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Abstract 

A variability genetic analysis was carried out among Minthostachys verticillata populations collected in the 

central and northwest region of Argentina. 93 plants from nine locations were analyzed by PCR, developing EST-

SSR primers from the database of Mentha spp. AMOVA analysis revealed that variability was higher among 

populations than within them (93% vs. 7%).The highest percentage of polymorphic loci corresponded to the 

locations from Padre Monti (75%) and Cortaderas (70.83%). Three groups were identified by cluster analysis 

following a geographic gradient. The genetic variability found in this study is greater than the phytochemical 

variability represented in previous studies. 

*Corresponding Author: Marcos Bonafede  bonafede.marcos@inta.gob.ar

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Journal of Biodiversity and Environmental Sciences (JBES) 
ISSN: 2220-6663 (Print) 2222-3045 (Online) 

Vol. 5, No. 6, p. 190-199, 2014 

http://www.innspub.net 

 

mailto:bonafede.marcos@inta.gob.ar


J. Bio. & Env. Sci. 2014 

 

191 | Bonafede et al. 

Introduction 

Minthostachys verticillata (peperina) is a native 

species, which is distributed between central and 

northwest of Argentina (Cabrera, 1976; Schmidt-

Lebuhn, 2007, 2008). It has a large phytochemical 

variability, primarily among the populations of these 

two regions (Lizzi and Retamar, 1975; Retamar et al., 

1996; Zigadlo et al., 1996; Ojeda et al., 2001; Bandoni 

et al., 2002; Ojeda, 2004; Elechosa et al., 2005; 

Arteaga et al., 2013; Arteaga and Gil, 2013). Its area 

of distribution ranges from humid forests (yungas) in 

the Northwest, to semi-arid areas in the center of the 

country. Peperina is widely used in traditional 

medicine and local industries in the manufacture of 

soft drinks, several teas and aromatic herbs 

throughout its natural area of dispersion (Bonzani 

and Ariza-Espinar, 1993; Martínez and Planchuelo, 

2003). As a result of this and other factors such as 

changes in land use, natural populations are declining 

to the point of being considered endangered species 

(Bustos and Bonino, 2005; Barboza et al., 2009). 

While there are many studies about the 

phytochemical variability in peperina, there are few in 

terms of its genetic variability. The chemical profile 

and its variability are conditioned by the degree of 

genetic heterogeneity of individuals within 

populations and plastic responses due to changes in 

the environment (Harborne, 1991; Gershenson, 1994; 

Langenheim, 1994; Croteau et al., 2005; Rios-Estepa 

et al., 2010). 

 

The study of genetic variability by using molecular 

markers can provide an important measure of the 

genetic differentiation of populations that occupy 

different geographical areas and complement studies 

of chemical profiles (Skoula et al., 1999; Trindade et 

al., 2008, 2009; Chen et al., 2009; Honermeier, 

2010). 

 

Microsatellites or Simple Sequence Repeat (SSR) 

markers are regions of short sequences (2 to 10 base 

pairs) of DNA repeated throughout the entire 

genome, being able to be associated or not to genes. 

Due to its high variability, these markers are suitable 

for obtaining polymorphisms (Tanksley, 1993). The 

microsatellites markers have been generated in large 

numbers in most of the cultured species while its 

development is very demanding in time, 

infrastructure and economic resources (Varshney et 

al., 2005), being its main limitations. 

 

However in recent years it was noted a large increase 

in the availability of DNA sequence data in a wide 

variety of taxa, including an abundance of expressed 

sequences (ESTs) markers available in public 

databases (Pashley et al., 2006). Thus the use of these 

databases is a fast and economical alternative for the 

development of SSR through the use of computer 

tools (Gupta et al., 2003; Bhat et al., 2005). The 

transferability of polymorphic EST-SSR markers has 

been demonstrated in numerous cases, including 

aromatic and medicinal species (Varshney et al., 

2005; Ellis and Burke, 2007). Tripathi et al. (2008) 

obtained ESTs-SSR from secondary metabolites of 

medicinal and aromatic plants, such as alkaloids and 

terpenoids, demonstrating the potential of 

bioinformatic tools in the development of markers for 

genetic analysis in these species. In oregano were 

used SSR markers from ESTs database to identify and 

characterize species of Origanum vulgare and 

Origanum majoricum (Novak et al., 2008). However, 

there are few precedents of transferability of these 

markers between species at family level.  

