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Abstract 

In this study, activated charcoal doped chitosan (AC-CS) was effectively synthesized, and the material was 

then examined using XRD, FTIR, SEM-EDX, and UV. Results demonstrate that activated charcoal doped 

chitosan (AC-CS) has a characteristic binding crystalline structure with an average size of 50nm and 

aggregates of minute fibres in diverse sizes and shapes. Chitosan doped with activated charcoal exhibits UV 

absorption bands with maximal wavelengths at 308nm. To evaluate the photocatalytic performance of the 

activated charcoal doped chitosan (AC-CS), Malachite Green dye degradation was utilized. Chitosan that 

has been doped with activated charcoal (AC-CS) was applied to boost the photocatalytic activity towards the 

Malachite Green dye. The performance of the photocatalytic reaction was significantly improved by 

supporting the active charcoal doped chitosan (AC-CS). 
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Introduction 

According to Aragunde et al. (2018), chitosan (CS) is 

a linear heteropolysaccharide made up of n-

acetylglucosamine and 1,4-glucosamine, which is 

produced when chitin is deacetylated. According to 

studies looking at chitosan as a natural biopolymer, it 

has increased biocompatibility and biodegradability 

and reduced immunogenicity (Annu et al., 2020; 

Manzoor et al., 2019; Samadian et al., 2020; 

Sumayya et al., 2017). Chitosan also has an alkaline 

pH and the capacity to degrade into innocuous 

substances that may be eliminated from the body 

(Vichare et al., 2020). As a secure drug delivery 

method, chitosan has been widely used in the 

pharmaceutical industry (Fu et al., 2017, Onishi et al., 

2020). Additionally, it demonstrates targeted 

anticancer (Tan et al., 2018), antiviral, and 

antibacterial activities against a variety of bacteria 

and fungi (Costa et al., 2012, Tan et al., 2018).  

 

Although the integration of polymeric matrices with 

nanofillers alters the mechanical strength, dye 

adsorption, and dye degradation properties of 

chitosan (Salari et al., 2018, Sun et al., 2020), this 

form of conjugated (chitosan doped inorganic 

materials) is attracting recognition (Tang et al., 2012; 

Bhattacharyya et al.,2012; Sajid et al., 2015). Due to 

its high efficacy, straightforward setup, simple 

operation, low energy requirement, and high 

oxidation capability, photocatalysis, a cutting-edge 

technique, has been used for the photodegradation of 

numerous organic contaminants. Scientists have 

focused a lot of attention in recent years on 

semiconductor photocatalysts as a means of resolving 

problems with the environment (Ullah et al., 2008; 

Pouretedal et al., 2009).  

 

Heterogeneous photocatalysis has been regarded as a 

practical alternative method for water remediation 

among diverse physical, chemical, and biological 

techniques (He et al., 2011). The advantages of 

photocatalytic technology over conventional ones in 

wastewater treatment are fast oxidation, high 

efficiency, no creation of polycyclic products, and low-

level combustion of contaminants. 

The most popular applications for malachite green 

(MG) include dyeing cotton, silk, paper, and leather 

as well as producing paints and printing inks. The 

aquatic life will be harmed, and the liver, gills, kidney, 

gut, and gonads will suffer.  

 

This is because solutions containing MG should not 

be discharged into receiving streams (Onishi et al., 

2020; Maldiney et al., 2014). A very effective way to 

overcome these limitations and enhance the 

physiochemical Chemical modification by cross-

linking reaction utilising activated charcoal (AC) is 

one of the chitosan biopolymer's features.  

 

Additionally, by using Activated Charcoal as a 

material with numerous functions/properties that 

eventually biodegrade to harmless products in the 

presence of water, it is possible to prevent widespread 

consumption, leakage, and buildup of chitosan doped 

activated charcoal in the environment (Jurki et al., 

2013). Although it has significant technological 

constraints, such as a high cost and a challenging 

recovery process, activated charcoal is also frequently 

employed in the treatment of water (Jung et al., 

2016a, b; Hassan et al., 2017; Afzal et al., 2018). 

