | (390)             | (126)          | (180)           |

| Table 6.   | Effects of   | species  | (hybrids | and pa | arental | taxa) a | as g | grouping | variable | on | continuous | traits | (dependent |
|------------|--------------|----------|----------|--------|---------|---------|------|----------|----------|----|------------|--------|------------|
| variables) | , assessed b | oy one-w | ay MANC  | OVA.   |         |         |      |          |          |    |            |        |            |

| Tilia hybrids and             | Wilks` | F value and degrees        | Sig. of F (n-value) |
|-------------------------------|--------|----------------------------|---------------------|
| parental species              | Lambda | of freedom                 | Sig. of i (p value) |
| <u>tomentosa Varsaviensis</u> | 0.00   | E( , )=100.06              | 0.001               |
| tomentosa platyphyllos        | 0.03   | $\Gamma(16, 412) = 129.20$ | 0.001               |
| <u>x euchlora</u>             |        |                            |                     |
| cordata                       | 0.18   | $F_{(16, 460)} = 38.14$    | 0.001               |
| dasystyla                     |        |                            |                     |
| <u>x zamoyskiana</u>          |        |                            |                     |
| americana                     | 0.04   | F(16, 280)=68.80           | 0.001               |
| tomentosa Petiolaris          |        |                            |                     |
| <u>x flaccida</u>             |        |                            |                     |
| americana                     | 0.20   | $F_{(12, 284)}=28.64$      | 0.001               |
| platyphyllos                  |        |                            |                     |
| <u>x neglecta</u>             |        |                            |                     |
| americana                     | 0.06   | E                          | 0.001               |
| caroliniana ssp. heterophylla | 0.06   | $F_{(24, 421)}=29.21$      | 0.001               |
| platyphyllos                  |        |                            |                     |

Phylogenetic analysis of samples showing intraindividual variation in the ITS region

Generally, a small number of parsimony-informative sites were detected in the analyzed dataset representing five taxa. The total alignment matrix had 579 characters with 36 potentially parsimonyinformative characters. The ITS1 was the most variable and had the highest number of parsimonyinformative sites (21) in comparison to 5.8S (1) and ITS2 (14). Three ITS sequence variants were detected based on the three clones within each analyzed individual, except *T. olivieri*, for which two individuals were cloned and six different ITS variants were recovered. Variable sites, restricted to parsimony-informative sites within each analyzed taxon, are shown in Table 7. Our study has revealed varying patterns of nucleotide diversity per base pair ( $\pi$ ) within a particular species - from 0.93 ± 0.27 in diploid species to 3.19-3.60 ± 1.01 in polyploids *T. x euchlora* and *T. dasystyla*, Table 8.

Maximum likelihood analyses of the ITS region for the small subset of cloned samples (all variants) were conducted using two different models (TrN+G and HKY+G) for datasets without and with hybrids, respectively. Likelihood scores were estimated using



PHYML. The same sample set was also analyzed under the GTR model of nucleotide substitution using the -m MULTIGAMMA –k GTR option implemented in RAxML, either including or excluding hybrids. Due to the general similarity in the topology of the strict consensus parsimonious tree and ML trees, only the MP phylograms, having higher resolutions, are presented in Figs. 3-4.

**Table 7.** Variable sites, restricted to parsimony-informative sites in ITS sequences of *Tilia*, recovered by molecular cloning.

|                   |                     |               |     |            |     |   |    |    |    |    |    |    |    | ITS | 51  |     |     |     |     |     |     |     |     | <b>;.8</b> 5 | 5   |     |     |     |     |     | IT  | S 2 |     |     |     |     |     |     |
|-------------------|---------------------|---------------|-----|------------|-----|---|----|----|----|----|----|----|----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|--------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| I                 | position<br>alignme | in<br>nt      | 3   | <b>;</b> 4 | 1 1 | 3 | 17 | 22 | 24 | 27 | 36 | 53 | 85 | 99  | 102 | 126 | 146 | 150 | 152 | 154 | 157 | 178 | 181 | 217          | 359 | 366 | 370 | 372 | 378 | 389 | 401 | 426 | 434 | 437 | 473 | 476 | 550 | 576 |
|                   | RefSec              | <b>1.</b> ª G | 6   | c          | с . | A | Т  | С  | Т  | С  | A  | Т  | Т  | G   | Т   | Т   | Т   | Т   | Т   | Т   | Т   | Т   | А   | т            | т   | Α   | Т   | Т   | G   | А   | С   | G   | А   | Т   | Т   | С   | Т   | С   |
| species<br>name   | :lone n             | 0.            |     |            |     |   |    |    |    |    |    |    |    |     |     |     |     |     |     |     |     |     |     |              |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
| T. x euchlor      | ra 1                |               |     |            |     |   |    |    |    |    |    |    |    |     |     |     |     |     |     |     |     |     |     |              |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
| 3825              | 2                   | Т             | ' 1 |            | . ( | G | С  | Т  |    | G  | G  | С  |    | А   |     |     |     |     |     |     | G   |     |     |              | С   |     | С   |     | Α   |     |     |     |     | С   |     |     | С   |     |
|                   | 3                   | Т             | ' 1 |            | . ( | G | С  | Т  |    | G  | G  | С  |    |     |     |     |     | С   | С   | G   | С   |     |     |              |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
| T.<br>platyphyllo | os 1                | A             |     |            |     |   |    |    |    |    |    |    |    | A   |     |     | •   |     |     |     |     |     | G   |              | С   |     |     |     |     |     | A   | Т   |     |     |     | Т   | С   |     |
| 0089              | 2                   |               |     | 1          | Г   |   |    |    |    |    |    |    |    | Α   |     |     |     |     |     |     |     |     |     |              | С   |     |     |     |     |     | Α   |     |     |     |     |     | С   |     |
|                   | 3                   |               |     | 1          | Г   |   |    |    |    |    |    |    |    | А   |     |     |     |     |     |     |     |     | G   |              | С   |     |     |     |     |     | Α   | Т   |     |     |     | Т   | С   |     |
| T. cordata        | 1 1                 | Т             | ' ] |            | . ( | G | С  | Т  |    | G  | G  | С  |    | А   |     |     |     | С   | С   | G   | С   | С   |     |              | С   |     | С   |     | Α   |     |     |     |     |     |     |     | С   |     |
| 0192              | 2                   | Т             | ' 1 |            | . ( | G | С  | Т  |    | G  | G  | С  |    |     |     |     |     | С   | С   | G   | С   |     |     |              | С   |     | С   |     | Α   | Т   |     |     |     |     |     |     | С   |     |
|                   | 3                   | Т             | ' 1 |            | . ( | G | С  | Т  |    | G  | G  | С  |    | А   |     |     |     | С   | С   | G   | С   | С   |     |              | С   |     | С   |     | Α   |     |     |     |     |     |     |     | С   |     |
| T. dasystyl       | la 1                |               |     |            |     |   |    |    |    |    |    |    |    | А   |     |     |     |     |     |     |     |     |     |              | С   |     | С   |     | Α   |     |     |     |     |     |     |     | С   |     |
| 7738              | 2                   | Т             | ' 1 |            | . ( | G | С  | Т  |    | G  | G  | С  |    | Α   |     |     |     | С   | С   | G   | С   | С   |     |              | С   |     |     |     |     |     | Α   |     |     |     |     |     |     |     |
|                   | 5                   |               | 1   |            |     |   |    |    |    |    | G  | С  |    |     |     |     |     | С   | С   | G   | С   | С   |     |              |     |     |     |     |     |     | Α   |     |     |     |     |     | С   |     |
| T. olivieri       | i 1                 |               |     |            | . ( | G |    | Т  | С  | G  |    | С  | С  | А   | С   | Α   | С   | С   | С   | G   | С   | С   |     |              | С   | G   |     | С   | Α   | G   |     |     | С   | С   | С   |     | С   | G   |
| 0605              | 2                   |               |     |            | . ( | G | С  | Т  | С  | G  |    | С  | С  | А   |     | Α   |     | С   | С   | G   | С   | С   |     |              | С   | G   |     | С   | Α   | G   |     |     | G   |     | С   |     | С   |     |
|                   | 3                   |               |     |            | . ( | G | С  | Т  | С  | G  |    | С  | С  | А   | С   | Α   | С   | С   | С   | G   | С   | С   |     | С            | С   | G   |     | С   | Α   | G   |     |     | С   | С   | С   |     | С   | G   |
| T. olivieri       | 1                   |               |     |            | . ( | G | С  | Т  | С  | G  |    | С  | С  | А   | С   | А   | С   | С   | С   | G   | С   | С   |     |              | С   |     |     | С   | А   | G   |     |     | С   | С   | С   |     | С   | G   |
| 3006              | 2                   |               |     |            | . ( | G | с  | Т  | С  | G  |    | С  | С  | А   | С   | Α   | С   | С   | С   | G   | С   | С   |     |              | С   | G   |     | С   | Α   | G   |     |     | G   |     | С   |     | С   |     |
|                   | 5                   |               |     |            | . ( | G | С  | Т  | С  | G  |    | С  | С  | Α   |     | Α   | С   | С   |     | G   | С   | С   |     |              | С   |     |     | С   | Α   | G   |     |     | С   | С   | С   |     | С   |     |

<sup>a</sup> The ITS sequence obtained for the first clone of *T. x euchlora* was treated as the reference sequence.

**Table 8.** Estimates of nucleotide diversity ( $\pi$ ) (x10<sup>-2</sup>) at ITS loci in *Tilia* based on: A. cloned individuals; B. results of bootstrap network analysis; C. native distribution of species. Gaps treated as missing data.

|                     | Number of<br>sequences | Number of chromosomes (2n) | Nucleotide diversity (π)<br>[x10 <sup>-2</sup> ] ± SD |
|---------------------|------------------------|----------------------------|-------------------------------------------------------|
| Α                   |                        |                            |                                                       |
| T. x euchlora       | 3                      | 164                        | 3.19 ±0.95                                            |
| T. platyphyllos     | 3                      | 82                         | $1.16 \pm 0.50$                                       |
| T. cordata          | 3                      | 82                         | $1.16 \pm 0.50$                                       |
| T. dasystyla        | 3                      | 164                        | $3.60 \pm 1.01$                                       |
| T. olivieri (total) | 6                      | 82                         | $1.29 \pm 0.19$                                       |
| T. olivieri (0605)  | 3                      | -/-                        | $1.74 \pm 0.50$                                       |
| T. olivieri (3006)  | 3                      | -/-                        | $0.93 \pm 0.27$                                       |
| Total               | 18                     |                            | $3.42 \pm 0.23$                                       |
| В                   |                        |                            |                                                       |
| 1                   | 14                     |                            | $1.96 \pm 0.32$                                       |
| 2                   | 5                      |                            | $0.42 \pm 0.20$                                       |
| 3                   | 4                      |                            | $2.30 \pm 0.52$                                       |
| 4                   | 4                      |                            | $0.47 \pm 0.11$                                       |
| 5                   | 3                      |                            | $2.00 \pm 0.62$                                       |
| 6                   | 7                      |                            | $1.875 \pm 0.75$                                      |
| Total               | 37                     |                            | $2.87 \pm 0.25$                                       |
| C                   |                        |                            |                                                       |
| Europe and W Asia   | 17                     |                            | $2.545 \pm 0.32$                                      |
| E Asia              | 14                     |                            | $2.72 \pm 0.45$                                       |
| North America       | 5                      |                            | $1.98 \pm 0.75$                                       |
| Hybrids             | 3                      |                            | $2.68 \pm 0.85$                                       |
| Total               | 39                     |                            | $2.83 \pm 0.24$                                       |



**Fig. 3.** Strict consensus tree of the 2 most parsimonious trees of length 94 (CI = 0.83, RI = 0.86) for a small set (n = 15) of cloned samples of *Tilia* (excluding *T. x euchlora*) derived from the analysis of ITS1-5.8S-ITS2. Standard bootstrap values > 70 are shown above branches.



**Fig 4.** Strict consensus tree of the 2 most parsimonious trees of length 120 (CI = 0.73, RI = 0.79) for a small set (n = 18) of cloned samples of *Tilia* (including *T. x euchlora*) derived from the analysis of ITS1-5.8S-ITS2. Standard bootstrap values > 70 are shown above branches.

Generally, in both types of analyses, tree topologies were largely unresolved; in fact, only one monophyletic clade consisting of ITS variants of *T*. *olivieri* was observed. *Tilia x euchlora*, depending on the ITS variant, tended to cluster together with *T*. *cordata* and *T*. *dasystyla*, considered as its parental species, or *T*. *platyphyllos* and *T*. *dasystyla*. The inclusion of the hybrid taxon (*T*. *x euchlora*) negatively affected the support values and the level of homoplasy. Most nodes had higher bootstrap support with a set of consensus sequences (not shown) than with the matrix of the original variants (Figs. 3-4).

The neighbor-net and bootstrap network were constructed to gain better understanding of how the conflicting signals were contained in the dataset and to observe the reciprocal relationships between samples. These two data evaluations are largely congruent. Here, the bootstrap network is presented in Fig. 5. Generally, the composition of the clusters identified in the graph split (Fig. 5) was similar to the clades in the MP tree (Fig. 4). The split shows a strong support for a set of ITS sequence variants detected in *T. olivieri*, whereas the remaining clusters are characterized by many conflicting signals.



**Fig. 5.** Bootstrap network based on 1000 bootstrap replicates for a small data set n = 18 of *Tilia* ITS sequences obtained by molecular cloning. The scale bar indicates the scale of the network.

## Neighbor-net pattern of the total data set

A summary of characters used in the phylogenetic analyses is shown in Table 2, Online Resources. The total alignment matrix had 580 characters with 36 potentially parsimony-informative characters. The ITS1 was the most variable and had the highest number of parsimony-informative sites (24) in comparison to 5.8S (0) and ITS2 (12). However, no significant conflicts between the ITS partitions were detected based on the ILD test (P=0.90 and P=0.96 for alignments without and with hybrids, respectively). The average nucleotide diversity per base pair, was  $2.83 \pm 0.24$  for the whole set of ITS sequences, Table 8. Different congeneric species share identical variants of ITS2, i.e., *T. cordata* (7914) and *T. hyrcana* (JX051606.1) and three other taxa: (*T. dasystyla* HQ 439433.1), *T. platyphyllos* (AF 250292.1), and *T. x flaccida* (3476).

The full set of accessions was analyzed using both the neighbor-net method and the network from the NJ tree (bootstrap network). These two data evaluations are fully congruent. Fig. 6 presents the rooted phylogenetic network from the NJ tree based on the bootstrap values. The clusters identified in the split reflect a largely native geographical distribution of taxa. One cluster containing eastern Asian taxa (*T. miqueliana, T. amurensis, T. henryana, T. insularis, T. japonica,* and *T. hupehensis*) corresponds largely to a clade with high support (90) identified in the MP

tree (Fig. 7). The remaining clusters visible in the neighbor-net method are unresolved in the phylogenetic regular analyses MP (Figs. 7-8) and ML (not shown). These clusters are composed of taxa from eastern Asia (T. tuan, T. kiusiana,  $T_{\cdot}$ paucicostata) and the more separated T. mongolica, North America (T. americana, T. caroliniana ssp. heterophylla, Tilia a. x moltkei Zamoyskiana), one geographically heterogeneous cluster (T. olivieri, T. tomentosa, and T. a. x moltkei), and two other "European" clusters. In the centum of the network, short central edges forming extensive cycles imply that the data support conflicting splits. The bootstrap network (Fig. 6), has revealed clusters that are characterized by varying patterns of nucleotide diversity - pi values ranged from  $0.42 \pm 0.20$  (cluster 2) to  $2.30 \pm 0.52$  (cluster 3), Table 8. Generally, the Linden-trees originated from eastern Asia are characterized by the highest nucleotide diversity at ITS loci.