 

In the present study, we employed EST-SSR markers 

to investigate the genetic diversity of nine natural M. 

verticillata populations distributed in three provinces 

of Argentina. 

 

Materials and methods 

Plant material 

Ninety-three plants were collected in nine locations 

from the Central and Northern regions of Argentina 

covering the provinces of San Luis, Cordoba and 

Tucuman (Table 1 and Fig. 1). Geographic distances 

between populations cover a range of nearly 700 km 

from Cortaderas in the south (San Luis) to Padre 

Monti to the North (Tucumán).  



J. Bio. & Env. Sci. 2014 

 

192 | Bonafede et al. 

Table 1. Geographical location of M. verticillata populations and number of individuals/population (N). 

Province Populations  N  Geoposicion          Altitude (masl) 

                                                         Latitude Longitude  

San Luis  Cortaderas (COR)  22 32 29,169 S   64 58,472 O  1047 

Pasos Malos (PMA) 11 32 19,164 S   64 58,824 O  1094 

Cordoba  Hornillos (HOR) 7 31 54,227 S   64 58,706 O  1084 

  Chacras1 (CHA1)  8 32 13,417 S   65 25,769 O  1000 

  Chacras2 (CHA2)  8 32 13,549 S   65 00,525 O  941 

  Embalse (EMB)  2 32 11,154 S   64 23,368 O  526 

  Unquillo (UNQ)  8 31 11,534 S   64 21,767 O  800 

  Ongamira (ONG)  10 30 46,013 S   64 27,656 O  1277 

Tucuman Padre Monti (PMO) 17 26 29,377 S   64 59,521 O  982 

N = number of individuals analyzed; masl= meters above the sea level. 

 

 

Fig. 1. Map of geographic distribution of the nine 

populations of M. verticillata within three provinces 

of Argentina. 

 

DNA extraction and PCR amplification 

Young leaf samples were collected directly from the field 

and were kept on silica gel until processing in the 

laboratory. DNA extraction was performed using a 

modified CTAB method described by Murray and 

Thompson (1980) for Mentha spp. (Shiran et al., 2005). 

The quantity of DNA extracted was evaluated by 

electrophoresis in 0.8% agarose gels in TAE buffer (40 

mM Tris acetate, 1 mM EDTA, pH 8.5), and each DNA 

sample was diluted to 10 ng/µl for PCR amplification.  

 

The amplification by PCR was performed in a final 

volume of 18 µL that included: 20 ng of DNA, 1X 

reaction Buffer (Inbio-Highway), 1.5 mM of MgCl2, 0.3 

µM of each primer, 200 µM of each dNTPs, and 0.5 

units of Taq DNA polymerase (Inbio-Highway). PCR 

was carried out using PTC-100 Thermal Cycler machine 

(MJ Research, Inc. Waltham, USA) with the following 

profile: initial denaturation at 94°C for 4 minutes, 

followed by 40 cycles of 40 s at 94°C (denature), 45 s at 

55 or 60°C (depending of primer) (annealing) and 50 sec 

at 72°C (elongation). The last cycle was followed by a 

final extension at 72°C for 8 min.  

 

PCR products were visualized at 6% (w/v) denaturing 

polyacrylamide gels stained with silver nitrate and 

revealed with sodium carbonate. Band size was 

determined by comparison with DNA 10 bp DNA 

Ladder (Invitrogen). 