 

In this study, the objective was to create chitosan-

doped activated charcoal using a straightforward, 

economical process that would enable large-scale 

preparation of the material. The substance was 

completely characterised before being used to 

decompose Malachite green dye in aqueous solutions. 

 

Materials and methods 

The chemicals employed in this study consisted of 

analytical-grade materials that came through Merck 

in India. They have not been further purified and 

were employed straight in the source.  

 

Along with activated charcoal, acetic acid as well as 

ethanol, Sigma-Aldrich offered chitosan which had 

gone through 90% deacetylation as a starting 

material. All preliminary procedures were finished 

using distilled water. Prior to further filtration, all 

analytical-grade chemicals and reagents were used. 
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Preparation of Activated Charcoal doped chitosan 

(AC-CS) 

Activated Charcoal doped chitosan (AC-CS) was 

produced in a 2:1 ratio. First, 2g of raw chitosan and 

1g of activated charcoal were mixed with 100ml of 

distilled water. After then, the mixture was shaking 

vigorously for two days. This mixture was applied to 

petriplates and dried thoroughly. Dried petriplates 

were then taken and soaked in sodium hydroxide 

solution within 30 minutes. Particle was collected in 

sheet form and washed with tap water twice or three 

times before being dried in a hot air oven for 24 hours 

at 60⁰ C and then calcined for four hours at 600⁰ C. 

Activated charcoal doped chitosan (AC-CS) sheets were 

then produced. Chitosan doped with activated charcoal 

(AC-CS) was gathered. (Nguyen et al., 2020). 

 

Application of manufactured activated charcoal 

doped chitosan (AC-CS) Photodegradation process 

The photocatalytic activity of activated charcoal 

doped chitosan (AC-CS) is assessed using the 

photocatalytic degradation of Malachite Green 

(MG) as a reaction probe in a beaker with stirring. 

100 ml of solution Malachite Green (MG) from 

Scheme 1 was introduced to the reactors along with 

the required catalyst in order to conduct 

photocatalytic tests.  

 

The solution was thoroughly mixed for 10 minutes in 

complete darkness before being exposed to radiation 

in order to achieve the process of adsorption 

equilibration of the framework. Following UV lamp 

irradiations, testing samples were collected at various 

time intervals, filtered, and then added to a quartz 

cell. A UV spectrophotometer set at = 540nm was 

used to measure the Malachite Green (MG) content at 

various times. All photocatalytic activities were 

carried out at room temperature. The 

photodegradation efficiency was calculated using the 

following equation: 

 

 

Where Ce is the dye's ultimate concentration 

following UV exposure, and C0 is the dye's initial 

concentration (Owda et al., 2021). 

Characterization 

The molecular structure of the created hybrids was 

investigated using a Nicolet Magma 550 series II, 

made by Midac in the USA, at wavelengths between 

4000 and 400cm-1. Dry film was pulverised with KBr 

powder and then smashed into discs for FTIR 

examination. To assess the physical characteristics of 

the samples, a JEOL (Japan) JSM-T300 scanning 

electron microscope with EDX (SEM-EDX) was 

employed. The sample was coated with gold using a 

JEOL JFC-110E ion sputter. Using a Bruker D8 

Advance diffractometer with Cu K radiation (k = 

1.540 A°) at 40 kV and 40 mA, XRD patterns were 

recorded. Scans were carried out with a detector step 

size of 0.02° and an angular range of 2 =10-80°. The 

bioreduction of metal particles in the structure was 

discovered using a UV-Vis spectrophotometer, with a 

spectrum from 200 to 800nm for each example taken 

against cleansed water as clear. An ultrasound 

treatment probe has previously been used to 

homogenise the mixture for five minutes. 

 

Result and discussion 

X-Ray Diffraction Spectroscopy 

Fig 1 displays the XRD patterns of Activated Charcoal 

doped chitosan (AC-CS). The three main peaks are 

located at scattering angles (2) of 26.3°, 42.8°, and 

79.6°, respectively. These depict the chitosan that has 

been polydispersed and formed into Activated 

Charcoal Doped Chitosan (AC-CS). The recorded 

literature and accepted references (Abdel et al., 2018; 

Bhadra et al., 2011; Li et al., 2010) fit the measured 

diffraction reflections well. There were no other 

diffraction peaks indicating any contaminants. 