**Fig. 6.** Bootstrap network based on 1000 bootstrap replicates for a total data set n = 39 of *Tilia* ITS sequences. Native geographical distribution of analyzed taxa is specified. The scale bar indicates the scale of the network.



**Fig.** 7. Strict consensus tree of 100 most parsimonious trees of length 272 (CI = 0.52, RI = 0.45) for a total data set (n = 39) of *Tilia*, including hybrids, derived from the analysis of ITS1-5.8S-ITS2. Standard bootstrap values > 70 are shown above branches.



**Fig. 8.** Strict consensus tree of 530 most parsimonious trees of length 199 (CI = 0.68, RI = 0.68) for a data set (n = 32) of *Tilia*, excluding hybrids, derived from the analysis of ITS1-5.8S-ITS2. Standard bootstrap values > 70 are shown above branches.

Only the local incongruences between the native distribution of taxa and split clustering have been detected. The cluster composed of T. olivieri, T. tomentosa, and T. a. moltkei is heterogeneous in terms of its geographical affiliation with trees and their origins. The network favors two trees of T. olivieri (from BG and KA close to T. tomentosa (KA, 2724). One of these trees named T. olivieri (BG, 0605), presumably grafted, is composed of two parts: T. platyphyllos (rootstock) and one big branch of T. olivieri. This branch has leaves and fruits typical for T. olivieri, i.e., a leaf blade with very asymmetric, triangular teeth; an underside of leaves densely covered with white (8)-16 stellate hairs; and fruits prominently mammillate. The characteristics of the tree named T. olivieri (KA, 3006) vary in degree, resembling in several aspects T. tomentosa. Thus, based on the collected leaves and fruits, we are not confirm unambiguously the original able to identification.

A tree named Tilia. a. var. neglecta Spach (BG, 7497), being presumably a hybrid between T. americana and T. caroliniana ssp. heterophylla, is located between European and west Asian taxa in the graph split. The tree (grown from seeds in BG) shows typical characteristics of T. platyphyllos. It does not significantly differ in eight continuous traits from T. platyphyllos (and T. americana). It has ellipsoidal fruits 5-7 mm in diameter with prominent ribs, as well as leaves with small patches of simple and fasciculare hairs in axils of the main veins on the lower surface. Besides this, occasionally star-shaped hairs with six arms were detected on the lower side of the leaf blade. In T. americana fruits are larger, without ribs, and considerable variation in hairiness of leaves is observed. The set of these traits makes the original identification (T. a. var. neglecta Spach) deeply ambiguous and implies that the tree represents T. platyphyllos. Tilia neglecta sensu Braun non Spach is considered by Piggott (2012) as the hybrid T. americana x T. caroliniana ssp. caroliniana with four-armed stellate hairs, not observed in the tree no 7497.

*Tilia tomentosa* Varsaviensis and *T. x flaccida*, are grouped close to one of their parental species. *Tilia x spaetchi*, for which the parental species are unknown, and *T. x euchlora* are located among the European and west Asian taxa in the graph split, although the latter taxon, represented by two trees, does not cluster together. The ITS sequence identity between the hybrids and parental taxa never reached 100%.

#### Discussion

Concerted evolution is a process of DNA sequence homogenization among different loci within tandemly repeated gene families via unequal crossing-over combined with gene conversion (Dover, 1982, reviewed in Nei and Rooney, 2005). This process may result in the fixation of one sequence or, if relaxed, it may lead to intra-individual site polymorphism (2ISP), defined as any polymorphic site (Potts et al., 2014, see also Amheim et al., 1980; Wendel et al., 1995; Koch et al., 2003; Volkov et al., 2007). Two codominant variants can represent intra-array paralogs, allelic variants (between NORs), homoeologous variants (between orthologous NORs/5S loci), or paralogs between NORs/5S loci originated by duplication and translocation (Potts et al., 2014). The 2ISP phenomenon has been detected in different taxa (e.g., Wissemann, 1999; Koch and Al-Shehbaz, 2000; Harris and Crandall, 2000; Thornhill et al., 2007; Sani et al., 2008; Lindner and Banik, 2011; Hřibová et al., 2011), in which it can create a problem for species phylogeny when intra-individual variability exceeds intraspecific variability (i.e., when variants did not cluster together) (see also Buckler IV et al., 1997; Potts et al., 2014). Different processes are considered to be responsible for the 2ISP, among others, autopolyploidyzation or introgression, and coupled hybridization, which is often with allopolyploidy (see also King and Roalson, 2008; Potts et al., 2014).

One result to emerge from our study is that variations in the ITS region are detected across individuals within a particular *Tilia* species and within one individual (intragenomic variation). Because a fixed variation in different clones and individuals among products of independent PCR was detected, we excluded random PCR artifacts (Baldwin *et al.*, 1995). The ITS sequence polymorphism apparently persisted because of polyploidy, which is a common phenomenon in the genus (Pigott, 2012, 2002).

Nevertheless, our ITS survey, which we did via molecular cloning, is not exhaustive. Hybrids vegetatively propagated should have combinations of traits derived from both parental types (e.g., two ITS variants). However, ITS sequence identity between hybrids and parental taxa never reached 100%.

The presence of ITS variants does influence substantially the species-level phylogeny. These variants not always clustered together into separate clades in the phylogenetic analysis, e.g., variants detected within T. dasystyla or T. x euchlora. The intragenomic variation of the ITS region discovered in Tilia could be further complicated by the fact that different congeneric species share identical variants of ITS2 (see also Song et al., 2012). The resulting poorly resolved relationship in the regular phylogenetic analyses can also be explained in terms of data quality, i.e., by demonstrating a small number of parsimony-informative sites, high level of homoplasy (CI=0.52-0.68 for the whole dataset), or other issues (e.g., heuristic nature of the tree search algorithms or not satisfactory fitting models) (Morrison, 2010). Bifurcating tree methods (MP, ML) may also appear inadequate when hybridization and polyploidyzation are fairly common phenomena, as in the genus Tilia. In some cases, improper delineation of species based on morphological data may also result in an improper interpretation of phylogeny. This could be demonstrated in the case of T. olivieri (KA) or T. americana v. neglecta (BG). However, some overlap between morphological data, lack of inflorescences and flowers, and a limited number of specimens within each analyzed taxon make welldocumented identification difficult.

Nevertheless, the results of morphological quantitative analyses of hybrids *Tilia tomentosa* Varsaviensis, *T. x flaccida* and *T. x euchlora*, and their parental species revealed a high congruence with the molecular analyses (Fig. 6).

Most recently, literature has emerged that offers contradictory findings for the *Tilia* species based on ITS regular phylogenetic analysis. Yousefzadeh *et al.* (2012) found that this region is highly conserved among individuals of each of the studied *Tilia* species. However, the authors make no attempt to differentiate the ITS sequences by molecular cloning. Another major drawback of this approach is the limited number of species that were investigated.

# Conclusion

differences the Significant in continuous morphological traits of leaves and fruits were found for groups of Tilia trees that reflect their native geographical distribution. In the majority of cases, both qualitative and continuous traits allow for species identification. A dichotomous key for Tilia taxa cultivated in Poland was presented. Geographical grouping based on morphology was largely confirmed by the molecular analyses of ITS, with some exceptions. However, the utility of this nuclear region is limited in Tilia phylogenetic reconstruction and in species diagnosis due to a small number of phylogenetically informative sites and the presence of intra-individual site polymorphism. The presence of more than one type of ITS sequence within one individual and within one species of Tilia was reported for the first time.

#### A dichotomous key to the genus Tilia

A dichotomous key to the genus *Tilia* growing in the Adam Mickiewicz University Botanical Garden in Poznań and the Kórnik Arboretum (Institute of Dendrology of the Polish Academy of Sciences). Measurements of continuous traits: mean [±2SD] in mm, qualitative traits mode [min.-max.]. Leaf blade 106 [24-241] - 90 [16-164], with large marginal teeth ca 7 [2-12]. Pairs of pinnate veins from 5 to 14. Fruits almost spherical or ellipsoidal, large 9.12 [6.19-12.04] - 7.86 [6.20-9.52]

#### American taxa

Leaf blade 74 [20-128] – 66 [24-107] with small marginal teeth ca 9 [5-13]. Pairs of pinnate veins from 3 to 14. Fruits ovoid or spherical, small 7.83 [4.99-10.67] – 5.90 [3.32-8.48].

#### European and western Asian taxa

Leaf blade 73 [33-114] - 62 [23-102] with large marginal teeth ca 7 [2-12]. Pairs of pinnate veins from 5 to 9. Fruits ovoid or spherical, small 7.43 [3.63-11.23] - 5.24 [2.52-7.95].

### eastern Asian taxa

#### European and western Asian taxa

1 Lower (abaxial) surface of leaf covered with a dense tomentum of white, stellate hairs. Lack of small patches of fasciculate hairs in the axis of main veins.

2

2 Fruits obovoid.

#### T. tomentosa

2\* Fruits almost spherical.

# T. tomentosa Varsaviensis

1\* Lower surface of leaf glabrous or with sparse simple or stellate hairs.

# 3

3 Lower (occasionally also upper) surface of leaf covered with simple hairs. Fruits spherical and covered with a dense tomentum of stellate hairs. Longitudinal ribs prominent.

# 4

4 Leaf blades ovate with cordate base, leaf without lobes on the leaf margin. Leaf blades with white hairs on both sides.

# T. platyphyllos

4\* Other shape of leaf blades.

5

5 Leaf blades ovate with cordate base and additional lobes on the leaf margin. Veins on the lower surface

covered with reddish-brown hairs. The most often occurring eight pairs of lateral veins.

# T. platyphyllos Vitifolia

5\* Varied shape of leaf blades, leaf often with additional lobes on the margin. Number of pairs of lateral veins>10.

# T. platyphyllos Laciniata

3\* Lower surface of leaf glabrous or rarely and irregularly covered with stellate hairs (4- to 8-armed). Fruits ellipsoidal or obovoid, smooth or with weak ribs.

# 6

6 In the axils of main veins patches of fasciculate, reddish-brown hairs.

7

7 Peduncle glabrous or rarely with simple hairs. Fruits ovoid, smooth, only with weak ribs visible at the base when dry; with asymmetric apiculus.

# T. cordata

7\* Peduncle covered with stellate hairs (4-, 6-, and 8armed). Fruits spherical, symmetric with weak ribs.

#### T. spaethii

6\* In the axils of main veins patches of fasciculate white (sometimes straw-colored) hairs.

#### 8

8 Lower surface of leaf glabrous. Fruits with prominent ribs.

# T. dasystyla

8\* Lower surface of leaf with simple hairs sparsely distributed along the small veins. Fruits with weak ribs.

#### T. x euchlora

3<sup>\*\*</sup> Lower surface of leaf covered with simple and stellate (8-armed) hairs. Main veins with stellate hairs (8-armed).

Tilia americana x moltkei Zamoyskiana (T. americana x T. tomentosa Pendula)

#### <u>American taxa</u>

1 Lower surface glabrous.

#### T. americana

1\* Lower surface covered with stellate hairs (8armed). 2

2 Lower surface of leaf without patches of fasciculate hairs in the axils of main veins.

# T. americana x Moltkei

2\* Patches of fasciculate hairs at the leaf base and/or in the axils of main veins.

# 3

3 Lower surface of leaf with patches of fasciculate hairs only in the axils of main veins.

# T. heterophylla

3\* Patches of reddish-brown fasciculate hairs at the leaf base and in the axils of main veins.

T. x flaccida

#### Eastern Asian taxa

1 Leaf margin serrate, with wide teeth with long apiculus; both sides of leaf with hairs, upper side with simple hairs, lower side with stellate hairs. Patches of white fasciculate hairs in the axils of the main veins on the lower surface. The blossom season is in September. Fruits rare.

#### T. henryana

1\* Leaf margin dentate with marginal teeth with short apiculus. The blossom season is from June to July.Fruits mature before the end of vegetation season.

2

2 Fruits small, 7x5 mm, with smooth, thin-walled surface, occasionally with longitudinal lines or weak ribs.

#### 3

3 Leaves small, 50 x 30 mm. Leaf ovoid with shallow, cordate base. Peduncles very short (ca 10 mm).

# T. kiusiana

3\* Leaves large, <60 x 50 mm. Leaf orbicular or suborbicular with deep, cordate base. Peduncles longer < 30 mm.

4

4 Leaf with large, deep teeth; leaf often with additional lobes on the margin. Fruits very small, spherical (ca 4 mm), with smooth surfaces.

# T. mandshurica

4\* Leaf with small teeth; leaf margin without lobes. Fruits ovoid with longitudinal lines on the surface.

8\* Fruits with numerous mammilla.

| 5 Leaves orbicular, tapering gradually to an apex.       | 10                                                                                                       |
|----------------------------------------------------------|----------------------------------------------------------------------------------------------------------|
| 6                                                        | 10 Leaf orbicular with small teeth—ca 7-8 teeth/2 cm                                                     |
| 6 Lower surface of leaf with sparsely stellate hairs.    | of leaf-margin. Lower surface of leaf with silver                                                        |
| Simple hairs on veins only.                              | tomentum, without patches of fasciculate hairs in the                                                    |
| T. insularis                                             | axils of main veins.                                                                                     |
| 6* Lower surface of leaf glabrous, simple or double      | T. oliveri                                                                                               |
| hairs on veins only.                                     | 10* Leaf ovate, shallowly serrate, teeth large—ca 4-5                                                    |
| T. mongolica                                             | teeth/2 cm of leaf margin. Lower surface of leaf green,                                                  |
| 5* Leaves orbicular, tapering to the long and narrow     | sparsely covered with stellate hairs. Patches of                                                         |
| apex.                                                    | fasciculate hairs in the axils of main veins.                                                            |
| 7 Lower surface of leaf glabrous, with stellate hairs on |                                                                                                          |
| the base only. Simple hairs on veins.                    | Supplementary materials                                                                                  |
| T. japonica                                              | Species/geographic boundaries and evolutionary                                                           |
| 2* Fruits larger, 10 x 7 mm, elongated, with             | interrelationships of cultivated Linden-trees (Tilia L.)                                                 |
| mammillate and/or tomentose walls. Fruit wall thick,     | based on morphological and nrDNA ITS                                                                     |
| difficult to break.                                      | characteristics                                                                                          |
| 8                                                        | <sup>1</sup> Melosik, I., <sup>2</sup> Ciupińska M., <sup>1</sup> Winnicka K., <sup>1</sup> Koukoulas G. |
| 8 Fruits covered with dense tomentum, only with          | <sup>1</sup> Department of Genetics, <sup>2</sup> Department of Plant                                    |
| sparse mammilla.                                         | Ecology and Environmental Protection, Adam                                                               |
| 9                                                        | Mickiewicz University in Poznań, Umultowska Str.                                                         |
| 9 Peduncle covered with stellate hairs.                  | 89, 61-614 Poznań, Poland.                                                                               |
| T. maximoviciana                                         |                                                                                                          |
| 9* Peduncle glabrous.                                    | Author for correspondence: Iwona Melosik,                                                                |
| T. migueliana                                            | <u>melosik1@amu.edu.pl</u> , +48 61 8295860                                                              |

Table 1. Summary statistics of morphological traits of leaves and fruits: mean/mode values, range, and standard deviation in cultivated Tilia species.