 

Search and identification of ESTs containing SSR 

The EST search was conducted in the TrichOME V3 

database (http://www.planttrichome.org/trichomedb 

/estbyspecies.jsp). The BatchPrimer3 v1.0 software 

(freely available at http://probes.pw.usda.gov/cgi-

bin/batchprimer3/batchprimer3.cgi) (You et al., 

2008) was used to identified microsatellites in the 

EST sequences and design the flanking primers. The 

major parameters for designing the primers were: 

primer length from 18 to 24 nucleotides, with 22 as 

the optimum, PCR product size from 120 to 300 bp, 

optimum annealing temperature 60°C, and GC 

contents with 50% as optimum. The others 

parameters were left by default. The EST-SSR primer 

pairs were synthesized in Bio-Synthesis, Inc. 

(Lewisville, Texas, USA). 
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Data analysis 

The tested primers produced different patterns of 

bands that were classified as polymorphic, 

monomorphic (band of the same molecular weight in 

all individuals) and non-specific, when the banding 

pattern was not clear in all individuals, in addition to 

non-reproducible. 

 

The multilocus data was transformed into a binary 

matrix of presence (1), absence (0) of each allele for 

each individual, where each band was seen as a locus. 

Genetic diversity parameters analyzed include 

percentage of polymorphism (%P), number of 

different alleles (Na), number of alleles (Ne), index of 

Shannon (I), and expected heterozygosity (He). All 

these parameters were analyzed with the statistical 

software GenAlEX 6.5 (Peakall and Smouse, 2012) on 

the basis of the data matrix built, assuming a 

population in Hardy-Weinberg equilibrium. This 

software was also used to carry out an Analysis of 

Molecular Variance (AMOVA) among and within 

populations, in order to evaluate the structure of the 

observed genetic variation. The significance of PhiPT 

among populations was determined with probability 

of non-differentiation (FST= 0) estimated about 

9,999 permutations. GenAlEx 6.5 was also used to 

evaluate genetic relationships between populations 

through of Principal Coordinate Analysis (PCoA), in 

addition to the correlation analysis between Nei's 

genetic distance and geographic distance (in Km) 

between populations through Mantel test (Mantel, 

1967) with 999 permutations. Clustering analysis was 

conducted using the UPGMA method (Unweighted 

Pair Group Method with Arithmetic mean) using the 

POPGENE 1.32 software (Yeh et al., 1997). The 

phenogram was obtained from Nei’s (1972) genetic 

distance matrix generated through 1000 permutations. 

 

Results  

Genetic diversity and genetic differentiation among 

populations 

From the twenty primers that were used, five showed 

no amplification product, seven were polymorphic 

and the rest were monomorphic or showed no 

reproducibility. In total, twenty-four alleles were 

generated.  

 

The highest percentage of polymorphic loci 

corresponded to PMO (75%) and COR (70.83%) 

populations (Table 2). These two populations showed 

also private bands that were not found in the other 

populations (data not shown). The lowest values of I 

and He were in EMB with 0.05 and 0.035 

respectively, while PMO had the highest values for 

these two parameters (I= 0.29 and He= 0.18). In the 

range of these values we can distinguish three groups 

of populations in terms of genetic diversity: the 

highest group composed by COR, PMA, PMO and 

ONG with I > 0.2, an intermediate group composed 

by HOR, CHA1 and UNQ with I= 0.1 to 0.2, and an 

lowest group composed by CHA2 and EMB with I < 

0.1. However, for He we have distinguished two 

groups, where COR, CHA1, PMA, PMO and ONG had 

values higher than 0.1, and HOR, CHA2, EMB and 

UNQ with values lower than 0.1 (Table 2). 

 

The AMOVA analysis indicated that variability was 

higher within populations than among them (93% vs. 

7%) (Fig. 3). The PhiPT value (0,074, P= 0,010) 

showed a low differentiation among populations 

(Table 4), indicating that the greater genetic diversity 

occurs within populations. 

