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Abstract 
 

The productivity of agricultural systems and the ecological distribution of plants are strongly influenced by 

salinity in arid and semi-arid regions. In this context, two pistachio species, Pistacia vera L. (P. vera) and 

Pistacia atlantica Desf. (P. atlantica), have been exposed to NaCl (between 0 and 80 mM) to study the effect of 

salinity on plant water status, chlorophyll fluorescence and leaf gas exchanges. A specific pattern of response to 

salinity has highlighted different mechanisms of tolerance. Reductions in stomatal conductance (gs), 

photosynthesis (A) and total chlorophyll content (TCC) are similar to reductions in the relative water content 

(RWC) for both species and the NaCl treatments. The shape of the multiphasic fluorescence kinetics curves 

(OJIP) varies according to the severity of stress, indicating an earlier effect upon addition of NaCl for P. vera, 

but later in P. atlantica. The dynamic functioning of PSII depends on the toxicity by NaCl, altering plant water 

status, light conversion and CO2 assimilation by the mesophyll. The impact of salinity is clear at J and especially 

at I and P, which greatly increases for high NaCl concentrations, reflecting a decrease in the photochemical 

efficiency of PSII and electron transport. The chlorophyll fluorescence in P. atlantica reflects a lower sensitivity 

to salinity due to the maintenance of higher cell turgor, chlorophyll content and assimilation of CO2 than P. 

vera, explaining the agricultural practice based on its use as rootstock for P. vera for a better rusticity. 
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Introduction   

Salinity of soils and irrigation water is one of the main 

factors limiting plant growth and productivity 

(Flowers, 2004; Parida and Das, 2005). Many reports 

stated that salt stress decreases plant water content, 

due to osmotic stress and cell dehydration related to 

the accumulation of salt (Munns, 2002; Sairam et al., 

2002). However, some plants tend to maintain the 

cell turgor through the osmotic adjustment 

mechanism for different species (Porcel et al., 2012, 

Duarte et al., 2013). 

 

Under salt stress, the partial or total closure of 

stomata, in order to preserve the plant water status, is 

always accompanied by limitations in leaf gas 

exchanges, which causes reductions in stomatal 

conductance, photosynthesis and transpiration 

(Agastian et al., 2000; Abbaspour et al., 2012; 

Kchaou et al., 2013; Zorrig et al., 2013). In this 

context, Abbruzzese et al. (2009) reported that salt 

stress affects stomata density and guard cell length, 

leading to a decrease of stomatal conductance and 

hydraulic status of the plant.  

 

The inhibition of photosynthesis, as a function of 

NaCl concentration, was reported in varieties of rice 

(Oryza sativa L.) (Mishra et al., 1991; Tiwari et al., 

1997), where the Na+ and Cl- reduce the ability of CO2 

assimilation, altering the photosynthetic apparatus, 

mainly by a decrease in the maximum Rubisco 

carboxylation rate (Tattini and Traversi, 2009; Tattini 

et al., 2009). Limitations in photosynthesis were also 

attributed to changes in carboxylation efficiency or 

ability to regenerate the ribulose bisphosphate 

(Ranjbar et al., 2002; Parida et al., 2003). 

Additionally,  Zorrig et al. (2013) reported a damage 

in the ribulose-1,5-bisphosphate carboxylase 

oxygenase (Rubisco), phosphoenolpyru-vate 

carboxylase (PEPC) in Arabidopsis thaliana under 

salt stress.                 

 

In recent years, the technique of chlorophyll 

fluorescence has become ubiquitous in the study of 

abiotic stress on photosynthesis (Maxwell and 

Johnson, 2000; Baker and Rosenqvist, 2004; Baker, 

2008; Kalaji et al., 2011), such as the salinity (Misra 

et al., 2001; Qiu et al., 2003; Duarte et al., 2013). 

Indeed, this technique has been extensively used in 

vivo as a non-destructive method for early diagnosis, 

added to the used tools (Stirbet and Govindjee, 2011).  

 

The light absorbed by the antenna is not completely 

converted into chemical energy and the rest is emitted 

as heat and fluorescence. At ambient temperature, 

chlorophyll fluorescence emission comes mainly from 

the PSII light harvesting antenna, which represents 

90% (Govindjee and Spilotro, 2002). The 

fluorescence emission by the PSI is low, which 

represents 10 to 20% of the total emission. Moreover, 

only the fluorescence emitted by PSII is variable with 

time (Govindjee, 1995). Thus, the fluorescence 

emission reflects the energy losses during the 

excitation transfer to the reaction centers. Hence, by 

measuring the chlorophyll fluorescence, information 

on changes in the efficiency of photochemical 

reactions can be gained (Maxwell and Johnson, 2000; 

Papageorgiou and Govindjee, 2004).  