| Type of traits | Co         | ontinuo   | us (C) |       |          | Pe   | rcent | tage | (P)   |               |                   | Discrete (I             | ))                |     |
|----------------|------------|-----------|--------|-------|----------|------|-------|------|-------|---------------|-------------------|-------------------------|-------------------|-----|
| Trait.         | Mean       | Min       | Max    | SD    | Trait    | Mear | nMin  | Max  | SD    | Trait.        | Mode <sup>N</sup> | umerousnes<br>of mode ' | <sup>ss</sup> Min | Max |
| Tilia ar       | nericana   | L., n=30  |        |       |          |      |       |      |       |               |                   |                         |                   |     |
| VN-LB          | 29.60      | 8         | 70     | 13.66 | SH-LBL   | 0    | 0     | 0    | 0.00  | BS-LB         | 1                 | 29                      | 1                 | 2   |
| L-LB           | 9.93       | 8         | 12     | 1.01  | STH-LBL  | 0    | 0     | 0    | 0.00  | E-LB          | 0                 | 30                      | 0                 | 0   |
| L-LP           | 87.17      | 55        | 152    | 21.12 | SRH4-LBL | 0    | 0     | 0    | 0.00  | TS-LB         | 2                 | 30                      | 2                 | 2   |
| MW-LB          | 85.37      | 47        | 178    | 27.11 | SRH6-LBL | 0    | 0     | 0    | 0.00  | H-LBU         | 0                 | 30                      | 0                 | 0   |
| AL-LB          | 42.13      | 30        | 67     | 8.93  | SRH8-LBL | 0    | 0     | 0    | 0.00  | HV-LBU        | 1                 | 23                      | 0                 | 1   |
| TN-LB          | 5.50       | 3         | 9      | 1.36  | SH-LBV   | 100  | 100   | 100  | 0.00  | H-LBL         | 0                 | 30                      | 0                 | 0   |
| FL             | 10.03      | 7.52      | 11.69  | 0.87  | STH-LBV  | 0    | 0     | 0    | 0.00  | HC-LBL        | 0                 | 30                      | 0                 | 0   |
| FW             | 8.24       | 6.70      | 10.16  | 0.70  | SRH4-LBV | 0    | 0     | 0    | 0.00  | HV-LBL        | 1                 | 30                      | 1                 | 1   |
|                |            |           |        |       | SRH6-LBV | 0    | 0     | 0    | 0.00  | HCV-LBL       | · 1               | 30                      | 1                 | 1   |
|                |            |           |        |       | SRH8-LBV | 0    | 0     | 0    | 0.00  | HF-LBL        | 2                 | 23                      | 2                 | 3   |
|                |            |           |        |       | SH-P     | 50   | 0     | 100  | 50.85 | HFC-LBL       | , 1               | 30                      | 1                 | 1   |
|                |            |           |        |       | STH-P    | 0    | 0     | 0    | 0.00  | HP            | 0                 | 15                      | 0                 | 1   |
|                |            |           |        |       | SRH4-P   | 0    | 0     | 0    | 0.00  | HC-P          | 0                 | 15                      | 0                 | 1   |
|                |            |           |        |       | SRH6-P   | 0    | 0     | 0    | 0.00  | FSO           | 1                 | 30                      | 1                 | 1   |
|                |            |           |        |       | SRH8-P   | 0    | 0     | 0    | 0.00  | $\mathbf{FH}$ | 2                 | 30                      | 2                 | 2   |
|                |            |           |        |       |          |      |       |      |       | FR            | 0                 | 30                      | 0                 | 0   |
|                |            |           |        |       |          |      |       |      |       | FAC           | 2                 | 30                      | 2                 | 2   |
| T. caroliniana | ssp. heter | rophylla, | n=60   |       |          |      |       |      |       |               |                   |                         |                   |     |
| VN-LB          | 11.45      | 9         | 16     | 1.61  | SH-LBL   | 1    | 0     | 30   | 5.55  | BS-LB         | 1                 | 31                      | 1                 | 4   |
| L-LB           | 175.43     | 62        | 336    | 74.82 | STH-LBL  | 0    | 0     | 0    | 0.00  | E-LB          | 0                 | 60                      | 0                 | 0   |
| L-LP           | 51.12      | 30        | 75     | 11.27 | SRH4-LBL | 6    | 0     | 60   | 13.80 | TS-LB         | 2                 | 60                      | 2                 | 2   |
| MW-LB          | 123.72     | 61        | 231    | 42.59 | SRH6-LBL | 10   | 0     | 50   | 15.57 | H-LBU         | 0                 | 39                      | 0                 | 1   |

5

J. Bio. & Env. Sci. 2014

| Type of traits | Co        | ontinuo   | us (C)   |                                 | Per      | rcent  | tage | (P)           |               |                   | Discrete (I             | ))                |        |
|----------------|-----------|-----------|----------|---------------------------------|----------|--------|------|---------------|---------------|-------------------|-------------------------|-------------------|--------|
| Trait.         | Mean      | Min       | Max      | SD Trait                        | Mean     | Min    | Max  | SD            | Trait.        | Mode <sup>N</sup> | umerousnes<br>of mode ' | <sup>ss</sup> Min | Max    |
| AL-LB          | 67.45     | 26        | 186      | 25.86 SRH8-LBL                  | 83       | 20     | 100  | 25.33         | HV-LBU        | 0                 | 59                      | 0                 | 1      |
| TN-LB          | 5.25      | 2         | 7        | 1.07 SH-LBV                     | 24       | 0      | 100  | 36.67         | H-LBL         | 1                 | 60                      | 1                 | 1      |
| FL             | 9.49      | 6.45      | 12.40    | 1.45 STH-LBV                    | 2        | 0      | 50   | 8.98          | HC-LBL        | 1                 | 60                      | 1                 | 1      |
| FVV            | 7.90      | 6.28      | 10.04    | 0.90 SKH4-LBV                   | 0        | 0      | 0    | 0.00          | HV-LBL        | 1                 | 46                      | 0                 | 1      |
|                |           |           |          | SRH0-LBV                        | 51       | 0      | 100  | 46.06         | HF-LBL        | 2                 | 45<br>60                | 2                 | 2      |
|                |           |           |          | SH-P                            | 0        | 0      | 0    | 0.00          | HFC-LBL       | 1                 | 60                      | 1                 | 1      |
|                |           |           |          | STH-P                           | 0        | 0      | 0    | 0.00          | HP            | 0                 | 60                      | 0                 | 0      |
|                |           |           |          | SRH4-P                          | 0        | 0      | 0    | 0.00          | HC-P          | 0                 | 60                      | 0                 | 0      |
|                |           |           |          | SRH6-P                          | 0        | 0      | 0    | 0.00          | FSO           | 2                 | 60                      | 2                 | 2      |
|                |           |           |          | SRH8-P                          | 0        | 0      | 0    | 0.00          | FH            | 2                 | 60                      | 2                 | 2      |
|                |           |           |          |                                 |          |        |      |               | FK<br>FAC     | 0                 | 60<br>60                | 0                 | 0      |
|                | imurensis | s, n=60   |          |                                 |          |        |      |               | FAC           | 1                 | 00                      | 1                 |        |
| VN-LB          | 6.70      | 5         | 8        | 0.72 SH-LBL                     | 32       | 0      | 100  | 38.99         | BS-LB         | 1                 | 44                      | 1                 | 5      |
| L-LB           | 80.68     | 47        | 106      | 14.46 STH-LBL                   | 0        | 0      | 0    | 0.00          | E-LB          | 0                 | 58                      | 0                 | 1      |
| L-LP           | 38.88     | 23        | 61       | 8.47 SRH4-LBL                   | 10       | 0      | 60   | 20.71         | TS-LB         | 1                 | 37                      | 1                 | 2      |
| MW-LB          | 00.35     | 48        | 80       | 8.99 SKH6-LBL                   | 11       | 0      | 100  | 25.18         | H-LBU         | 0                 | 60                      | 0                 | 0      |
| TN-LB          | 31.20     | 5         | 50<br>10 | 1.24 SH-LBU                     | 02       | 0      | 100  | 21 48         | H-LBU         | 1                 | 4/                      | 0                 | 1      |
| FL             | 7.20      | 5.30      | 9.09     | 1.15 STH-LBV                    | 93<br>1  | 0      | 100  | 2.20          | HC-LBL        | 1                 | 32                      | 0                 | 1      |
| FW             | 4.47      | 3.02      | 6.61     | 1.03 SRH4-LBV                   | 0        | 0      | 0    | 0.00          | HV-LBL        | 1                 | 58                      | 0                 | 1      |
|                | • •/      | 0         |          | SRH6-LBV                        | 1        | 0      | 60   | 7.83          | HCV-LBL       | 1                 | 58                      | 0                 | 1      |
|                |           |           |          | SRH8-LBV                        | 2        | 0      | 70   | 10.10         | HF-LBL        | 3                 | 60                      | 3                 | 3      |
|                |           |           |          | SH-P                            | 46       | 0      | 100  | 42.84         | HFC-LBL       | 3                 | 31                      | 1                 | 3      |
|                |           |           |          | STH-P                           | 1        | 0      | 20   | 4.15          | HP            | 1                 | 60                      | 1                 | 1      |
|                |           |           |          | SKH4-P                          | 2        | 0      | 30   | 5.96          | HC-P          | 1                 | 60                      | 1                 | 1      |
|                |           |           |          | SKH0-P<br>SRH8-P                | 15<br>26 | 0      | 00   | 22.05         | FSU<br>FH     | 1                 | 30                      | 2                 | 1      |
|                |           |           |          | 51110 1                         | 20       | 0      | 90   | 31.10         | FR            | 2                 | 60                      | 2                 | 2      |
|                |           |           |          |                                 |          |        |      |               | FAC           | 2                 | 60                      | 2                 | 2      |
| Tilia          | cordata,  | n-150     |          |                                 |          |        |      |               | DGID          |                   | 0                       |                   |        |
| VN-LB<br>L_LB  | 64.85     | 4         | 11       | 1.47 SH-LBL                     | 29<br>8  | 0      | 100  | 39.70         | BS-LB<br>F-IB | 1                 | 89                      | 1                 | 5      |
| L-LP           | 30.25     | -20<br>12 | 50       | 24.50 STIFLDL<br>10 21 SRH4-LBL | 2        | 0      | 20   | 20.21<br>1 60 | TS-LB         | 1                 | 120                     | 1                 | 2      |
| MW-LB          | 58.16     | 26        | 112      | 20.93 SRH6-LBL                  | 5        | 0      | 100  | 13.35         | H-LBU         | 0                 | 102                     | 0                 | 1      |
| AL-LB          | 21.81     | 5         | 54       | 10.60 SRH8-LBL                  | 11       | 0      | 100  | 21.47         | HV-LBU        | 0                 | 86                      | 0                 | 1      |
| TN-LB          | 10.07     | 7         | 14       | 1.66 SH-LBV                     | 61       | 0      | 100  | 41.63         | H-LBL         | 1                 | 83                      | 0                 | 1      |
| FL             | 6.57      | 4.28      | 9.19     | 1.18 STH-LBV                    | 19       | 0      | 100  | 30.48         | HC-LBL        | 1                 | 81                      | 0                 | 3      |
| FW             | 4.81      | 3.48      | 7.39     | 0.60 SRH4-LBV                   | 0        | 0      | 40   | 3.72          | HV-LBL        | 1                 | 126                     | 0                 | 1      |
|                |           |           |          | SRH6-LBV                        | 3        | 0      | 80   | 9.39          | HCV-LBL       | 1                 | 123                     | 0                 | 1      |
|                |           |           |          | SKH8-LBV<br>SH_P                | 1        | 0      | 40   | 4.21          | HFC-I BI      | 3                 | 150                     | 3                 | 3      |
|                |           |           |          | STH-P                           | 20       | 0      | 100  | 40.13         | HP            | 3                 | 150                     | 3                 | 3<br>1 |
|                |           |           |          | SRH4-P                          | 0        | 0      | 0    | 0.00          | HC-P          | 0<br>0            | 120                     | o                 | 1      |
|                |           |           |          | SRH6-P                          | 0        | 0      | 0    | 0.00          | FSO           | 0                 | 150                     | 0                 | 0      |
|                |           |           |          | SRH8-P                          | 0        | 0      | 0    | 0.00          | FH            | 2                 | 150                     | 2                 | 2      |
|                |           |           |          |                                 |          |        |      |               | FR            | 2                 | 60                      | 0                 | 2      |
| T_d            | aeuetula  | n-60      |          |                                 |          |        |      |               | FAC           | 2                 | 150                     | 2                 | 2      |
| VN-LB          | 9.27      | 7         | 11       | 1.02 SH-LBL                     | 1        | 0      | 50   | 6.56          | BS-LB         | 1                 | 24                      | 1                 | 5      |
| L-LB           | 101.23    | 61        | 135      | 18.37 STH-LBL                   | 26       | 0      | 100  | 43.39         | E-LB          | 1                 | 35                      | 0                 | 1      |
| L-LP           | 45.08     | 24        | 68       | 11.21 SRH4-LBL                  | 0        | 0      | 0    | 0.00          | TS-LB         | 2                 | 48                      | 1                 | 2      |
| MW-LB          | 91.88     | 55        | 128      | 16.65 SRH6-LBL                  | 0        | 0      | 0    | 0.00          | H-LBU         | 0                 | 60                      | 0                 | 0      |
| AL-LB          | 32.22     | 18        | 48       | 7.43 SRH8-LBL                   | 0        | 0      | 0    | 0.00          | HV-LBU        | 0                 | 51                      | 0                 | 1      |
| TN-LB          | 7.95      | 5         | 10       | 1.20 SH-LBV                     | 23       | 0      | 100  | 27.40         | H-LBL         | 0                 | 44                      | 0                 | 1      |
| FL<br>TENAT    | 9.16      | 7.24      | 11.41    | 1.13 STH-LBV                    | 59       | 0      | 100  | 37.54         | HC-LBL        | 0                 | 45                      | 0                 | 1      |
| F VV           | 0.12      | 4.97      | ð.13     | 0.02 SKH4-LBV                   | 0        | U<br>O | 0    | 0.00          | HCV-IBI       | 1                 | 48<br>40                | 0                 | 1      |
|                |           |           |          | SRH8-LBV                        | 0        | 0      | 0    | 0.00          | HF-LBL        | 3                 | 49<br>60                | Q<br>Q            | 2<br>1 |
|                |           |           |          | SH-P                            | 4        | 0      | 100  | 19.25         | HFC-LBL       | 1                 | 30                      | 3<br>1            | 3      |
|                |           |           |          | STH-P                           | 1        | 0      | 30   | 4.06          | HP            | 0                 | 57                      | 0                 | 1      |
|                |           |           |          | SRH4-P                          | 0        | 0      | 0    | 0.00          | HC-P          | 0                 | 57                      | 0                 | 1      |
|                |           |           |          | SRH6-P                          | 0        | 0      | 0    | 0.00          | FSO           | 2                 | 30                      | 0                 | 2      |
|                |           |           |          | SRH8-P                          | 0        | 0      | 0    | 0.00          | FH            | 2                 | 60                      | 2                 | 2      |
|                |           |           |          |                                 |          |        |      |               | FR            | 2                 | 60                      | 2                 | 2      |