 

Genetic relationships and population structure 

The Nei’s genetic distance matrix analysis showed 

that the greater genetic distance corresponds to PMO-

EMB (0.1394) (Table 3), which is consistent with the 

greater geographical distance between them. The 

shortest genetic distance corresponds to the 

populations of COR-PMA (0.0065), geographically 

closest. The Mantel test showed a positive and 

significant correlation (r = 0.65, P< 0.05) between 

genetic and geographic distances to all populations 

(Fig. 2). 

 

The Principal Coordinate Analysis (PCoA) showed 

that the first axis explained 58.88% of total variation, 

while the second axis explained 32.54% (Fig. 4). We 
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observed the existence of three groups of populations 

following a gradient of geographical distribution in 

the North-South direction, with PMO and ONG to the 

North, UNQ, HOR and EMB on the center and CHA2, 

PMA and COR to the South. 

This is consistent with as shown on the dendrogram 

(Fig. 5), where populations of COR, PMA and CHA2 

closest geographically, are grouped together with the 

minor genetic dissimilarity among them. By contrast, 

the population of PMO in Tucuman is the most 

distant geographical and genetically from the rest. 

Table 2. Parameters mean values for each population.   

Population  % P  Na  Ne  I  He 

COR   70,83  1,458  1,174  0,201  0,117 

HOR   25,00  0,625  1,113  0,118  0,075 

CHA1   45,83  1,000  1,147  0,174  0,105 

PMA   58,33  1,208  1,188  0,220  0,132 

PMO   75,00  1,500  1,289  0,290  0,182 

ONG   50,00  1,042  1,210  0,212  0,134 

CHA2   20,83  0,500  1,091  0,088  0,056 

EMB   8,33  0,333  1,059  0,050  0,035 

UNQ   37,50  0,833  1,128  0,143  0,087 

TOTAL   43,52  0,944  1,155  0,166  0,102 

% P = Percentage of Polymorphic Loci; Na = Number of Different Alleles; Ne = Number of Effective Alleles; I = 

Shannon's Information Index; He = Expected Heterozygosity. 

 

Table 3. Nei's genetic identity (above diagonal) and genetic distance (below diagonal) among the M. verticillata 

populations. 

Pop. COR HOR CHA1 PMA PMO ONG CHA2 EMB UNQ 

COR **** 0.9786 0.9829 0.9936 0.9346 0.9633 0.9887 0.9383 0.9893 

HOR 0.0217 **** 0.9684 0.9644 0.9069 0.9559 0.9686 0.9596 0.9899 

CHA1   0.0172 0.0321 **** 0.9863 0.9239 0.9694 0.9852 0.9340 0.9910 

PMA 0.0065 0.0363 0.0138 **** 0.9339 0.9661 0.9910 0.9274 0.9836 

PMO 0.0677 0.0977 0.0792 0.0684 **** 0.9644 0.9223 0.8699 0.9278 

ONG 0.0373 0.0451 0.0311 0.0345 0.0363 **** 0.9621 0.9263 0.9738 

CHA2 0.0114 0.0319 0.0149 0.0091 0.0809 0.0386 **** 0.9263 0.9876 

EMB 0.0637 0.0412 0.0683 0.0754 0.1394 0.0765 0.0765 **** 0.9527 

UNQ 0.0107 0.0101 0.0090 0.0166 0.0749 0.0265 0.0125 0.0484 **** 

Pop.= Population; ****= invalid data. 

 

Table 4. Analysis of molecular variance (AMOVA) showing the partitioning of genetic variation within and 

between nine populations of M. verticillata. 

Source   df  SS  MS  Est. Var. % 

Among Population 8  54,051  6,756  0,300  7% 

Within Population 84  316,390  3,767  3,767  93% 

Total   92  370,441    4,067  100% 

df= degrees of freedom, SS= Sum of Squares, MS= Mean Squares, Est. Var.= estimate of variance, %= percentage 

of total variation. 
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Fig. 2. Relationship between genetic and geographic 

distance (Km) of M. verticillata populations. 