 

The fluorescence induction kinetics curve presents 

different intermediate stages known as O, J, I and P, 

introduced by Strasser and Govindjee, (1991, 1992), 

indicating different states of oxydo-reduction of PSII 

electron acceptors, QA, QB and plastoquinone.  

 

Little is known about the effect of salinity on the 

photochemical efficiency of PSII and results are 

frequently controversial. Some studies showed that in 

higher plants, salt stress inhibits the activity of PSII 

(Everard et al., 1994), reducing the photons use 

efficiency in the reaction of PSII (Lu and Vonshak, 

1999; Duarte et al., 2013), while others reported that 

salt stress has no effect on PSII (Brugnoli and 

Bjorkman, 1992; Morales et al., 1992). 

 

Pistacia atlantica Desf. (Atlas pistachio), belongs to 

the Anacardiaceae family, is a wild dioeciously tree, 

with semi-evergreen leaves, an extensive root system 

and a remarkable vigor and longevity. P. vera L. is 

also from the Anacardiacae family, a crop specie, 

mainly in arid and semi-arid areas. Moreover, these 
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species are of important economical, medicinal and 

ecological interests (Tomaino et al., 2010). P. 

atlantica, despite its adaptation to unfavorable 

environmental factors, as salinity (Chelli-chaabouni 

et al., 2010; Benhassaini et al., 2012), drought (Gijón 

et al., 2010) and nematode, and its good performance 

as rootstock for pistachio varieties, is nowadays 

endangered. In arid and semi-arid Tunisia areas, P. 

atlantica exists as isolated aged trees. Even thought 

that P. vera grafted on P. atlantica showed a better 

vigor and production of plants, a mechanism remains 

not understood. In this context, several hypotheses 

were reported: The rootstock can affect the vegetative 

tree growth through hormonal effects (Kamboj et al., 

1999), mineral nutrition (Jones, 1971) or water status 

(Olien and Lakso, 1986; Gijón et al, 2010), or an 

improvement of adaptation to abiotic constraints, as 

salinity and drought.  

 

The seedling stage is considered as the most salt 

sensitive phase in woody plants (Shannon et al., 

1994), as Pistacia species, where little is reported 

about the P. vera and P. atlantica establishment. The 

present work was planned to: a) study the effect of 

increasing concentrations of NaCl on leaf gas 

exchanges, chlorophyll content and chlorophyll 

fluorescence in P. vera and P. atlantica, b) discuss 

the relationship between the plant water status, the 

chlorophyll content, the CO2 assimilation and 

chlorophyll fluorescence under salt stress, and c) to 

study the functional regulation of PSII under salt 

stress in both species.  

 

Materials and methods 

The seeds of P. vera (Mateur Variety) from Sidi Aïch 

(West-Central of Tunisia), and those of P. atlantica 

from Meknassy (East-Central of Tunisia) were 

collected in August 2009. 

 

Preparation of plants and conduct of the trial 

Production plants were conducted in the laboratory at 

22°C and 10h/14h light/obscurity. To avoid 

tegumentary inhibition, seeds of P. atlantica 

underwent mechanical scarification (Pulping). The 

outer shells of P. vera were also removed. 

The plants (four leaves stage) were transplanted into 

conical pots (one plant per pot), with 15 and 13 cm of 

diameter and depth, respectively. The contents of the 

pots are well washed pure sand to avoid the 

interference of trophic factor. All pots received two 

irrigations per week (200 ml) until obtaining vigorous 

plants aged for 70 days. 

 

Treatments applied  

Since Sodium Chloride (NaCl) is the major source of 

salt in the soil and irrigation water, it has been used 

to induce a salt stress: 0, 20, 40, 60 and 80 mM NaCl, 

respectively 0, 1.17, 2.34, 3.51 and 4.68 g of salt per 

liter of nutrient solution with two irrigations per 

week. Individuals received a Hoagland solution. 

 

The salt treatment was applied for two months (May-

June 2010) and the culture was placed under an 

ambient temperature between 27 and 30°C, a relative 

humidity of around 70% and a photoperiod of 14 h/10 

h light/obscurity. 

 

Parameters studied 

Several physiological parameters were measured at 

different stages of development, arbitrarily chosen 

along the experiment. 