J. Bio. & Env. Sci. 2014

| Type of traits | Co                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ontinuo          | ous (C)                  |              |           | Pe       | rcen | tage     | (P)            |          |          | Discrete (l             | D)                |          |
|----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|--------------------------|--------------|-----------|----------|------|----------|----------------|----------|----------|-------------------------|-------------------|----------|
| Trait.         | Mean                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Min              | Max                      | SD           | Trait     | Mear     | nMin | Max      | SD             | Trait.   | Mode     | Numerousne<br>of mode ' | <sup>ss</sup> Min | Max      |
|                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  |                          |              |           |          |      |          |                | FAC      | 2        | 60                      | 2                 | 2        |
| <i>T. x</i>    | euchlora,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | n=60             |                          |              |           |          |      |          |                |          |          |                         |                   |          |
| VN-LB          | 7.45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4                | 11                       | 1.57         | SH-LBL    | 6        | 0    | 100      | 18.17          | BS-LB    | 1        | 42                      | 1                 | 5        |
| L-LB           | 54.77                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 36               | 94                       | 10.64        | STH-LBL   | 30       | 0    | 100      | 44.55          | E-LB     | 0        | 55                      | 0                 | 1        |
| L-LP           | 31.83                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 20               | 51                       | 6.67         | SRH4-LBL  | . 8      | 0    | 100      | 24.92          | TS-LB    | 1        | 59                      | 1                 | 2        |
| MW-LB          | 51.78                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 33               | 73                       | 9.08         | SRH6-LBL  | 25       | 0    | 50       | 25.21          | H-LBU    | 0        | 30                      | 0                 | 1        |
| AL-LB          | 18.43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 7                | 37                       | 6.40         | SRH8-LBI  | 25       | 0    | 50       | 25.21          | HV-LBU   | 1        | 40                      | 0                 | 1        |
| TN-LB          | 9.58                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 7                | 12                       | 1.24         | SH-LBV    | 20       | 0    | 100      | 33.16          | H-LBL    | 1        | 56                      | 0                 | 1        |
| FL             | 8.28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 6.82             | 9.87                     | 0.60         | STH-LBV   | 29       | 0    | 100      | 39.88          | HC-LBL   | 1        | 56                      | 0                 | 1        |
| FW             | 5.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4.21             | 5.84                     | 0.35         | SRH4-LBV  | 0        | 0    | 0        | 0.00           | HV-LBL   | 1        | 59                      | 0                 | 1        |
|                | , in the second | •                | • •                      |              | SRH6-LBV  | 25       | 0    | 50       | 25.21          | HCV-LBL  | . 1      | 59                      | 0                 | 1        |
|                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  |                          |              | SRH8-LBV  | 25       | 0    | 50       | 25.21          | HF-LBL   | 3        | 30                      | 0                 | 3        |
|                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  |                          |              | SH-P      | 1        | 0    | 40       | 5.16           | HFC-LBL  | , Õ      | 30                      | 0                 | 3        |
|                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  |                          |              | STH-P     | 1        | 0    | 60       | 7.75           | HP       | 1        | 31                      | 0                 | 1        |
|                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  |                          |              | SRH4-P    | 0        | 0    | 0        | 0.00           | HC-P     | 1        | 31                      | 0                 | 1        |
|                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  |                          |              | SRH6-P    | 25       | 0    | 50       | 25.21          | FSO      | 0        | 60                      | 0                 | 0        |
|                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  |                          |              | SRH8-P    | 25       | 0    | 50       | 25.21          | FH       | 2        | 60                      | 2                 | 2        |
|                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  |                          |              | 01110 1   | -5       | Ũ    | 90       | -01            | FR       | 2        | 60                      | 2                 | 2        |
|                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  |                          |              |           |          |      |          |                | FAC      | 1        | 60                      | 1                 | 1        |
| T x            | flaccida                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | n=20             |                          |              |           |          |      |          |                | 1110     | 1        | 00                      | 1                 | <u> </u> |
| VN-LB          | 6.80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5                | 0                        | 0.02         | SH-LBL    | 0        | 0    | 0        | 0.00           | BS-LB    | 1        | 25                      | 1                 | 5        |
| I-IB           | 60.57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 16               | 9                        | 8 49         | STH-I BI  | 1        | 0    | 20       | 0.00           | F-IR     | 1        |                         | 0                 | 1        |
|                | 00.5/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 40               | //<br>r8                 | 8 22         | SPH4-I BI | 1        | 0    | 20       | 3.05           | TS_I B   | 1        | 10                      | 1                 | 1        |
|                | 34.23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 23<br>40         | 50                       | 0.22<br>9.00 | SKI14-LDL | . 0      | 0    | 0        | 0.00           |          | 1        | 30                      | 1                 | 1        |
|                | 03.90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 49               | 80                       | 0.02         | SKIIO-LDL | , 0      | 0    | 100      | 0.00           |          | 1        | 10                      | 0                 | 1        |
| AL-LD          | 21.53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 13               | 32                       | 4.22         | SKHO-LDI  | . 99     | 00   | 100      | 3.05           |          | 1        | 20                      | 0                 | 1        |
| I N-LB         | 10.57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 7                | 14                       | 1.65         | SH-LBV    | 44       | 10   | 100      | 28.24          | H-LBL    | 1        | 30                      | 1                 | 1        |
| FL             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                | -                        | -            | STH-LBV   | 46       | 0    | 80       | 22.51          | HC-LBL   | 1        | 17                      | 1                 | 3        |
| FW             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                | -                        | -            | SKH4-LBV  | 0        | 0    | 0        | 0.00           | HV-LBL   | 1        | 30                      | 1                 | 1        |
|                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  |                          |              | SRH6-LBV  | 0        | 0    | 0        | 0.00           | HCV-LBL  | . 1      | 17                      | 1                 | 3        |
|                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  |                          |              | SRH8-LBV  | 10       | 0    | 40       | 11.89          | HF-LBL   | 3        | 30                      | 3                 | 3        |
|                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  |                          |              | SH-P      | 74       | 0    | 100      | 37.83          | HFC-LBL  | 4 3      | 30                      | 3                 | 3        |
|                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  |                          |              | STH-P     | 5        | 0    | 10       | 5.09           | HP       | 1        | 24                      | 0                 | 1        |
|                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  |                          |              | SRH4-P    | 0        | 0    | 0        | 0.00           | HC-P     | 1        | 24                      | 0                 | 1        |
|                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  |                          |              | SRH6-P    | 0        | 0    | 0        | 0.00           | FSO      | -        | -                       | -                 | -        |
|                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  |                          |              | SRH8-P    | 1        | 0    | 10       | 3.46           | FH       | -        | -                       | -                 | -        |
|                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  |                          |              |           |          |      |          |                | FR       | -        | -                       | -                 | -        |
|                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  |                          |              |           |          |      |          |                | FAC      | -        | -                       | -                 | -        |
| <i>T. h</i>    | enryana,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | n=60             |                          |              |           |          |      |          |                |          |          |                         |                   |          |
| VN-LB          | 7.22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4                | 10                       | 1.38         | SH-LBL    | 0        | 0    | 10       | 1.81           | BS-LB    | 1        | 40                      | 1                 | 2        |
| L-LB           | 93.90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 60               | 145                      | 17.56        | STH-LBL   | 0        | 0    | 0        | 0.00           | E-LB     | 0        | 60                      | 0                 | 0        |
| L-LP           | 44.92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 32               | 67                       | 6.40         | SRH4-LBL  | . 6      | 0    | 50       | 12.23          | TS-LB    | 2        | 30                      | 1                 | 2        |
| MW-LB          | 94.12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 65               | 122                      | 12.66        | SRH6-LBL  | , 11     | 0    | 40       | 15.12          | H-LBU    | 1        | 60                      | 1                 | 1        |
| AL-LB          | 29.88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 10               | 58                       | 10.80        | SRH8-LBI  | . 83     | 40   | 100      | 21.10          | HV-LBU   | 1        | 60                      | 1                 | 1        |
| TN-LB          | 3.53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2                | 5                        | 0.60         | SH-LBV    | 32       | 0    | 60       | 13.08          | H-LBL    | 1        | 60                      | 1                 | 1        |
| FL             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                | -                        | -            | STH-LBV   | 0        | 0    | 0        | 0.00           | HC-LBL   | 1        | 60                      | 1                 | 1        |
| FW             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                | -                        | -            | SRH4-LBV  | 0        | 0    | 0        | 0.00           | HV-LBL   | 1        | 60                      | 1                 | 1        |
|                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  |                          |              | SRH6-LBV  | 6        | 0    | 30       | 9.74           | HCV-LBL  | . 1      | 60                      | 1                 | 1        |
|                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  |                          |              | SRH8-LBV  | 62       | 40   | 100      | 11.12          | HF-LBL   | 2        | 59                      | 2                 | 3        |
|                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  |                          |              | SH-P      | 29       | 0    | 90       | 21.11          | HFC-LBL  | . 1      | 59                      | 1                 | 3        |
|                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  |                          |              | STH-P     | 0        | 0    | 0        | 0.00           | HP       | 1        | 60                      | 1                 | 1        |
|                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  |                          |              | SRH4-P    | 0        | 0    | 20       | 2.58           | HC-P     | 1        | 60                      | 1                 | 1        |
|                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  |                          |              | SRH6-P    | 10       | 0    | 90       | 17.94          | FSO      | -        | _                       | -                 | -        |
|                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  |                          |              | SRH8-P    | 61       | 0    | 100      | 18.85          | FH       | -        | -                       | -                 | -        |
|                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  |                          |              |           |          |      |          |                | FR       | -        | -                       | -                 | -        |
|                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  |                          |              |           |          |      |          |                | FAC      | -        | -                       | -                 | -        |
| T. i           | nsularis. 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | n=60             |                          |              |           |          |      |          |                |          |          |                         |                   |          |
| VN-LB          | 7.42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 6                | 10                       | 0.93         | SH-LBL    | 40       | 0    | 100      | 49.02          | BS-LB    | 1        | 34                      | 1                 | 5        |
| L-LB           | 77.45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 46               | 127                      | 20.80        | STH-LBL   | 0        | 0    | 0        | 0.00           | E-LB     | 0        | 59                      | 0                 | 1        |
| <br>L-LP       | 30.08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 21               | 68                       | 13.28        | SRH4-LRI  | , 0      | Ő    | 0        | 0.00           | TS-LB    | 1        | 28                      | 1                 | 2        |
| MW-LB          | 66.82                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 40               | 103                      | 14.41        | SRH6-LBI  | 43       | 0    | 100      | 49.07          | H-LBU    | 0        | 42                      | 0                 | 1        |
| AL-LB          | 20.23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 10               | 58                       | 14.00        | SRH8-LBI  | , 0      | õ    | 10       | 1.81           | HV-LBU   | 1        | 48                      | Ő                 | 1        |
| TN-LB          | 8 58                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5                | 1/                       | 2 20         | SH-L RV   | 10       | ñ    | 100      | 47 70          | H-LRI    | 1        |                         | 0                 | 1        |
| FL.            | 5 01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ⊿ 60             | - <del>- 1</del><br>7 16 | 0.64         | STH-LEV   | 77<br>20 | 0    | 100      | т/•/У<br>27 г7 | HC-LBI   | 1        | <u>⊿8</u>               | 0                 | 1        |
| FW             | 2 68                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 7.09<br>9.79     | / 61                     | 0.50         | SRH4-LBV  | 7 N      | 0    | 0        | 0,00/          | HV-LRI   | 1        | +0<br>60                | 1                 | 1        |
| 1 11           | 3.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <del>-</del> •/3 | 4.01                     | 0.50         | SRH6-I PV | 7 20     | 0    | 00       | 20 75          | HCV-I RI | . 1      | 60                      | 1                 | 1        |
|                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  |                          |              | SRHQ.IPT  | 7 0      | 0    | 70       | 1 10           | HE I RI  | <br>ດ    | 60                      |                   | -<br>0   |
|                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  |                          |              | SH-P      | ∠<br>11  | 0    | 20<br>50 | ++++3<br>19.97 | HEC-I BI | ວ<br>    | 60                      | ა<br>ი            | ა<br>ი   |
|                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  |                          |              | STH-P     | 11<br>9  | 0    | 50<br>10 | 10.0/<br>107   | HP       | 4 3<br>1 | 56                      | ა<br>ი            | 3<br>1   |
|                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  |                          |              |           | ~        | 0    | 10       | 7.4            | 111      | -        | J0                      | 0                 | 1        |