 

 

Fig. 3. Percentages of Molecular Variance. 

 

 

Fig. 4. Principal Coordinate Analysis (PCoA) of nine 

populations of M. verticillata based on the two 

principal axes. 

 

Numbers above branches represent bootstrap support 

for 1000 replicates. 

Fig. 5. UPGMA phenogram based on Nei’s (1972) 

genetic distances among populations of M. 

verticillata. 

 

Discussion 

Genetic diversity and differentiation 

The microsatellite markers developed in peperina 

from Mentha spp., generated polymorphic bands in 

spite of being species of different genus, which 

allowed us differentiate the nine populations 

throughout their range. While the number of alleles 

was low, due to these are transferred SSR, was 

markedly higher than that obtained by Novak et al. 

(2008) in oregano, although in that case the species 

were the same genus. 

 

The distribution of variability displayed in the 

AMOVA, is characteristic of species that are crossed 

to short distance. The species of this genus in general 

have high percentages of progenies and pollinate 

through flies and bees (Schmidt-Lebuhn et al., 2007). 

The highest percentages of polymorphisms and 

exclusive bands observed in PMO and COR could 

have a relationship with the degree of conservation of 

these sites of collection, due to a minor anthropogenic 

pressure. 

 

The populations exhibited a low genetic diversity, 

according that was expected for the type of marker 

used (EST-SSR) because they are in conserved 

sequences. The values of diversity genetic found in 

our work are consistent with those found by 

Rxy= 0,655, P= 0,029 
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Rodrigues et al. (2013) in Mentha cervina (He = 

0.051–0.222, I = 0.076–0.332). The highest value of 

genetic diversity (I= 0.29, He= 0.18, %P= 75 %) 

shown by PMO can be explained by its location in the 

region of the Yungas, area where is located the largest 

biodiversity in Argentina (Brown, 1995). 

 

On the other hand, the analysis of the lowest values of 

I, He and %P for EMB, must be taken into account the 

low number of individuals sampled due to be subject 

to a higher pressure extractive, favored by the lower 

altitude (526 masl) and easy access to the villagers. 

This evidenced in the least amount of individuals 

available for the collection. 

 

Genetic variation and its phytochemical implication 

The genetic similarity analysis revealed a latitudinal 

gradient in which the closest populations 

geographically have greater similarity (Fig. 5). This 

was also observed in other native species (Inza et al., 

2012). PMA, CHA1 and ONG populations belong to 

the central region which covers the provinces of San 

Luis and Cordoba, where are the typical peperinas. 

These populations remain high values of I and 

percentages of polymorphism in the order of 50 %, 

indicating that there would be genetic diversity 

despite the large decrease in the population. 

 

Most of the studies conducted in peperina have been 

phytochemicals and it is one of the most studied 

species of the genus in that sense (Schmidt-Lebuhn, 

2008). The largest phytochemical variability occurs 

among populations, being the Northwest region the 

most diverse and the Central region more 

homogeneous. It was found that populations from 

Cordoba and San Luis have pulegone and menthone 

as main compounds from its essential oil, decreasing 

this last compound its concentration to the North of 

Argentina. Other compounds are cited such as 

thymol, carvacrol, limonene, linalool and carvone 

(Zigadlo et al., 1996; Elechosa et al., 2005; Ojeda et 

al., 2001; Ojeda, 2004; Retamar, 1996), indicating 

the existence of a high chemical variability in this 

species, which would increase inversely to latitude.  

Conclusions 

The genetic diversity of M. verticillata was large 

within populations and small among populations. The 

Mantel test, demonstrate a positive and significantly 

correlation between genetic and geographic distance. 

In spite of occupy a wide area of distribution with a 

large anthropic disturbance, this species still maintain 

reserves of variability. The use of EST-SSRs in native 

species can be a useful tool for the analysis of natural 

populations, such as complement of chemical analysis 

and the development of markers associated with 

compounds in native species. 
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