 

Relative water content 

Measuring the relative water content (RWC) in the 

leaf was performed as follows: The leaf was cut and 

weighed to determine their fresh weight (FW) and 

then placed in distilled water (5°C). After 24 h, the 

leaf is removed, wiped with the filter paper and 

weighed at full turgor (TW). Then, it was placed in an 

oven at 80°C during 48 h and then weighed again to 

determine the dry weight (DW) using the approach 

developed by Clarke and McCaig (1982). The equation 

was the following: 

 

RWC = (FW - DW) / (TW- DW) × 100 

FW: Fresh Weight 

DW: Dry Weight 

TW: Turgor Weight 

 

 



Lefi and Ben Hamed 

                                                                                                                                                        Page 67 

Photosynthetic gas exchanges 

The leaf gas exchanges measurements were 

performed on attached fully expanded leaves (the 

third leaf after leaf emergence) by an LCi portable 

photosynthesis system (ADC Bioscientific Ltd.), with 

two differential infrared gas analyzers for CO2 and 

water vapor, and a measuring chamber of gas 

exchanges. The measurements were performed at a 

Photosynthetic Active Radiation (PAR) sets (1000 

µmol photon m-2 s-1) at midday. Various parameters 

were measured: The net photosynthesis rate (A, 

expressed in µmol CO2 m-2 s-1) and on the basis of the 

increase in water vapor gets transpiration rate (E, mol 

H2O m-2 s-1). From the rate of transpiration, leaf 

temperature (Tleaf) and pressure of water vapor in the 

leaf chamber, the stomatal conductance (gs, mol H2O 

m-2 s-1) was calculated.  

 

Total chlorophyll content 

The total chlorophyll content (TTC) was measured 

using a Chlorophyll Content Meter device (CCM 200) 

on attached leaves; those used for gas exchanges 

measurements. The instrument measures two energy 

absorption bands in the red and infrared, 

corresponding, respectively, to the amount of 

chlorophyll in the leaf and the absorbance of the cells. 

The instrument used to measure an index called CCI 

(Chlorophyll Content Index) that appears on the 

screen of the device corresponding to a rate of total 

chlorophyll present in the leaf. 

 

Chlorophyll fluorescence 

The chlorophyll fluorescence measurements were 

made on leaves which used for gas exchanges 

measurements, using a portable chlorophyll 

fluorometer (OS-30P; Opti-science, Inc., NH, USA). 

After a calibration of the device, initiating the 

measurement time (30 s), the light intensity (700 µS), 

special plastic clips were attached to leaves and OJIP 

transients were measured. The mode OJIP gives 

fluorescence kinetics of multiphase transition O, J, I 

and P with: 

 

O: Minimum fluorescence level, 

J: Intermediate level of fluorescence, which 

corresponds to the gradual reduction of QA, 

I: Intermediate level of fluorescence, which 

corresponds to the maximum reduction of QA, 

P: Maximum fluorescence level. 

 

Statistical analysis 

The analysis of variance (ANOVA) was performed 

according to a factorial model with fixed factors using 

the statistical package SPSS (version 11.5). The Sigma 

Plot software (version 11.0) was used to develop the 

figures and regressions between variables, using average 

values with standard deviations. OJIP data transfer was 

made by the software OS-30P and presented on a 

logarithmic time scale in abscises time axis. 

 

Results 

Relative water content 

Untreated species maintained high RWC. Under salt 

stress, clear differences between the two species were 

observed and the RWC was significantly reduced 

(p<0.001), especially for P. vera at high NaCl 

concentrations. RWC has been as lower as the salt 

stress was more severe. At the contrary, P. atlantica 

showed high RWC values for all salinity treatments 

(Fig. 1). 
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Fig. 1. Relative Water Content variation in Pistacia vera (A) and P. atlantica (B) plants under salinity (n=6). 
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Leaf gas exchanges 

Along the experiment, the control seedlings of both 

species increased gs. Under salt stress, gs was 

significantly reduced for both species (p<0.001) (Fig. 

2). Indeed, gs became low while salinity increased. 

The significant reductions were observed at 80 mM of 

NaCl, where reductions in gs reached 93 and 100% 

for P. vera and P. atlantica respectively at the end of 

the experiment. 
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Fig. 2. Stomatal conductance variation in Pistacia vera (A) and P. atlantica (B) plants under salinity (n=6). 