J. Bio. & Env. Sci. 2014

| Type of traits | C              | ontinuo          | ous (C) |       |           | Pe      | rcen | tage | (P)   |                |      | Discrete (l | D)                |     |
|----------------|----------------|------------------|---------|-------|-----------|---------|------|------|-------|----------------|------|-------------|-------------------|-----|
| Trait.         | Mean           | Min              | Max     | SD    | Trait     | Mear    | nMin | Max  | SD    | Trait.         | Mode | of mode '   | <sup>ss</sup> Min | Max |
|                |                |                  |         |       | SRH4-P    | 0       | 0    | 0    | 0.00  | HC-P           | 1    | 28          | 0                 | 3   |
|                |                |                  |         |       | SRH6-P    | 1       | 0    | 30   | 5.03  | FSO            | 2    | 30          | 1                 | 2   |
|                |                |                  |         |       | SRH8-P    | 79      | 0    | 100  | 24.87 | FH             | 2    | 60          | 2                 | 2   |
|                |                |                  |         |       |           |         |      |      |       | FR             | 2    | 30          | 0                 | 2   |
| T              | anonioa        | n_60             |         |       |           |         |      |      |       | FAC            | 2    | 60          | 2                 | 2   |
| I.J            | 5 82           | 1=00             | 8       | 0.75  | SH-LBL    | 0       | 0    | 0    | 0.00  | BS-LB          | 1    | 40          | 1                 | 5   |
| L-LB           | 75.97          | 44               | 112     | 15.96 | STH-LBL   | 0       | 0    | 0    | 0.00  | E-LB           | 0    | 59          | 0                 | 1   |
| L-LP           | 30.10          | 20               | 48      | 5.54  | SRH4-LBL  | 49      | o    | 100  | 49.57 | TS-LB          | 1    | 59          | 1                 | 2   |
| MW-LB          | 52.87          | 37               | 74      | 8.57  | SRH6-LBL  | 2       | 0    | 50   | 8.20  | H-LBU          | 0    | 60          | 0                 | 0   |
| AL-LB          | 23.40          | 11               | 39      | 5.79  | SRH8-LBL  | 0       | 0    | 0    | 0.00  | HV-LBU         | 1    | 38          | 0                 | 1   |
| TN-LB          | 7.22           | 5                | 10      | 1.53  | SH-LBV    | 61      | 0    | 100  | 39.58 | H-LBL          | 1    | 30          | 0                 | 1   |
| FL             | 6.43           | 4.50             | 8.45    | 1.17  | STH-LBV   | 20      | 0    | 80   | 31.89 | HC-LBL         | 1    | 30          | 0                 | 1   |
| FW             | 4.43           | 3.35             | 6.65    | 0.77  | SRH4-LBV  | 5       | 0    | 50   | 12.00 | HV-LBL         | 1    | 55          | 0                 | 1   |
|                |                |                  |         |       | SRH6-LBV  | 6       | 0    | 80   | 16.91 | HCV-LBL        | . 1  | 55          | 0                 | 1   |
|                |                |                  |         |       | SRH8-LBV  | 0       | 0    | 0    | 0.00  | HF-LBL         | 3    | 57          | 0                 | 3   |
|                |                |                  |         |       | SH-P      | 37      | 0    | 100  | 43.52 | HFC-LBL        | 4 3  | 58          | 0                 | 3   |
|                |                |                  |         |       | SIH-P     | 1       | 0    | 30   | 4.54  |                | 1    | 49          | 0                 | 1   |
|                |                |                  |         |       | SRH4-P    | 20      | 0    | 100  | 35.40 | FSO            | 1    | 49          | 0                 | 1   |
|                |                |                  |         |       | SRH8-P    | 1/      | 0    | 50   | 6 66  | FH             | 2    | 30<br>60    | 2                 | 2   |
|                |                |                  |         |       | 5KI10-1   | 1       | 0    | 50   | 0.00  | FR             | 2    | 20          | 0                 | 2   |
|                |                |                  |         |       |           |         |      |      |       | FAC            | 2    | 60          | 2                 | 2   |
| T. I           | kiusiana, i    | n=60             |         |       |           |         |      |      |       | 1110           | _    | 00          | _                 | _   |
| VN-LB          | 6.53           | 4                | 9       | 1.14  | SH-LBL    | 20      | 0    | 100  | 38.58 | BS-LB          | 1    | 48          | 1                 | 5   |
| L-LB           | 49.23          | 30               | 66      | 7.20  | STH-LBL   | 0       | 0    | 0    | 0.00  | E-LB           | 0    | 59          | 0                 | 1   |
| L-LP           | 9.15           | 5                | 13      | 1.84  | SRH4-LBL  | 3       | 0    | 100  | 17.24 | TS-LB          | 1    | 60          | 1                 | 1   |
| MW-LB          | 28.27          | 15               | 36      | 3.91  | SRH6-LBL  | 0       | 0    | 0    | 0.00  | H-LBU          | 1    | 30          | 0                 | 1   |
| AL-LB          | 21.05          | 13               | 38      | 4.90  | SRH8-LBL  | 7       | 0    | 100  | 22.82 | HV-LBU         | 1    | 59          | 0                 | 1   |
| TN-LB          | 10.83          | 7                | 14      | 1.43  | SH-LBV    | 100     | 90   | 100  | 1.29  | H-LBL          | 0    | 42          | 0                 | 1   |
| FL             | -              | -                | -       | -     | STH-LBV   | 0       | 0    | 0    | 0.00  | HC-LBL         | 0    | 42          | 0                 | 1   |
| FW             | -              | -                | -       | -     | SRH4-LBV  | 0       | 0    | 0    | 0.00  | HV-LBL         | 1    | 60          | 1                 | 1   |
|                |                |                  |         |       | SKH6-LBV  | 0       | 0    | 0    | 0.00  | HCV-LBL        | · 1  | 60          | 1                 | 1   |
|                |                |                  |         |       | SKH8-LDV  | 0       | 0    | 10   | 1.29  | HF-LDL         | 1    | 34          | 1                 | 3   |
|                |                |                  |         |       | STH-P     | 99      | 90   | 100  | 2.52  | HP             | 4 3  | 54<br>60    | 1                 | 3   |
|                |                |                  |         |       | SRH4-P    | 0       | 0    | 0    | 0.00  | HC-P           | 1    | 60          | 1                 | 1   |
|                |                |                  |         |       | SRH6-P    | Ő       | Ő    | 0    | 0.00  | FSO            | -    | -           | -                 | -   |
|                |                |                  |         |       | SRH8-P    | 1       | 0    | 10   | 2.52  | FH             | -    | -           | -                 | -   |
|                |                |                  |         |       |           |         |      |      |       | FR             | -    | -           | -                 | -   |
|                |                |                  |         |       |           |         |      |      |       | FAC            | -    | -           | -                 | -   |
| <u> </u>       | indshurice     | a, n=30          | 0       |       |           |         |      |      |       | DGID           |      |             |                   |     |
| VN-LB          | 6.93           | 5                | 8       | 0.78  | SH-LBL    | 43      | 0    | 90   | 17.65 | BS-LB          | 1    | 17          | 1                 | 5   |
|                | 59.00          | 30               | 82      | 10.83 | SIH-LDL   | 0       | 10   | 10   | 1.83  | E-LD<br>TS I P | 0    | 10          | 0                 | 1   |
| MW-LB          | 30.37<br>62.22 | 40               | 44      | /.95  | SRH4-LDL  | 50<br>7 | 0    | 40   | 8 77  | H-LRU          | 2    | 30          | 2                 | 2   |
| AL-LB          | 22.17          | 11               | 53      | 7.67  | SRH8-LBL  | ó       | Ő    | 0    | 0.00  | HV-LBU         | 1    | 22          | Ő                 | 1   |
| TN-LB          | 6.13           | 4                | 9       | 1.01  | SH-LBV    | 65      | 0    | 100  | 28.97 | H-LBL          | 1    | 30          | 1                 | 1   |
| FL             | 4.44           | 3.78             | 5.57    | 0.43  | STH-LBV   | 15      | 0    | 80   | 20.80 | HC-LBL         | 1    | 30          | 1                 | 1   |
| FW             | 4.04           | 3.45             | 5.29    | 0.41  | SRH4-LBV  | 15      | 0    | 60   | 17.76 | HV-LBL         | 1    | 29          | 0                 | 1   |
|                |                |                  |         |       | SRH6-LBV  | 2       | 0    | 40   | 8.05  | HCV-LBL        | 4 1  | 30          | 1                 | 1   |
|                |                |                  |         |       | SRH8-LBV  | 0       | 0    | 0    | 0.00  | HF-LBL         | 3    | 30          | 3                 | 3   |
|                |                |                  |         |       | SH-P      | 76      | 0    | 100  | 23.13 | HFC-LBL        | 4 3  | 30          | 3                 | 3   |
|                |                |                  |         |       | STH-P     | 11      | 0    | 80   | 16.80 | HP             | 1    | 30          | 1                 | 1   |
|                |                |                  |         |       | SRH4-P    | 12      | 0    | 60   | 14.00 | HC-P           | 1    | 30          | 1                 | 1   |
|                |                |                  |         |       | SKH6-P    | 1       | 0    | 40   | 7.30  | FSO            | 0    | 30          | 0                 | 0   |
|                |                |                  |         |       | экну-г    | υ       | 0    | υ    | 0.00  | FH<br>FD       | 2    | 30          | 2                 | 2   |
|                |                |                  |         |       |           |         |      |      |       | гк<br>FAC      | 2    | 30          | 2                 | 2   |
| T. max         | imowiczia      | <i>na</i> , n=60 | 0       |       |           |         |      |      |       | PAC            | 0    | 30          | U                 | U   |
| VN-LB          | 6.95           | 5                | 9       | 0.85  | SH-LBL    | 0       | 0    | 0    | 0.00  | BS-LB          | 1    | 60          | 1                 | 1   |
| L-LB           | 69.03          | 46               | 102     | 12.23 | STH-LBL   | 0       | 0    | 0    | 0.00  | E-LB           | 0    | 60          | 0                 | 0   |
| L-LP           | 41.02          | 23               | 57      | 7.29  | SRH4-LBL  | 0       | 0    | 0    | 0.00  | TS-LB          | 1    | 54          | 1                 | 2   |
| MW-LB          | 66.00          | 49               | 86      | 8.86  | SRH6-LBL  | 0       | 0    | 0    | 0.00  | H-LBU          | 0    | 32          | 0                 | 1   |
| AL-LB          | 21.93          | 10               | 38      | 6.19  | SRH8-LBL  | 100     | 100  | 100  | 0.00  | HV-LBU         | 1    | 60          | 1                 | 1   |
| TN-LB          | 6.68           | 5                | 10      | 0.97  | SH-LBV    | 12      | 0    | 30   | 8.92  | H-LBL          | 1    | 60          | 1                 | 1   |
| FL<br>EXA7     | 8.60<br>6 9 4  | 0.30             | 10.33   | 0.88  | SIH-LBV   | 0       | 0    | 0    | 0.00  | HU-LBL         | 1    | 60<br>60    | 1                 | 1   |
| L AA           | 0.04           | 5.01             | 0.23    | 0.54  | JAT14-LDV | υ       | υ    | υ    | 0.00  | IIV-LDL        | 1    | 00          | 1                 | 1   |

J. Bio. & Env. Sci. 2014

| Type of traits | C                  | ontinuo             | us (C)    |       |                    | Pe   | rcent | tage | (P)   |               |                   | Discrete (1             | D)                |     |
|----------------|--------------------|---------------------|-----------|-------|--------------------|------|-------|------|-------|---------------|-------------------|-------------------------|-------------------|-----|
| Trait.         | Mean               | Min                 | Max       | SD    | <b>Trait</b>       | Mear | nMin  | Max  | SD    | Trait.        | Mode <sup>N</sup> | Numerousne<br>of mode ' | <sup>ss</sup> Min | Max |
|                |                    |                     |           |       | SRH6-LBV           | 0    | 0     | 0    | 0.00  | HCV-LBL       | 1                 | 60                      | 1                 | 1   |
|                |                    |                     |           |       | SRH8-LBV           | 88   | 70    | 100  | 8.92  | HF-LBL        | 3                 | 60                      | 3                 | 3   |
|                |                    |                     |           |       | SH-P               | 1    | 0     | 10   | 2.79  | HFC-LBL       | 3                 | 60                      | 3                 | 3   |
|                |                    |                     |           |       | SIH-P              | 1    | 0     | 30   | 4.90  | нг<br>нс-р    | 1                 | 60<br>60                | 1                 | 1   |
|                |                    |                     |           |       | SRH4-P             | 0    | 0     | 0    | 0.00  | FSO           | 2                 | 30                      | 0                 | 2   |
|                |                    |                     |           |       | SRH8-P             | 98   | 70    | 100  | 5.46  | FH            | 2                 | 30                      | 2                 | 3   |
|                |                    |                     |           |       |                    |      | ,     |      | • •   | FR            | 0                 | 60                      | 0                 | õ   |
|                |                    |                     |           |       |                    |      |       |      |       | FAC           | 2                 | 60                      | 2                 | 2   |
| <u> </u>       | ana x. ma          | o <i>ltkei</i> , n= | 30        |       |                    |      |       |      |       | DOID          |                   |                         |                   |     |
| VN-LB          | 18.53              | 5                   | 36        | 7.93  | SH-LBL             | 0    | 0     | 0    | 0.00  | E I P         | 1                 | 29                      | 1                 | 5   |
| L-LP           | 7.90<br>65.22      | /2                  | 9         | 1/ 21 | SRH4-LBL           | 0    | 0     | 0    | 0.00  | TS-LB         | 2                 | 30<br>18                | 1                 | 2   |
| MW-LB          | 60.07              | 43<br>24            | 85        | 14.2  | SRH6-LBL           | 0    | o     | õ    | 0.00  | H-LBU         | 0                 | 24                      | 0                 | 1   |
| AL-LB          | 38.67              | 22                  | 54        | 9.11  | SRH8-LBL           | 100  | 100   | 100  | 0.00  | HV-LBU        | 0                 | 29                      | 0                 | 1   |
| TN-LB          | 6.77               | 4                   | 10        | 1.19  | SH-LBV             | 79   | 0     | 100  | 34.01 | H-LBL         | 1                 | 30                      | 1                 | 1   |
| FL             | 7.54               | 6.19                | 8.91      | 0.59  | STH-LBV            | 0    | 0     | 0    | 0.00  | HC-LBL        | 1                 | 30                      | 1                 | 1   |
| FW             | 7.32               | 6.26                | 8.49      | 0.48  | SRH4-LBV           | 0    | 0     | 0    | 0.00  | HV-LBL        | 1                 | 27                      | 0                 | 1   |
|                |                    |                     |           |       | SKH6-LBV           | 0    | 0     | 100  | 0.00  | HCV-LBL       | . 1               | 27                      | 0                 | 1   |
|                |                    |                     |           |       | SH-P               | 30   | 0     | 100  | 46.61 | HFC-LBL       | 0                 | 24<br>24                | 0                 | 2   |
|                |                    |                     |           |       | STH-P              | 0    | 0     | 0    | 0.00  | HP            | 0                 | 21                      | 0                 | 1   |
|                |                    |                     |           |       | SRH4-P             | 0    | 0     | 0    | 0.00  | HC-P          | 0                 | 22                      | 0                 | 1   |
|                |                    |                     |           |       | SRH6-P             | 0    | 0     | 0    | 0.00  | FSO           | 2                 | 30                      | 2                 | 2   |
|                |                    |                     |           |       | SRH8-P             | 0    | 0     | 0    | 0.00  | FH            | 2                 | 30                      | 2                 | 2   |
|                |                    |                     |           |       |                    |      |       |      |       | FR            | 1                 | 30                      | 1                 | 1   |
| <i>T</i>       | ongoliga           | n-60                |           |       |                    |      |       |      |       | FAC           | 2                 | 30                      | 2                 | 2   |
|                | 6 50               | 5                   | 0         | 0.02  | SH-LBL             | 5    | 0     | 100  | 17.02 | BS-LB         | 1                 | 46                      | 1                 | 5   |
| L-LB           | 67.00              | 34                  | 106       | 20.3  | 5 STH-LBL          | 2    | 0     | 100  | 12.91 | E-LB          | 0                 | 40<br>51                | 0                 | 1   |
| L-LP           | 29.68              | 21                  | 45        | 5.18  | SRH4-LBL           | 14   | 0     | 100  | 30.24 | TS-LB         | 1                 | 42                      | 1                 | 2   |
| MW-LB          | 47.47              | 32                  | 71        | 8.72  | SRH6-LBL           | 8    | 0     | 100  | 22.31 | H-LBU         | 0                 | 60                      | 0                 | 0   |
| AL-LB          | 21.22              | 14                  | 29        | 3.69  | SRH8-LBL           | 10   | 0     | 100  | 29.34 | HV-LBU        | 0                 | 52                      | 0                 | 1   |
| TN-LB          | 7.05               | 6                   | 9         | 0.79  | SH-LBV             | 65   | 0     | 100  | 24.67 | H-LBL         | 0                 | 37                      | 0                 | 1   |
|                | 6.18               | 5.21                | 7.08      | 0.39  | SIH-LBV            | 28   | 0     | 70   | 18.94 | HC-LBL        | 0                 | 36                      | 0                 | 1   |
| 1, 14          | 4./2               | 4.24                | 5.3/      | 0.2/  | SRH4-LBV           | 0    | 0     | 0    | 0.00  | HCV-LBL       | . 1               | 50                      | 0                 | 1   |
|                |                    |                     |           |       | SRH8-LBV           | 0    | 0     | 10   | 1.29  | HF-LBL        | 3                 | 30                      | 1                 | 3   |
|                |                    |                     |           |       | SH-P               | 0    | 0     | 0    | 0.00  | HFC-LBL       | 3                 | 60                      | 3                 | 3   |
|                |                    |                     |           |       | STH-P              | 0    | 0     | 0    | 0.00  | HP            | 0                 | 48                      | 0                 | 1   |
|                |                    |                     |           |       | SRH4-P             | 3    | 0     | 100  | 15.13 | HC-P          | 0                 | 48                      | 0                 | 1   |
|                |                    |                     |           |       | SRH6-P             | 15   | 0     | 100  | 33.62 | FSO           | 1                 | 30                      | 0                 | 1   |
|                |                    |                     |           |       | SKH8-P             | 2    | 0     | 30   | 6.59  | FH<br>FD      | 2                 | 60                      | 2                 | 2   |
|                |                    |                     |           |       |                    |      |       |      |       | FAC           | 2                 | 30                      | ∠<br>1            | 2   |
| <i>T. m</i>    | iaueliana          | . n=30              |           |       |                    |      |       |      |       | 1110          |                   |                         |                   |     |
| VN-LB          | 7.93               | 6                   | 11        | 1.20  | SH-LBL             | 0    | 0     | 0    | 0.00  | BS-LB         | 1                 | 25                      | 1                 | 5   |
| L-LB           | 75.17              | 53                  | 106       | 14.40 | o STH-LBL          | 0    | 0     | 0    | 0.00  | E-LB          | 0                 | 30                      | 0                 | 0   |
| L-LP           | 33.13              | 20                  | 53        | 9.18  | SRH4-LBL           | 0    | 0     | 0    | 0.00  | TS-LB         | 1                 | 19                      | 1                 | 2   |
| MW-LB          | 68.60              | 43                  | 102       | 14.00 | SKH6-LBL           | 0    | 0     | 0    | 0.00  | H-LBU         | 0                 | 30                      | 0                 | 0   |
| TN-LB          | 22.10<br>8 10      | 6                   | 42        | 1.00  | SKHO-LDL<br>SH-LBV | 21   | 100   | 100  | 15 61 | H-LBU         | 1                 | 10                      | 1                 | 1   |
| FL             | 0.44               | 7.89                | 10.51     | 0.50  | STH-LBV            | 28   | 0     | 40   | 18.64 | HC-LBL        | 1                 | 30                      | 1                 | 1   |
| FW             | 6.45               | 5.60                | 8.10      | 0.51  | SRH4-LBV           | 0    | 0     | 0    | 0.00  | HV-LBL        | 1                 | 29                      | Ō                 | 1   |
|                | 10                 |                     |           |       | SRH6-LBV           | 0    | 0     | 0    | 0.00  | HCV-LBL       | 1                 | 29                      | 0                 | 1   |
|                |                    |                     |           |       | SRH8-LBV           | 38   | 0     | 100  | 21.44 | HF-LBL        | 3                 | 30                      | 3                 | 3   |
|                |                    |                     |           |       | SH-P               | 10   | 0     | 90   | 25.66 | HFC-LBL       | 3                 | 30                      | 3                 | 3   |
|                |                    |                     |           |       | STH-P              | 3    | 0     | 40   | 9.52  |               | 0                 | 26                      | 0                 | 1   |
|                |                    |                     |           |       | SRH6-P             | 0    | 0     | 0    | 0.00  | FSO           | 0                 | 20                      | 0                 | 1   |
|                |                    |                     |           |       | SRH8-P             | 1    | 0     | 10   | 2.54  | FH            | 3                 | 30                      | 3                 | 3   |
|                |                    |                     |           |       |                    |      | -     | -    | 01    | FR            | õ                 | 30                      | 0                 | õ   |
|                |                    |                     |           |       |                    |      |       |      |       | FAC           | 2                 | 30                      | 2                 | 2   |
| <u> </u>       | <i>oliveri</i> , n | =47                 |           |       | 011 1 51           |      |       |      |       | DOID          |                   |                         |                   |     |
| VIN-LB<br>L-LB | 7.66<br>70.06      | 6<br>18             | 10<br>105 | 1.03  | SH-LBL<br>STH-LBI  | 0    | 0     | 0    | 0.00  | BS-LB<br>E-LR | 1                 | 23<br>47                | 1                 | 5   |
| L-LP           | 52.02              | 15                  | 78        | 12.92 | 2 SRH4-LBL         | 0    | 0     | 0    | 0.00  | TS-LB         | 1                 | +/<br>31                | 1                 | 2   |
| MW-LB          | 68.43              | 47                  | 95        | 12.53 | SRH6-LBL           | 36   | 0     | 100  | 48.57 | H-LBU         | 0                 | 25                      | 0                 | 1   |