According to the Debye-Scherer formula, the crystal 

size of activated charcoal doped chitosan (AC-CS) was 

determined through the widening of peak patterns of 

diffraction (Liu et al., 2019) 
 

D=Kλ/β Cosθ 

while D is the size of the crystal, k is constant (0.94), X-

ray wavelength is represented by = 0.154nm, is the full 

width at half maximum of the dispersion peaks (FWHM) 

in radians, and is the Bragg's angle. Because the 

Activated Charcoal doped chitosan (AC-CS) diffraction 

peak displays a rather significant intensity and isn't 
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overlapping with other peaks, its crystal size was 

assessed. Chitosan that has been doped with activated 

charcoal often has crystals that are 50nm in size. 

 

 

Fig. 1. The XRD graph of Activated Charcoal doped 

chitosan (AC-CS). 

 

Fourier Transform Infrared (FT-IR) Spectroscopy 

Fig 2 demonstrations the FTIR bands of Activated 

Charcoal doped chitosan (AC-CS), the peak at 

2256cm−1corresponds toward the O-H extending 

vibration and the AC-CS outstanding to C-N axial 

alteration might be accountable aimed at the highest 

peak at 1560cm−1; the wide-ranging peak on 

536cm−1 is outstanding toward the -OH/-NH2 

stretching vibration; the peaks at 641 besides 

452cm−1 remain credited toward the C-H stretching 

vibration; the peak at 413cm−1 resembles in the 

direction of the amino group bending vibrations; the 

peak at 401cm−1 might be outstanding on the way 

distortion of amide II; (Wang et al., 2019; Lijun You 

et al., 2018; Hasmath Farzana et al., 2015; Huang et 

al., 2017; Zabihi et al., 2019).  

 

These peaks demonstrated that chemical interactions, 

such as the creation of hydrogen bonds between the 

oxygen groups of the AC and the functional groups of 

the chitosan, were responsible for the effective 

grafting of the AC with chitosan (Sharififard et al., 

2018). Activated Charcoal is well-mixed and 

facilitates efficient dye removal by the Malachite 

Green dye Photodegradation process due to the 

presence of amide, amine, and hydroxyl functional 

groups. (Owda et al., 2021). 

 

Fig. 2. The FTIR graph of Activated Charcoal doped 

chitosan (AC-CS). 

 

Scanning Electron Microscopy-EDX 

Whenever seen through SEM images, activated 

charcoal doped chitosan (AC-CS) displays a rough 

and uneven surface. Due to the abundance of pores 

and tunnels on materials like activated charcoal 

doped chitosan (AC-CS) as shown fig. 3.  

 

This may suggest a high specific surface area. It 

describes the surface shape and surface texture of the 

manufactured activated charcoal doped chitosan (AC-

CS). Agglomerates of tiny fibres in various sizes and 

shapes, as well as a distinct binding crystalline 

structure, are how it expresses itself (Gong et al., 

2012). Additional particles are scattered into their 

outermost layer and some of the activated charcoal is 

embedded in the chitosan matrix's structure 

(Mohammed et al., 2020).  

 

According to the particle size distribution and XRD 

measurements, the average particle size of 

nanocomposite powder is 50nm. According to 

Bhuvaneswari et al.'s examination of the activated 

charcoal doped chitosan (AC-CS) by EDX, C, O, Na, 

Si, Cl, Ca & Fe were present (Bhuvaneswari et al., 

2022) as shown in Fig. 3. Because of this, it is 

suggested by the strong and clumped together narrow 

diffraction peaks of activated charcoal doped chitosan 

(AC-CS) indicating the resulting particles are 

crystalline in nature (Saranya Sukumar et al., 2020).  
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Fig. 3. The SEM-EDX graph of Activated Charcoal 

doped chitosan (AC-CS). 

 

UV-Visible Spectrophotometer 

Fig 4 displays the optical characteristics of 

biopolymer compounds after UV-visible spectroscopy 

analysis. According to Budnyak et al. (2016), Fig. 4 

depicted UV absorption bands of activated charcoal 

doped chitosan (AC-CS) with maximum wavelengths 

at 308nm (Budnyak et al., 2016). This suggests the 

emergence of activated charcoal doped chitosan (AC-

CS) and its represents a typical Plasmon band.  