 

In P. atlantica and P. vera, the control seedlings 

maintained higher A, whereas under salt stress, both 

species reduced significantly A (p<0.001) for NaCl 

treatments. Indeed, A is reduced while the severity of 

salinity increased (Fig. 3). The high reduction 

occurred for 80 mM of NaCl with no photosynthesis 

for P. vera, but remained at low levels in P. atlantica 

(Fig. 3). The impact of salt stress and duration of 

treatment on A became significant at the end of the 

experiment (p<0.001). 

Day of treatment (Day)

0 20 40 60

P
h
o
to

s
y
n
th

e
s
is

(µ
m

o
le

 C
O

2
 m

-2
 s

-1
).

0

10

20

30

40

0 mM 

20 mM 

40 mM

60 mM. 

80 mM. 

Day of treatment (Day)

0 20 40 60

P
h
o
to

s
y
n
th

e
s
is

(µ
m

o
le

 C
O

2
 m

-2
 s

-1
)

0

10

20

30

40
0 mM 

20 mM 

40 mM 

60 mM 

80 mM 

BA

 

Fig. 3. Photosynthesis variation in Pistacia vera (A) and P. atlantica (B) plants under salinity (n=6). 

 

Total chlorophyll content 

In control seedlings, TCC increased in P. vera to 59 

against a slight increase in P. atlantica. The NaCl 

decreased TCC (p<0.001) (Fig. 4) and the differences 

between species are significant (p<0.001). Thus, P. 

atlantica maintains higher TCC than P. vera (Fig. 4). 

The reductions reached 75% for P. vera, against only 

54% for P. atlantica at 80 mM. 

 

Chlorophyll fluorescence 

In P. vera (Fig. 5), after 18 days of salinity, 

fluorescence intensity is higher while the applied 

concentration of NaCl increased. After 24 days of 

treatment, an increase in fluorescence at 20 and 40 

mM of NaCl is observed. However, for 60 and 80 mM 

of NaCl, salinity decreased exclusively the transitions 

I and P. These trends are similar for those observed 

after 36 days of treatment.  
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Along the experiment, fluorescence increased, except 

for 80 mM, where fluorescence is maintained at 50. 

In contrast, P. atlantica (Fig. 6), with higher 

fluorescence than P. vera from the beginning, did not 

show clear differences between the treatments during 

the first month of experimentation. 

Day of treatment (Day)

0 15 30 45 60

T
o
ta

l 
c
h

lo
ro

p
h
y
ll 

c
o
n
te

n
t 

(a
.u

.)

0

20

40

60

80

100

  0 mM 

20 mM 

40 mM 

60 mM 

80 mM 

Day of treatment (Day)

0 15 30 45 60

T
o
ta

l 
c
h
lo

ro
p
h
y
ll 

c
o
n

te
n
t 

(a
.u

.)

0

20

40

60

80

100

  0 mM 

20 mM 

40 mM 

60 mM 

80 mM 

A B

 

Fig. 4. Variation of the total chlorophyll content in seedlings of  P. vera (A) and P. atlantica (B), subject to five 

increasing concentrations of NaCl (n=6). 
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Fig. 5. Polyphasic rise of Chla fluorescence transients (OJIP) in P. vera subjected to five increasing 

concentrations of NaCl (n=6). 

 

In both species, the major effect of salinity is observed in 

P instead of O which remains unchanged for all salinity 

treatments (Fig. 7). At the end of the test, there is a 

decrease in fluorescence, particularly at 80 mM, to 

minimal fluorescence intensity. At this level of stress, 

steps J and I disappeared from the OJIP curve for P. 

atlantica, and the three phases J, I and P disappeared 

for P. vera. These variations characterize a step called K 

in P. vera, which reflects a changes induced by excess 

NaCl on PSII. The statistical analysis showed highly 

significant effects of NaCl treatments and species on O 

and J (p<0.001) and NaCl treatments, species and 

stages of development on I and P (p<0.001). 
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Fig. 6. Polyphasic rise of Chla fluorescence transients (OJIP) in P. atlantica subjected to five increasing 

concentrations of NaCl (n=6). 
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Fig. 7. Variation of the transition values multiphase (OJIP) in P. vera (A, B, C, D) and P. atlantica (E, F, G, H) 

along the experiment (n=6). 
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Fig. 8. Relationships between relative water content and chlorophyll fluorescence for P. vera (A, B) and P. 

atlantica (C, D) (n=6). 

Total chlorophyll content (a.u.)

10 20 30 40 50 60

I 
(a

.u
.)