J. Bio. & Env. Sci. 2014

| Type of traits  | Co                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ontinuo   | ous (C)    |                   |                     | Pe      | rcent | tage | (P)   |                  |                   | Discrete (I              | ))                |        |
|-----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|------------|-------------------|---------------------|---------|-------|------|-------|------------------|-------------------|--------------------------|-------------------|--------|
| Trait.          | Mean                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Min       | Max        | SD                | Trait               | Mear    | nMin  | Max  | SD    | Trait.           | Mode <sup>N</sup> | Numerousnes<br>of mode ' | <sup>ss</sup> Min | Max    |
| AL-LB           | 26.30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 17        | 40         | 5.57 S            | RH8-LBL             | 64      | 0     | 100  | 48.57 | HV-LBU           | 0                 | 24                       | 0                 | 1      |
| TN-LB           | 6.47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5         | 9          | 1.00              | SH-LBV              | 6       | 0     | 10   | 4.86  | H-LBL            | 1                 | 47                       | 1                 | 1      |
|                 | 9.17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 7.25      | 12.85      | 1.43              | STH-LBV             | 0       | 0     | 0    | 0.00  | HC-LBL           | 1                 | 47                       | 1                 | 1      |
| I' VV           | 0.24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5.02      | /.00       | 0.01 5            | RH6-LBV             | 26      | 0     | 100  | 48 57 | HCV-LBI          | . 1               | 4/                       | 1                 | 1      |
|                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |           |            | S                 | RH8-LBV             | 57      | o     | 90   | 43.71 | HF-LBL           | 0                 | 47                       | 0                 | 0      |
|                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |           |            |                   | SH-P                | 0       | 0     | 0    | 0.00  | HFC-LBL          | 0                 | 47                       | 0                 | 0      |
|                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |           |            |                   | STH-P               | 0       | 0     | 0    | 0.00  | HP               | 1                 | 30                       | 0                 | 1      |
|                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |           |            |                   | SRH4-P              | 0       | 0     | 0    | 0.00  | HC-P             | 1                 | 30                       | 0                 | 1      |
|                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |           |            |                   | SRH6-P              | 0       | 0     | 0    | 0.00  | FSO              | 2                 | 47                       | 2                 | 2      |
|                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |           |            |                   | SRH8-P              | 64      | 0     | 100  | 48.57 | FH               | 2                 | 47                       | 2                 | 2      |
|                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |           |            |                   |                     |         |       |      |       | FAC              | 2                 | 30<br>47                 | 0<br>2            | 2      |
| T. pla          | ıtyphyllos                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | , n=90    |            |                   |                     |         |       |      |       |                  |                   | 17                       |                   |        |
| VN-LB           | 25.47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 11        | 47         | 6.33              | SH-LBL              | 75      | 0     | 100  | 27.48 | BS-LB            | 1                 | 54                       | 1                 | 5      |
| L-LB            | 8.86                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5         | 16         | 2.06 5            | SIH-LBL             | 3       | 0     | 40   | 9.63  | E-LB             | 0                 | 82                       | 0                 | 1      |
| L-LP<br>MW_I B  | 79.51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 39<br>- 8 | 119        | 16.24 5           | KH4-LBL<br>RH6-I BI | 8<br>10 | 0     | 90   | 19.67 | 15-LB<br>H_I BII | 2                 | 61<br>77                 | 1                 | 2      |
| AL-LB           | 92.4/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 50<br>10  | 70         | 23.055<br>11 47 S | RH8-LBL             | 12      | 0     | 100  | 1.05  | HV-LRU           | 1                 | 82                       | 0                 | 1      |
| TN-LB           | 8.19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5         | /9<br>12   | 1.19              | SH-LBV              | 91      | 0     | 100  | 18.07 | H-LBL            | 1                 | 89                       | 0                 | 1      |
| FL              | 9.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 6.56      | 10.70      | 0.68 5            | STH-LBV             | 7       | o     | 100  | 16.33 | HC-LBL           | 1                 | 89                       | 0                 | 1      |
| FW              | 8.57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 6.03      | 10.22      | 0.81 S            | RH4-LBV             | ó       | 0     | 10   | 1.05  | HV-LBL           | 1                 | 90                       | 1                 | 1      |
|                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |           |            | S                 | RH6-LBV             | 2       | 0     | 50   | 8.32  | HCV-LBL          | . 1               | 90                       | 1                 | 1      |
|                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |           |            | S                 | RH8-LBV             | 0       | 0     | 0    | 0.00  | HF-LBL           | 3                 | 90                       | 3                 | 3      |
|                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |           |            |                   | SH-P                | 88      | 0     | 100  | 21.68 | HFC-LBL          | , 1               | 90                       | 1                 | 1      |
|                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |           |            |                   | STH-P               | 6       | 0     | 60   | 9.91  | HP               | 1                 | 86                       | 0                 | 1      |
|                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |           |            |                   | SRH4-P              | 0       | 0     | 0    | 0.00  | HC-P             | 1                 | 86                       | 0                 | 1      |
|                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |           |            |                   | SKH6-P              | 1       | 0     | 20   | 3.81  | FSO              | 2                 | 60                       | 0                 | 2      |
|                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |           |            |                   | экнэ-г              | 0       | 0     | 0    | 0.00  | FR               | 2                 | 30                       | 2                 | 3      |
|                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |           |            |                   |                     |         |       |      |       | FAC              | 3                 | 30                       | 0                 | 3<br>2 |
| T. platyph      | <i>yllos</i> Laci                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | niata, n= | =30        |                   |                     |         |       |      |       | 1110             | -                 | 30                       | Ű                 |        |
| VN-LB           | 14.40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4         | 35         | 6.88              | SH-LBL              | 97      | 80    | 100  | 5.83  | BS-LB            | 2                 | 13                       | 1                 | 4      |
| L-LB            | 101.53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 35        | 164        | 35.41 \$          | STH-LBL             | 0       | 0     | 0    | 0.00  | E-LB             | 1                 | 26                       | 0                 | 1      |
| L-LP            | 45.90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 29        | 65         | 8.63 S            | RH4-LBL             | 0       | 0     | 10   | 1.83  | TS-LB            | 2                 | 30                       | 2                 | 2      |
|                 | 54.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 32        | 78         | 11.92 5           | RHO-LDL             | 1       | 0     | 10   | 2.54  | HV-I BU          | 1                 | 30                       | 1                 | 1      |
| TN-LB           | /0.9/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2         | 142        | 1 25              | SH-LBV              | 2<br>00 | 00    | 100  | 3.79  | H-LBL            | 1                 | 30                       | 1                 | 1      |
| FL              | 6.49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4.00      | 7.42       | 0.77 8            | STH-LBV             | 0       | 0     | 100  | 1.83  | HC-LBL           | 1                 | 30                       | 1                 | 1      |
| FW              | 5.81                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4.09      | 7.14       | 0.62 S            | RH4-LBV             | 0       | 0     | 0    | 0.00  | HV-LBL           | 1                 | 30                       | 1                 | 1      |
|                 | , in the second |           | <i>.</i>   | S                 | RH6-LBV             | 0       | 0     | 0    | 0.00  | HCV-LBL          | . 1               | 30                       | 1                 | 1      |
|                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |           |            | S                 | RH8-LBV             | 0       | 0     | 10   | 1.83  | HF-LBL           | 3                 | 16                       | 1                 | 3      |
|                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |           |            |                   | SH-P                | 75      | 10    | 100  | 31.92 | HFC-LBL          | . 1               | 30                       | 1                 | 1      |
|                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |           |            |                   | STH-P               | 0       | 0     | 0    | 0.00  | HP               | 1                 | 30                       | 1                 | 1      |
|                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |           |            |                   | SRH4-P              | 11      | 0     | 80   | 18.18 | HC-P             | 1                 | 30                       | 1                 | 1      |
|                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |           |            |                   | SKH6-P              | 13      | 0     | 70   | 19.36 | FSO              | 0                 | 30                       | 0                 | 0      |
|                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |           |            |                   | ЗКН8-Р              | 1       | 0     | 20   | 5.07  | FH<br>FD         | 2                 | 30                       | 2                 | 2      |
|                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |           |            |                   |                     |         |       |      |       | FAC              | 2                 | 30                       | 2                 | 2      |
| T. platypl      | <i>hyllos</i> Viti                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | folia, n= | 30         |                   |                     |         |       |      |       |                  |                   | 0-                       |                   |        |
| VN-LB           | 8.23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 6         | 11         | 1.10              | SH-LBL              | 12      | 0     | 100  | 27.05 | BS-LB            | 1                 | 30                       | 1                 | 1      |
| L-LB            | 69.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 49        | 103        | 14.14             | STH-LBL             | 45      | 0     | 100  | 47.18 | E-LB             | 1                 | 15                       | 0                 | 1      |
| L-LP            | 27.40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 18        | 43         | 6.43 S            | KH4-LBL             | 0       | 0     | 0    | 0.00  | 1S-LB            | 1                 | 30                       | 1                 | 1      |
| MW-LB           | 60.90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 47        | 82         | 9.68 S            | KH6-LBL             | 0       | 0     | 0    | 0.00  | H-LBU            | 0                 | 30                       | 0                 | 0      |
| AL-LD<br>TN_I R | 25.87<br>10.77                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10        | 37         | 4.94 S            | NHO-LDL             | 0<br>18 | 0     | 100  | 0.00  | H-IRI            | 1                 | 25<br>17                 | 0                 | 1      |
| FI.             | 7.22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 9<br>6.54 | 14<br>8.10 | 0.48              | STH-LBV             | 82      | 0     | 100  | 28.70 | HC-LBL           | 1                 | 16                       | 0                 | 1<br>1 |
| FW              | 6.22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5.33      | 8.24       | 0.62 S            | RH4-LBV             | 0       | õ     | 0    | 0.00  | HV-LBL           | 1                 | 30                       | 1                 | 1      |
|                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.00      | <b>⊤</b>   | S                 | RH6-LBV             | 0       | 0     | 0    | 0.00  | HCV-LBL          | . 1               | 30                       | 1                 | 1      |
|                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |           |            | S                 | RH8-LBV             | 0       | 0     | 0    | 0.00  | HF-LBL           | 3                 | 30                       | 3                 | 3      |
|                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |           |            |                   | SH-P                | 80      | 0     | 100  | 40.68 | HFC-LBL          | 4 3               | 30                       | 3                 | 3      |
|                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |           |            |                   | STH-P               | 0       | 0     | 0    | 0.00  | HP               | 1                 | 24                       | 0                 | 1      |
|                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |           |            |                   | SRH4-P              | 0       | 0     | 0    | 0.00  | HC-P             | 1                 | 24                       | 0                 | 1      |
|                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |           |            |                   | SRH6-P              | 0       | 0     | 0    | 0.00  | FSO              | 1                 | 30                       | 1                 | 1      |
|                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |           |            |                   | экня-р              | 0       | 0     | 0    | 0.00  | FH<br>FD         | 3                 | 30                       | 3                 | 3      |
|                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |           |            |                   |                     |         |       |      |       | FK<br>EAC        | 3                 | 30                       | 3                 | 3      |
|                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |           |            |                   |                     |         |       |      |       | FAC              | 1                 | 30                       | 1                 | 1      |

| J. Bio. & Env. Sci.   20 |
|--------------------------|
|--------------------------|