 

 

Fig. 4. The UV graph of Activated Charcoal doped 

chitosan (AC-CS). 

The molecular weight of chitosan also affected the 

core of the absorption band, which controls both 

formation and stabilisation (Pritha Chakraborty et 

al., 2018). Fig 4 demonstrated that the absorption 

bands following immobilisation, which showed the 

existence of activated charcoal doped chitosan (AC-

CS), created the activated charcoal doped chitosan 

(AC-CS). This outcome demonstrates that activated 

charcoal doped chitosan (AC-CS) existed during the 

creation of the strong peak. 

 

Mechanism of photocatalytic catalytic degradation 

of the dye 

Malachite green dye deterioration is portrayed in Fig. 

5 as a light-dependent process. A positive hole h+ is 

lifted inside the valence band during this process, and 

the dye is first adsorbed on the catalyst's surface (in 

this case, AC-CS). Next, the dye is subjected to 

ultraviolet light to excite valence electrons and allow 

them to migrate from the valence band to the 

conduction band. On the surface of the photocatalyst, 

adsorbed water molecules react with positive holes 

and free electrons to produce OH radicals, while free 

electrons change dissolved oxygen into superoxide 

anion O2 radicals. The dye molecules are broken 

down into less complex molecules like CO2 and H2O 

by these light-generated radicals (Ajmal et al., 2014). 

  

AC-CS + hν → e− + h +   (1) 

H2O + h+ → OH˙ + H +   (2) 

 O2 + e− → O2˙−     (3) 

OH + MG dye → degradable product (4) 

 O2− + dye → degradable product   (5) 

 

 

Fig. 5. Reaction mechanisms for the degradation of 

Malachite Green (MG). 



J. Bio. & Env. Sci. 2023 

 

139 | Bhuvaneswari et al. 

Photocatalytic Activity 

In order to determine the viability of enhancing the 

catalytic performance, the activated charcoal doped 

chitosan (AC-CS) components will first be evaluated 

individually before being evaluated collectively. The 

photodegradation effectiveness with various activated 

charcoal doped chitosan (AC-CS) illumination times 

throughout 160 min. is shown in Fig. 5(a, b). During UV 

light radiation treatment, the activated charcoal doped 

chitosan (AC-CS) displayed greater photocatalytic 

capacity. The increased degree of the interphase contact 

that can be obtained at activated charcoal doped 

chitosan (AC-CS) is thought to be the factor responsible 

for this particular occurrence (Dai et al., 2013). Results 

demonstrated that raising the amount of activated 

charcoal doped chitosan (AC-CS) initially boosted the 

rate of photodegradation of Malachite Green, however 

beyond a certain point, it dropped and the 

photocatalyst's surface area that was exposed also arose. 

As shown in Fig. 6(a,b), the activated charcoal doped 

chitosan (AC-CS) reached the upper limit of the 

saturation point, and raising the amount afterwards 

resulted in reduced degradation of the dye. 

 

 

Fig. 6. The Photocatalytic graph of Activated 

Charcoal doped Chitosan (AC-CS) (a) represent 

Activated Charcoal doped Chitosan (AC-CS) (b) 

represent the degradation of dye from Activated 

Charcoal doped Chitosan (AC-CS). 

Conclusion 

Activated charcoal doped chitosan (AC-CS) was 

prepared using an enhanced technique and the 

material activated charcoal doped chitosan (AC-CS) 

has an FTIR spectrum that is consistent with the 

primary findings reported in the literature. The 

photocatalytic activated charcoal doped chitosan (AC-

CS) was employed for conservational clean-up in the 

degradation of the dyes in the presence of UV 

irradiation. Activated charcoal doped chitosan (AC-

CS) is highly stable during numerous applications. 

The dangerous aquatic contaminants, including 

malachite green dye were successfully broken down. 

Following continuous UV exposure, the 

photocatalytic reactions take place on the surface of 

the contaminants. Worldwide research on activated 

charcoal doped chitosan (AC-CS) for conservation 

cleaning in dye degradation has increased as a 

consequence of development. 
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