50

100

150

200

250

300

350

0 mM

20 mM

40 mM

60 mM 

80 mM

Total chlorophyll content (a.u.)

10 20 30 40 50 60

P
 (

a
.u

.)

50

100

150

200

250

300

350

0 mM

20 mM  

40 mM

60 mM

80 mM

Total chlorophyll content (a.u.)

10 20 30 40 50 60

I 
(a

.u
.)

50

100

150

200

250

300

350

0 mM

20 mM 

40 mM

60 mM 

80 mM 

Total chlorophyll content (a.u.)

10 20 30 40 50 60

P
 (

a
.u

.)

50

100

150

200

250

300

350
0 mM 

20 mM  

40 mM

60 mM 

80 mM 

A C

B D 

 

Fig. 9. Relationships between total chlorophyll content ant chlorophyll fluorescence for P. vera (A, B) and P. 

atlantica (C, D). 
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Discussion 

Plant water status 

From the point of view of cell turgor, RWC depends 

largely on species (Duarte et al., 2013). Indeed, under 

salinity plant water status is affected in P. vera, 

whereras, P. atlantica maintained high leaf turgor. 

RWC reduction is due to an increase in osmolarity in 

the cytoplasm causing osmotic stress and cellular 

dehydration. A more favorable hydration status in P. 

atlantica reveals a mechanism limiting transpiration 

(Ben Ahmed et al., 2008; Porcel et al., 2012) due to 

osmotic adjustment, which maintains the osmotic 

balance between the cytoplasm and vacuole 

preventing the efflux of water from the cytoplasm. 

This is achieved by compartmentalization of salt ions 

in the vacuole and/or synthesis and accumulation of 

osmoprotectors without interfering with the 

metabolism of the plant (Munns, 2002; Parida and 

Das, 2005; Ben Ahmed et al., 2008). In this context, 

pistachio species and particularly P. atlantica proved 

to accumulate osmoprotectors under salt stress 

(Chelli-Chaabouni et al., 2010). Several studies 

reported the increase of proline content in plants 

exposed to a certain salinity levels, depending on the 

species (Amirjani, 2010; Nazarbeygi et al., 2011).  The 

osmotic adjustment was also attributed to the 

potassium ion (Kamel and El-Tayeb, 2004), often 

deficient in the presence of NaCl (Ben Ahmed et al., 

2008; Tavakkoli et al., 2011). Indeed, the low nutrient 

supply to the cambium and low potassium ion content 

in the shoot leads to a decrease of xylem 

differentiation under salt stress of vessel lamina of 

salt-sensitive poplar species (Escalante-Pérez et al., 

2009). Therefore, maintaining a favorable tissue 

hydration improves stress tolerance via the 

maintenance of the metabolic activity, the root 

growth and delayed the leaf senescence. 

 

Chlorophyll content and photosynthesis  

Salt stress reduced all parameters of leaf gas 

exchanges, but the reductions also depend on species 

and the severity of salinity. A specific pattern of 

response for each species has highlighted different 

mechanisms of tolerance. Thus, upon addition of 

NaCl in the soil, stomatal closure limits CO2 diffusion, 

required for carboxylation reactions (Parida and Das, 

2005; Tabatabaei, 2006; Ben Ahmed et al., 2008) 

and transpiration. This alters the activity of 

chloroplast through a damage of the collection system 

and energy conversion (Everard et al., 1994). 

Certainly, the absorption of NaCl competes with other 

elements, particularly resulting in K+ deficiency 

(Chelli-Chaabouni et al., 2010; Zorrig et al., 2013), 

disrupting the activity of PSII. Thus, a close 

correlation has been established between the 

reduction of photosynthesis and K+ deficiency 

(Tabatabaei, 2006). This reduction can be explained 

by the disruption caused by metabolic stress and ionic 

perturbations of the structure and functioning of the 

photosynthetic apparatus to which they are 

associated. Reductions in A, E and gs are similar to 

RWC decreases for P. vera and P. atlantica. Studies 

have shown that lowering gs is controlled by an 

hormonal message from the roots, the abscisic acid 

(ABA) (Zhu et al., 2005; Dodd and Perez-Alfocea, 

2012; Zorb et al., 2013), which affects stomatal 

movements, reducing Ci, and consequently inhibiting 

photosynthesis (Wilkinson and Davies, 2002) and 

leaf expansion (Munns et al., 2006). However, P. 

vera exhibits greater reductions than P. atlantica, 

reflecting a considerable sensitivity to salinity. In 

contrast, the favorable water status for P. atlantica 

didn’t improve the photosynthesis activity, which 

depends more on gs and TCC, severely reduced by 

salinity (Ranjbar et al., 2002; Tabatabaei, 2006). In 

this context, reductions in A were an adaptative 

mechanism rather than a destructive consequence of 

salt stress (Ben Ahmed et al., 2008), in conformity 

with other results on P. vera, (Ranjbar et al., 2002; 

Tavallali et al., 2008; Karimi et al., 2009) and Olea 

europea (Tabatabaei, 2006; Ben Ahmed et al., 2008). 