| Type of traits | Co                | ontinuo   | us (C)   |       |                    | Per     | cent  | age      | (P)       |               |                   | Discrete (I | ))                |        |
|----------------|-------------------|-----------|----------|-------|--------------------|---------|-------|----------|-----------|---------------|-------------------|-------------|-------------------|--------|
| Trait          | Moon              | Min       | Max      | SD    | Trait              | Moon    | Min   | Mav      | <u>sn</u> | Trait         | Mode <sup>N</sup> | umerousnes  | 55 <sub>Min</sub> | Max    |
|                | Mean              | IVIIII    | Max      | 50    | ITall              | Mean    | WITH. | wiax     | 30        | ITall.        | Mode              | of mode '   | WIIII             | Max    |
|                | <u>spaethi, r</u> | 1=30      |          | 1.01  | CIL I DI           |         | -     | 100      | 01.06     | DCID          |                   | <u></u>     |                   |        |
|                | 8.13              | 5         | 9        | 1.01  | SH-LBL             | 33      | 0     | 100      | 21.96     | EIB<br>EIB    | 1                 | 28          | 1                 | 5      |
|                | 90.40             | 49        | 131      | 6.90  | SPH4-I BI          | 0       | 0     | 70       | 16.00     | TS_I B        | 1                 | 30          | 1                 | 1      |
| MW_I B         | 31.50<br>60.00    | 1/        | 45       | 11 75 | SRII4-LDL          | - 33    | 0     | /0<br>50 | 10.01     | H_I RU        | 1                 | 30          | 1                 | 1      |
|                | 09.93             | 35        | 94       | 11./5 | SRII0-LDL          | . 20    | 0     | 50       | 12.51     | HV_I BU       | 1                 | 29          | 0                 | 1      |
| TN-I B         | 22.5/             | 13        | 34<br>12 | 4.70  | SH-I BV            | 10      | 0     | 30<br>60 | 20.00     | H_I RI        | 1                 | 20          | 1                 | 1      |
| FL             | 4 55              | 9<br>246  | 8 21     | 1.09  | STH-LBV            | 19      | 0     | 40       | 12 52     | HC-LBL        | 1                 | 30          | 1                 | 1      |
| FW             | 4.00              | 2.40      | 5 65     | 0.72  | SRH4-LBV           | 9<br>20 | 0     | 50       | 14 70     | HV-LBL        | 1                 | 20          | 1                 | 1      |
| 1 11           | 4.19              | 3.02      | 5.05     | 0.72  | SRH6-LBV           | 28      | 10    | 100      | 20.01     | HCV-LBI       | . 1               | 30          | 1                 | 1      |
|                |                   |           |          |       | SRH8-LBV           | 5       | 0     | 40       | 10.42     | HF-LBL        | 2<br>2            | 30          | 2                 | 3      |
|                |                   |           |          |       | SH-P               | 3       | õ     | 20       | 6.91      | HFC-LBL       | , 3               | 30          | 3                 | 3      |
|                |                   |           |          |       | STH-P              | o       | 0     | 0        | 0.00      | HP            | 1                 | 22          | Ő                 | 1      |
|                |                   |           |          |       | SRH4-P             | 32      | 0     | 100      | 32.70     | HC-P          | 1                 | 22          | 0                 | 1      |
|                |                   |           |          |       | SRH6-P             | 28      | 0     | 100      | 29.87     | FSO           | 0                 | 30          | 0                 | 0      |
|                |                   |           |          |       | SRH8-P             | 11      | 0     | 100      | 21.39     | FH            | 2                 | 30          | 2                 | 2      |
|                |                   |           |          |       |                    |         |       |          |           | FR            | 2                 | 30          | 2                 | 2      |
|                |                   |           |          |       |                    |         |       |          |           | FAC           | 2                 | 30          | 2                 | 2      |
| <i>T. to</i>   | omentosa,         | n=90      |          |       |                    |         |       |          |           |               |                   |             |                   |        |
| VN-LB          | 19.81             | 1         | 41       | 6.14  | SH-LBL             | 0       | 0     | 0        | 0.00      | BS-LB         | 1                 | 61          | 1                 | 5      |
| L-LB           | 8.39              | 6         | 12       | 1.13  | STH-LBL            | 0       | 0     | 0        | 0.00      | E-LB          | 0                 | 59          | 0                 | 1      |
| L-LP<br>MM I P | 62.09             | 32        | 147      | 10.18 | SRH4-LBL           | . 0     | 0     | 0        | 0.00      | 15-LD         | 1                 | 01          | 1                 | 2      |
|                | 01.72             | 14        | 137      | 15.32 | SRHO-LDL           | · 17    | 0     | 50       | 23.70     | H-LDU         | 1                 | 88          | 0                 | 1      |
| TN I P         | 30.30             | 15        | 51       | /.30  | SKIIO-LDL          | , 03    | 50    | 100      | 23./0     |               | 1                 | 87          | 1                 | 1      |
| FI             | 9.20<br>8.08      | 7 27      | 14       | 0.68  | STH-LDV            | 3       | 0     | 10       | 4.50      | HC_I RI       | 1                 | 90          | 1                 | 1      |
| FW             | 5.90              | /.3/      | 6.86     | 0.00  | SRH4-LBV           | 3       | 0     | 0        | 4./4      | HV-LBL        | 1                 | 90          | 1                 | 1      |
| 1 11           | 5.00              | 4.20      | 0.00     | 0.94  | SRH6-LBV           | 17      | 0     | 50       | 22 70     | HCV-LBI       | . 1               | 90          | 1                 | 1      |
|                |                   |           |          |       | SRH8-LBV           | 77      | 50    | 100      | 10.40     | HF-LBL        | 0                 | 90          | 0                 | 0      |
|                |                   |           |          |       | SH-P               | 4       | 0     | 10       | 4.85      | HFC-LBI       | . 0               | 90          | 0                 | 0      |
|                |                   |           |          |       | STH-P              | 0       | õ     | 0        | 0.00      | HP            | 1                 | 90          | 1                 | 1      |
|                |                   |           |          |       | SRH4-P             | 0       | 0     | 0        | 0.00      | HC-P          | 1                 | 90          | 1                 | 1      |
|                |                   |           |          |       | SRH6-P             | 17      | 0     | 50       | 23.70     | FSO           | 2                 | 30          | 0                 | 2      |
|                |                   |           |          |       | SRH8-P             | 80      | 50    | 100      | 21.49     | FH            | 3                 | 60          | 2                 | 3      |
|                |                   |           |          |       |                    |         |       |          |           | FR            | 2                 | 90          | 2                 | 2      |
|                |                   |           |          |       |                    |         |       |          |           | FAC           | 2                 | 60          | 1                 | 2      |
| T. tomento     | osa Varsav        | iensis, n | =60      | 1 0 0 | OIL L DI           |         |       |          | . 0.      | DOID          |                   |             |                   |        |
|                | 8.02<br>66.87     | 5         | 10       | 1.08  | SH-LDL<br>STH_I BI | 0       | 0     | 10       | 1.81      | DS-LD<br>F_LB | 1                 | 45          | 1                 | 5      |
|                | 20.07             | 29<br>10  | 65       | 10.79 | SPH4-I BI          | 0       | 0     | 0        | 0.00      | TS_I B        | 1                 | 50          | 1                 | 1      |
| MW-I B         | 39.92<br>65.05    | 20        | 05<br>87 | 10.30 | SRH4-LDL           | . 0     | 0     | 0        | 0.00      | H_I RU        | 1                 | 44          | 0                 | 2<br>1 |
| AL-LB          | 28 52             | 29<br>14  | 47       | 6 28  | SRH8-LBL           | 100     | 00    | 100      | 1.81      | HV-LBU        | 0                 | 44<br>94    | 0                 | 1      |
| TN-LB          | 8 27              | 5         | 47       | 1 55  | SH-LBV             | 5       | 0     | 10       | 5.02      | H-LBL         | 1                 | 54<br>60    | 1                 | 1      |
| FL             | 7.47              | 6.27      | 8.92     | 0.63  | STH-LBV            | 0       | õ     | 0        | 0.00      | HC-LBL        | 1                 | 60          | 1                 | 1      |
| FW             | 6.41              | 5.33      | 7.46     | 0.45  | SRH4-LBV           | 0       | 0     | 0        | 0.00      | HV-LBL        | 1                 | 55          | 0                 | 1      |
|                |                   |           | <i>.</i> |       | SRH6-LBV           | 0       | 0     | 0        | 0.00      | HCV-LBL       | 4 1               | 55          | 0                 | 1      |
|                |                   |           |          |       | SRH8-LBV           | 86      | 0     | 100      | 26.68     | HF-LBL        | 0                 | 60          | 0                 | 0      |
|                |                   |           |          |       | SH-P               | 0       | 0     | 0        | 0.00      | HFC-LBL       | 4 0               | 60          | 0                 | 0      |
|                |                   |           |          |       | STH-P              | 0       | 0     | 0        | 0.00      | HP            | 1                 | 56          | 0                 | 1      |
|                |                   |           |          |       | SRH4-P             | 0       | 0     | 0        | 0.00      | HC-P          | 1                 | 56          | 0                 | 1      |
|                |                   |           |          |       | SRH6-P             | 0       | 0     | 0        | 0.00      | FSO           | 1                 | 30          | 0                 | 2      |
|                |                   |           |          |       | SRH8-P             | 93      | 0     | 100      | 25.15     | FH            | 3                 | 60          | 3                 | 3      |
|                |                   |           |          |       |                    |         |       |          |           | FR            | 2                 | 30          | 1                 | 2      |
|                | tuan n-           | 20        |          |       |                    |         |       |          |           | FAC           | 2                 | 60          | 2                 | 2      |
| VN-LB          | 7.83              | 5         | 10       | 1.39  | SH-LBL             | 0       | 0     | 0        | 0.00      | BS-LB         | 1                 | 30          | 1                 | 1      |
| L-LB           | 88.10             | 43        | 135      | 27.17 | STH-LBL            | 0       | 0     | 0        | 0.00      | E-LB          | 0                 | 30          | 0                 | 0      |
| L-LP           | 41.50             | 26        | 56       | 7.07  | SRH4-LBL           | 0       | 0     | 0        | 0.00      | TS-LB         | 1                 | 30          | 1                 | 1      |
| MW-LB          | 70.47             | 36        | 105      | 16.70 | SRH6-LBL           | 48      | 0     | 100      | 36.11     | H-LBU         | 1                 | 29          | 0                 | 1      |
| AL-LB          | 40.50             | 21        | 64       | 12.39 | SRH8-LBL           | 52      | 0     | 100      | 36.11     | HV-LBU        | 1                 | 29          | 0                 | 1      |
| TN-LB          | 3.70              | 2         | 6        | 0.95  | SH-LBV             | 4       | 0     | 20       | 5.68      | H-LBL         | 1                 | 30          | 1                 | 1      |
| FL             | 9.55              | 8.90      | 10.61    | 0.46  | STH-LBV            | 0       | 0     | 10       | 1.83      | HC-LBL        | 1                 | 30          | 1                 | 1      |
| FW             | 7.10              | 6.62      | 8.31     | 0.39  | SRH4-LBV           | 0       | 0     | 0        | 0.00      | HV-LBL        | 1                 | 30          | 1                 | 1      |
|                |                   |           |          |       | SRH6-LBV           | 51      | 0     | 100      | 37.82     | HCV-LBL       | . 1               | 30          | 1                 | 1      |
|                |                   |           |          |       | SKH8-LBV           | 44      | 0     | 100      | 35.40     | HF-LBL        | 2                 | 30          | 2                 | 2      |
|                |                   |           |          |       | SH-P               | 1       | 0     | 10       | 3.05      | HFC-LBL       | . 1               | 30          | 1                 | 1      |
|                |                   |           |          |       | SIH-P              | 0       | 0     | 0        | 0.00      |               | 1                 | 30          | 1                 | 1      |
|                |                   |           |          |       | экн4-Р             | U       | 0     | U        | 0.00      | нс-Р          | 1                 | 30          | 1                 | 1      |

J. Bio. & Env. Sci. 2014

| Type of traits   | Co         | ontinuo | us (C)   |       |          | Pe   | rcent | tage | (P)   |               |                   | Discrete (I             | ))                |     |
|------------------|------------|---------|----------|-------|----------|------|-------|------|-------|---------------|-------------------|-------------------------|-------------------|-----|
| Trait.           | Mean       | Min     | Max      | SD    | Trait    | Mear | nMin  | Max  | SD    | Trait.        | Mode <sup>N</sup> | umerousnes<br>of mode ' | <sup>ss</sup> Min | Max |
|                  |            |         |          |       | SRH6-P   | 52   | 0     | 100  | 33.88 | FSO           | 2                 | 30                      | 2                 | 2   |
|                  |            |         |          |       | SRH8-P   | 47   | 0     | 100  | 33.65 | $\mathbf{FH}$ | 3                 | 30                      | 3                 | 3   |
|                  |            |         |          |       |          |      |       |      |       | FR            | 0                 | 30                      | 0                 | 0   |
|                  |            |         |          |       |          |      |       |      |       | FAC           | 2                 | 30                      | 2                 | 2   |
| T. americana x 1 | noltkei Za | moyskia | na, n=30 | )     |          |      |       |      |       |               |                   |                         |                   |     |
| VN-LB            | 8.83       | 7       | 11       | 0.95  | SH-LBL   | 77   | 60    | 90   | 7.11  | BS-LB         | 1                 | 30                      | 1                 | 1   |
| L-LB             | 72.53      | 50      | 114      | 16.98 | STH-LBL  | 0    | 0     | 0    | 0.00  | E-LB          | 0                 | 30                      | 0                 | 0   |
| L-LP             | 42.43      | 28      | 72       | 11.66 | SRH4-LBL | 1    | 0     | 10   | 2.54  | TS-LB         | 1                 | 21                      | 1                 | 2   |
| MW-LB            | 72.17      | 51      | 109      | 13.79 | SRH6-LBL | 3    | 0     | 20   | 5.21  | H-LBU         | 0                 | 30                      | 0                 | 0   |
| AL-LB            | 26.63      | 20      | 40       | 4.87  | SRH8-LBL | 20   | 10    | 40   | 7.43  | HV-LBU        | 0                 | 18                      | 0                 | 1   |
| TN-LB            | 7.10       | 5       | 9        | 0.92  | SH-LBV   | 21   | 10    | 70   | 15.96 | H-LBL         | 1                 | 30                      | 1                 | 1   |
| FL               | 7.78       | 3.88    | 9.59     | 1.18  | STH-LBV  | 0    | 0     | 0    | 0.00  | HC-LBL        | 1                 | 30                      | 1                 | 1   |
| FW               | 7.48       | 5.30    | 8.83     | 0.79  | SRH4-LBV | 0    | 0     | 10   | 1.83  | HV-LBL        | 1                 | 30                      | 1                 | 1   |
|                  |            |         |          |       | SRH6-LBV | 10   | 0     | 50   | 12.73 | HCV-LBL       | · 1               | 30                      | 1                 | 1   |
|                  |            |         |          |       | SRH8-LBV | 69   | 10    | 90   | 22.09 | HF-LBL        | 0                 | 30                      | 0                 | 0   |
|                  |            |         |          |       | SH-P     | 2    | 0     | 40   | 8.17  | HFC-LBL       | 0                 | 30                      | 0                 | 0   |
|                  |            |         |          |       | STH-P    | 0    | 0     | 0    | 0.00  | HP            | 0                 | 18                      | 0                 | 1   |
|                  |            |         |          |       | SRH4-P   | 0    | 0     | 0    | 0.00  | HC-P          | 0                 | 18                      | 0                 | 1   |
|                  |            |         |          |       | SRH6-P   | 3    | 0     | 30   | 7.50  | FSO           | 1                 | 30                      | 1                 | 1   |
|                  |            |         |          |       | SRH8-P   | 35   | 0     | 100  | 44.08 | $\mathbf{FH}$ | 3                 | 30                      | 3                 | 3   |
|                  |            |         |          |       |          |      |       |      |       | FR            | 1                 | 30                      | 1                 | 1   |
|                  |            |         |          |       |          |      |       |      |       | FAC           | 2                 | 30                      | 2                 | 2   |

# Supplementary materials

Species/geographic boundaries and evolutionary interrelationships of cultivated Linden-trees (*Tilia* L.) based on morphological and nrDNA ITS characteristics

<sup>1</sup>Melosik, I., <sup>2</sup>Ciupińska M., <sup>1</sup>Winnicka K., <sup>1</sup>Koukoulas G. <sup>1</sup>Department of Genetics, <sup>2</sup>Department of Plant Ecology and Environmental Protection, Adam Mickiewicz University in Poznań, Umultowska Str. 89, 61-614 Poznań, Poland.

Author for correspondence: Iwona Melosik,

melosik1@amu.edu.pl, +48 61 8295860

 Table 2. Characteristics of the aligned ITS data matrix

 used for phylogenetic analysis

A: for the whole data set (n = 39 with hybrids (upper values); n = 32 without hybrids (lower values) and B: for a small subset of ITS data obtained by molecular cloning (n = 18 with hybrids (upper values); n = 15 without hybrids (lower values); <sup>a</sup> Tamura-Nei model, complete deletion gaps treatment; alignment-ambiguous region positions: 372–375 was removed.

| Δ  |  |
|----|--|
| 11 |  |

| Nucleotide composition<br>(%) | ITS1<br>1-192 bp | 5.8S<br>193- 351 bp | ITS2<br>352-580 bp | ITS1-5.8S-ITS2 |
|-------------------------------|------------------|---------------------|--------------------|----------------|
| T                             | 19.3             | 20.7                | 19.5               | 19.8           |
| 1                             | 19.3             | 20.7                | 19.5               | 19.8           |
| C                             | 30.6             | 27.7                | 35.1               | 31.6           |
| C                             | 30.7             | 27.7                | 35.1               | 31.6           |
| ٨                             | 20.5             | 23.3                | 16.2               | 19.6           |
| A                             | 20.5             | 23.3                | 16.1               | 19.6           |
| C                             | 29.5             | 28.3                | 29.2               | 29.0           |
| 6                             | 29.5             | 28.2                | 29.2               | 29.0           |
| total                         | 186.8            | 158.6               | 221.8              | 567.2          |
| total                         | 187.4            | 158.7               | 221.8              | 568.1          |
| Total length                  | 192              | 159                 | 229                | 580            |
| Consomed sites                | 148              | 146                 | 198                | 492            |
| Conserved sites               | 150              | 146                 | 200                | 496            |
| Variable giteg                | 42               | 13                  | 29                 | 84             |
| variable sites                | 40               | 13                  | 27                 | 80             |
| Parsimony informative sites   | 24               | 0                   | 12                 | 36             |
| r arsimony mormative sites    | 24               | 0                   | 11                 | 35             |
| Singleton                     | 18               | 13                  | 17                 | 48             |

# J. Bio. & Env. Sci. 2014

|                                | 16     | 13     | 16     | 45     |
|--------------------------------|--------|--------|--------|--------|
| C + C content renge            | 60.1   | 56     | 64.3   | 60.6   |
| G+C content range              | 60.2   | 55.9   | 64.3   | 60.6   |
| Identical pairs                | 176.00 | 158.00 | 216.00 | 550.00 |
| Identical pairs                | 177.00 | 158.00 | 216.00 | 551.00 |
| <b>B</b> -ci/cu                | 2.34   | 2.25   | 3.22   | 2.56   |
| K=SI/SV                        | 2.26   | 2.25   | 3.42   | 2.53   |
| Overall                        | 1.391  | 29.851 | 12.861 | 2.432  |
| transition/transversion bias a | 1.352  | 29.657 | 10.815 | 2.210  |

В

| Nucleotide composition                    | ITS1<br>1-100 bp | 5.8S    | ITS2<br>350-570 bp | ITS1-5.8S-ITS2 |
|-------------------------------------------|------------------|---------|--------------------|----------------|
| T                                         | 190.5            | 20.5    | <u> </u>           | 10.0           |
|                                           | 18.8             | 20.5    | 20.1               | 19.8           |
| С                                         | 31.1             | 28.0    | 35.1               | 31.8           |
|                                           | 31.4             | 28.0    | 35.2               | 31.9           |
| А                                         | 19.9             | 23.2    | 15.9               | 19.2           |
|                                           | 20.0             | 23.3    | 15.8               | 19.3           |
| G                                         | 29.7             | 28.4    | 28.8               | 29.0           |
|                                           | 29.8             | 28.3    | 28.9               | 29.0           |
| total                                     | 190.0            | 158.9   | 226.3              | 575.2          |
|                                           | 190.0            | 158.9   | 226.4              | 575.3          |
| Total length                              | 190              | 159     | 230                | 579            |
| Conserved sites                           | 156              | 147     | 198                | 501            |
|                                           | 159              | 151     | 200                | 510            |
| Variable sites                            | 34               | 12      | 31                 | 77             |
|                                           | 31               | 8       | 29                 | 68             |
| Parsimony informative sites               | 21               | 1       | 14                 | 36             |
|                                           | 21               | 1       | 12                 | 34             |
| Singleton                                 | 13               | 11      | 17                 | 41             |
|                                           | 10               | 7       | 17                 | 34             |
| G+C content range                         | 60.9             | 56.3    | 63.9               | 60.8           |
|                                           | 61.2             | 56.3    | 64.1               | 61.0           |
| Identical pairs                           | 179.00           | 157.00  | 218.00             | 555.00         |
|                                           | 179.00           | 158.00  | 218.00             | 555.00         |
| R=si/sv                                   | 3.87             | nc      | 3.51               | 4.09           |
|                                           | 4.38             | nc      | 3.29               | 4.18           |
| Overall                                   | 4.2              | 378.948 | 3.637              | 4.256          |
| transition/transversion bias <sup>a</sup> | 4.781            | 299.067 | 3.413              | 4.361          |

# Acknowledgments

We thank Dr Jolanta Węglarska-Jańczyk from the Botanical Garden of Adam Mickiewicz University, MSc Kinga Nowak-Dyjeta from the Arboretum of Kórnik, and Mrs. Alina Szcześniak for providing plant materials used in this study. We are grateful for Prof. Jerzy Zieliński for the identification of problematic specimens.

# **Author Contributions**

Conceived and designed research: IM, MC, KW; performed the molecular analyses: KW, GK, IM; performed the morphological research: MC; analyzed the data: IM, KW, MC; wrote the paper (text): IM; provided the tables and drawings: KW, MC, IM; provided the key: MC, IM.

### References

**Álvarez I, Wendel JF.** 2003. Ribosomal ITS sequences and plant phylogenetic inference. Molecular Phylogenetics and Evolution **29**, 417-434.

Amheim N, Kristal M, Schmickel R, Wilson G, Ryder O, Zimmer E. 1980. Molecular evidence for genetic exchanges among ribosomal genes on nonhomologous chromosomes in man and apes. Proceedings of the National Academy of Sciences USA 77, 7323-7327. **Banerjee UC.** 1976. Trichomes: their application in taxonomy of American species of lindens (*Tilia* spp.) A scanning electron microscopic study. Scanning electron microscopy. Pt. 7.

Baldwin BG, Sanderson MJ, Porter JM, Wojciechowski MF, Campbell CS, *et al.* 1995. The ITS region of nuclear ribosomal DNA: a valuable source of evidence on angiosperm phylogeny. Annals of the Missouri Botanical Garden **82**, 247-277.

**Białobok S.** 1991. Lipy: nasze drzewa Leśne (15). Polska Akademia Nauk, Poznań (in Polish).

**Boratyńska K, Dolatowski J.** 1991. Systematyka i geograficzne rozmieszczenie. In: Białobok S (ed) Lipy *– Tilia cordata* Mill, *Tilia platyphyllos* Scop. Nasze drzewa leśne. Polish Academy of Sciences, Institute of Dendrology, Poznań, pp. 54-83 (in Polish).

**Borowski J, Solecka M.** 1980. Chemotaksonomia wybranych gatunków w rodzaju *Tilia*. Rocznik Sekcji Dendrologicznej PTB **33**, 29-36.

**Bryant D, Moulton V.** 2004. Neighbor-Net: An agglomerative method for the construction of phylogenetic networks. Molecular Biology and Evolution **21**, 255-265.

**Buckler IV ES, Ippolito A, Holtsford TP.** 1997. The evolution of Ribosomal DNA: Divergent Paralogues and Phylogenetic implications. Genetics **145**, 821-832.

**Chen S, Kim D-K, Chase MW, Kim J-H.** 2013. Networks In a Large-scale Phylogenetic Analysis: Reconstructing Evolutionary History of Asparagales (lilianae) Based on Four Plastid Genes. PLoS One **8**, 3, e59472, doi: 10.1371/journal.pone 0059472.

**China Plant BOL Group.** 2011. Comparative analysis of a large dataset indicates that internal transcribed spacer (ITS) should be incorporated into the core barcode for seed plants. Proceedings of the National Academy of Sciences USA **108**, 19641-19646. doi: 10.1073/pnas.1104551108.

**Chŷtry M, Sădlo J.** 1997. *Tilia*-dominated calcicolous forests in the Czech Republic from a Central European perspective. Annali di Botanica **55**, 105-118.

**Darriba D, Taboada GL, Doallo R, Posada D.** 2012. "jModelTest2: more models, new heuristics and parallel computing". Nature Methods **9**, 8, 722.

**Dover GA.** 1982. Molecular Drive: a cohesive mode of species evolution. Nature **299**, 111-116.

**Doyle J, Doyle JL**. 1987. A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochemical bulletin **19**, 11-15.

**Fineschi S, Salvini D, Taurchini D, Carnevale S, Vendramin GG.** 2003. Chloroplast DNA variation of *Tilia cordata* (Tiliaceae). Canadian Journal of Forest Research **33**, 2503-2508.

Fromm M, Hattemer HH. 2003. Inheritance of allozymes and hybridization in two European *Tilia* species. Heredity **91**, 337-344.

Goloboff PA, Farris JS, Nixon KC. 2003. T.N.T.: Tree Analysis Using New Technology Program and documentation available from the authors, and at www.zmwc.dk/public/phylogeny.

Guindon S, Dufayard JF, Lefort V, Anisimova M, Hordijk W, Gascuel O. 2010. PhyML 3.0: new algorithms, methods and utilities. Systematic Biology **59**, 3, 307-321.

**Harris DJ, Crandall KA.** 2000. Intragenomic variation within ITS1 and ITS2 of freshwater crayfishes (*Decapoda: Cambaridae*): implications for phylogenetic and microsatellite studies. Molecular Biology and Evolution **17**, 284-291. **Howell DC.** 2007. Statistical methods for psychology (6<sup>th</sup> ed.). Thomson Wadsworth, Belmont.

Hřibová E, Čižkovà J, Christelovà P, Taudien
S, de Langhe E, Doležel J. 2011. The ITS1-5.8SITS2 Sequence Region in the *Musaceae*: Structure, Diversity and Use in Molecular Phylogeny. PLoS ONE
6, 3, e17863 doi: 10.1371/journal.pone.0017863.

**Huson DH, Bryant D**. 2006. Application of Phylogenetic Networks in Evolutionary Studies. Molecular Biology and Evolution **23**, 2, 254-267.

**King MG, Roalson EH.** 2008. Exploring evolutionary dynamics of nrDNA in *Carex* subgenus *Vignea* (Cyperaceae). Systematic Botany **33**, 514-524.

Koch M, Al-Shehbaz A. 2000. Molecular systematics of the Chinense *Yinshania* (Brassicaceae) evidence from plastid trnL intron and nuclear ITS DNA sequence data. Annals of the Missouri Botanical Garden **8**7, 246-272.

Koch M, Dobeš Ch, Mitchell-Olds T. 2003. Multiple Hybrid Formation in Natural Populations: Concerted Evolution of the Internal Transcribed Spacer of Nuclear Ribosomal DNA (ITS) in North American *Arabis divaricarpa* (Brassicaceae). Molecular Biology and Evolution **20**, 3, 338-350.

Lanfear R, Calcott B, Ho SYW, Guindon S. 2012. PartitionFinder: combined selection of partitioning schemes and substitution models for phylogenetic analyses. Molecular Biology and Evolution **29**, 6, 1695-1701. doi: 10.1093/molbev/mss020.

**Liesebach H, Sinkó Z.** 2008. A contribution to the systematics of the genus *Tilia* with respect to some hybrids by RAPD analysis. Dendrobiology **59**, 13-22.

Lindner DI, Banik MT. 2011. Intragenomic variation in the ITS rDNA region obscures phylogenetic relationships and inflates estimates of operational taxonomic units in genus *Laetiporus*. Mycologia **103**, 4, 731-740. doi: 10.3852/10-331.

**Morrison DA.** 2010. Using Data-Display Networks for Exploratory Data Analysis in Phylogenetic Studies. Molecular Biology and Evolution **27**, 1044-1057.

**Nei M.** 1987. Molecular evolutionary genetics. Columbia university Press, New York.

**Nei M, Rooney AP.** 2005. Concerted and birthand-death evolution of multigene families. Annual Review of Genetics **39**, 121-152.

**Phuekvilai P, Wolff K.** 2013. Characterization of microsatellite loci in *Tilia platyphyllos* (Malvaceae) and cross-amplification in related species. Applications in Plant Sciences **1**, 4, 1200386.

**Pigott CD.** 1997. *Tilia*. In: Cullen J. *et al.* (eds) The European Garden Flora 5. Cambridge University Press, Cambridge, UK.

**Pigott CD.** 2002. A review of chromosome numbers in the genus *Tilia* (Tiliaceae). Edinburgh Journal of Botany **02**, 239-246.

**Pigott CD.** 2008. The identity of limes labeled *Tilia insularis*. The Plantsman (new series) 7, 194-195.

**Pigott CD.** 2012. Lime-Trees and Basswoods. A Biological Monograph of the genus *Tilia*. Cambridge University Press, Cambridge, UK.

**Potts A, Hedderson TA, Grimm GW.** 2014. Constructing Phylogenies in the Presence of Intra-Individual Site Polymorphisms (2ISPs) with a Focus on the Nuclear Ribosomal Cistron. Systematic Biology **63**, 1-16, doi:10.1093/sysbio/syt052.

Rozas J, Sanchez-Delbarrio JC, Messeguer X, Rozas R. 2003. DnaSP, DNA polymorphism analyses by the coalescent and other methods. Bioinformatics 19, 24-96-2497. Sani A, Reddy SK, Jawali N. 2008. Intraindividual and intra-specific heterogenity in nuclear rDNA ITS region of *Vign*a species from subgenus *Ceratotropis*. Genetics Research **90**, 4, 299-316. doi: 10.1017/s001667230800983.

Schoch CL, Seifert KA, Huhndorf S, Robert V, Spouge JL, Levesque CA, Chen W, Fungal Barcoding Consortium. 2012. Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for *Fungi*. Proceedings of the National Academy of Sciences USA. doi: 10.1073/pnas.1117018109.

**Seneta W, Dolatowski J.** 2008. Dendrologia. Wydawnictwo Naukowe PWN, Warszawa (in Polish).

**Shaw AJ, Cox C, Boles S.** 2003. Polarity of peatmoss (*Sphagnum*) evolution: who says mosses have no roots. American Journal of Botany **90**, 1777-1787.

**Song J, Shi L, Li D, Sun Y, Niu Y.** *et al.* 2012. Extensive Pyrosequencing Reveals Frequent Intra-Genomic Variations of Internal Transcribed Spacer Regions of Nuclear Ribosomal DNA. PLoS ONE 7, 8, e43971. doi: 10.1371/journal.pone.0043971.

**Stamatakis A.** 2006. RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics **22**, 21, 2688-2690. doi: 10.1093/bioinformatics/btl4.

**Stanisz A.** 2007. Przystępny kurs statystyki z zastosowaniem *STATISTICA PL* na przykładach z medycyny 3: Analizy wielowymiarowe. StatSoft Polska Sp. z o. o., Kraków (in Polish).

**Stern RF, Andersen RA, Jameson I, Küpper FC, Coffroth M-A,** *et al.* **2012. Evaluating the Ribosomal Internal Transcribed Spacer (ITS) as a Candidate Dinoflagellate Barcode Marker. PLoS ONE 7(8), e42780. doi:10.1371/journal.pone.0042780.** 

**Szymanowski T.** 1970. *Tilia insularis*. Rocznik Sekcji Dendrologicznej Polskiego Towarzystwa Botanicznego. **24**, 99-106 (in Polish).

TabachnickBG,FidellLS.2007.Usingmultivariate statistics (5th ed.)Allyn & Bacon, Boston.

**Tamura K, Dudley J, Nei M, Kumar S.** 2007. MEGA 4: Molecular Evolutionary Genetic Analysis (MEGA) Software version 4.0. Molecular Biology and Evolution **24**, 1596-1599.

Thornhill DJ, Lajeunesse TC, Santos SR. 2007. Measuring rDNA diversity in eukaryotic microbial systems: how intragenomic variation, pseudogenes and PCR artifacts confound biodiversity estimates. Molecular Ecology **16**, 5326-5340. doi: 10.1111/j.1365-294X.2007.03576.x.

Wendel JF, Schnabel A, Seelanan T. 1995. Bidirectional interlocus concerted evolution following allopolyploid speciation in cotton (*Gossypium*). Proceedings of the National Academy of Sciences USA **92**, 280-284.

Wicksell V, Christensen K. 1999. Hybridization among *Tilia cordata* and *T. platyphyllos* (Tiliaceae) in Denmark. Nordic Journal of Botany 19, 6, 673-684.
Wissemann V. 1999. Genetic constitution of *Rosa* sect. *Caninae* (*R. canina, R. jundzillii*) and sect. *Gallicanae* (*R. gallica*). Angewandte Botanik 73, 191-196.

Volkov RA, Komarova NY, Hemleben V. 2007.Ribosomal DNA in plant hybrids: inheritance,rearrangement, expression. Systematics andBiodiversity5, 261-276. doi:10.1017/S1477200007002447.

Yousefzadeh H, Colagar AH, Tabari M, Sattarian A, Assadi M. 2012. Utility of ITS region sequence and structure for molecular identification of *Tilia* species from Hyrcanian forests, Iran. Plant Systematics and Evolution **298**, 947-961. doi: 10.1007/s00606-012-0604-x.