 

The quantification of photosynthetic pigments is 

based on a non-destructive sample showing that 

excess of NaCl reduced the TCC in both species. 

Under salinity stress, TCC decreases (Mousavi et al., 

2008; Dhanapackiam and Ilyas, 2010), a consequence 

of chlorophyll photo-oxidation by oxy-radicals and 

the disruption of the chloroplast ultra-structure 

(Hernandez et al., 1999) or increasing the activity of 
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chlorophyllase and chlorophyll degradation (Ranjbar 

et al., 2002; Parida et al., 2003). However, P. vera is 

more sensitive to salinity for chlorophyll content. 

Reductions in RWC, A and TCC are similar for each 

species, marking a specific general pattern of 

response to salt stress. Thus a positive correlation 

between chlorophyll content and photosynthesis was 

observed. 

 

Functional stability of the PSII under salt stress 

The study of fluorescence permits to evaluate the 

rapid and non-destructive effect of stress on 

photosynthesis (Stirbet and Govindjee, 2011). The 

shape of the multiphase curves (OJIP) of the 

fluorescence kinetics is depending on the severity of 

salinity and species. P. vera shows a gradual increase 

in fluorescence at high chlorophyll content, reflecting 

an inhibition of CO2 assimilation, which causes a 

greater dissipation of energy and a photo-inhibition 

of reaction centers of PSII, and decreases in the 

photochemical efficiency (Baker, 1991). The decrease 

in fluorescence in both species, particularly at 80 mM 

of NaCl, was due to a lack of electron donor (Lazár, 

1999).  

 

Variation of transitions O, J, I and P as a function of 

RWC (Fig. 9) showed that O remains unchanged by 

increasing salt stress in both species. In P. vera, while 

RWC progressively decreases, the fluorescence 

intensity increases progressively for all NaCl 

treatments. The increase in excess of excitation light 

intercepted by the PSII collector antennas as 

fluorescence may be explained by the fact that salt 

stress caused an increase in the rates of reduced QA 

and QB, resulting in a blockage of electron transfer in 

the electron transport chain. 

 

At the beginning of the experiment and at high values 

of TCC, an increase in fluorescence intensity is 

associated with reduction in A. On the contrary, at the 

end of the experiment, the reduction of fluorescence 

is associated with a decrease of A (Fig. 8). The 

decrease in photosynthetic activity is linked to 

reducing effects of NaCl on the activity of PSII 

(Mishra et al., 1991; Tiwari et al., 1997). The 

correlation between chlorophyll content and 

fluorescence can be explained by the fact that salt 

stress induced a significant reduction of Chla and 

Chlb content (Ranjbar et al., 2002; Karimi et al., 

2009), attributed mainly to the reduction of chla, a 

major component of the reaction centers and antenna 

of PSII, by increasing the cholorophyyllase activity: 

the chlorophyll degrading enzyme (Ranjbar et al., 

2002), inducing the destruction of the chloroplast 

structure and the instability of pigment protein 

complexes, disturbing A and fluorescence especially 

for P. vera. Jamil et al. (2007) reported that the 

photochemical efficiency of PSII had a positive 

relationship with chlorophyll content in radish 

seedlings under salinity. 

 

Conclusion 

Under salt stress, the physiological and 

morphological changes largely depend on the species 

and the severity of salt stress. The dynamic 

functioning of PSII depends largely on the toxicity by 

NaCl, altering plant water status, the conversion of 

light energy and the CO2 assimilation by the 

mesophyll.  

 

P. atlantica has maintained higher RWC, TCC and A 

than P. vera. The study of chlorophyll fluorescence 

reflects a lower sensitivity of P. atlantica under 

salinity, even for 80 mM of NaCl. This account for the 

rusticity of P. atlantica justifies the agricultural 

practice based on its use as rootstock for P. vera to 

improve survive under salinity.   
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