

International Journal of Biosciences | IJB | ISSN: 2220-6655 (Print) 2222-5234 (Online) http://www.innspub.net Vol. 23, No. 3, p. 147-157, 2023

# **RESEARCH PAPER**

# **OPEN ACCESS**

# Effect of planting time on the growth and yield of different aromatic rice varieties

Parvin Akter Bithy\*

Department of Agricultural Botany, Sher-e-Bangla Agricultural University, Dhaka, Bangladesh

Key words: Scented rice, Transplanting time, Morphophysiology, Production

http://dx.doi.org/10.12692/ijb/23.3.147-157

Article published on September 09, 2023

# Abstract

The experiment was conducted at the Research Field of Sher-e-Bangla Agricultural University (SAU), Dhaka during Aman season, 2020-2021 to effect of planting time on the growth and yield of different aromatic rice verities. The experiment consisted of two factors: A) Varieties-Badshabhog (V1), Modhumala (V2), Chiniatap  $(V_3)$ , Kataribhog  $(V_4)$ , Zirabhog  $(V_5)$ , Kalizira  $(V_6)$ , and B) Transplanting time - T<sub>1</sub> = (20 DAS), T<sub>2</sub> = (30 DAS),  $T_3 = (40 \text{ DAS})$ . The two factor experiment was laid out in a Randomized Complete Block Design (RCBD) with three replications and the differences between means were separated by both Duncan's New Multiple Range Test (DMRT) and Least Significant Difference (LSD) test at 5% level of probability. In case varieties, highest Plant height, No. of tiller plant-1, Booting of 50% plant, Emergence of (1st, 50, 100)% panicle, Starting of maturity, 100% maturity, Harvesting day (DAT), Life cycle (DAS) duration, Life cycle duration (DAT), No. of fertile tiller plant<sup>-1</sup>, No. of sterile tiller plant<sup>-1</sup>, Length of panicle, Seed weight plant<sup>-1</sup>, Dry weight plant<sup>-1</sup>, No. of filled grain panicle-1, No. of unfilled grain panicle-1, 1000grain weight, Grain weight plant-1, Straw weight plant<sup>-1</sup>, Biological yield (ton ha<sup>-1</sup>), Grain yield (ton ha<sup>-1</sup>), Straw yield (ton ha<sup>-1</sup>), was V<sub>5</sub>, V<sub>2</sub>, V<sub>4</sub>, V<sub>4</sub>, V<sub>4</sub>, V<sub>4</sub>, V<sub>5</sub>, V<sub>5</sub>, V<sub>5</sub>, V<sub>5</sub>, V<sub>5</sub>, V<sub>2</sub>, V<sub>6</sub>, V<sub>5</sub>, V<sub>4</sub>, V<sub>6</sub>, V<sub>6</sub>, V<sub>5</sub>, V<sub>4</sub>, V<sub>4</sub>, V<sub>1</sub>, V<sub>1</sub>, V<sub>4</sub>, V<sub>6</sub> respectively and lowest grain yield ha<sup>-1</sup> was observed in  $V_5(3.5h)$  ton ha<sup>-1</sup>. In case of transplanting time, most of the yield character and highest grain yield was observed in  $T_3$  (40 days seedling age), and others no significant difference. In case interaction, highest Plant height, No. of tiller plant<sup>-1</sup>, Booting of 50% plant, Emergence of (1st, 50, 100)% panicle, Starting of maturity, 100% maturity, Harvesting day (DAT), Life cycle (DAS) duration, Life cycle duration (DAT), No. of fertile tiller plant-1, No. of sterile tiller plant-1, Length of panicle, Seed weight plant-1, Dry weight plant-1, No. of filled grain panicle-1, No. of unfilled grain panicle-1, 1000grain weight, Grain weight plant-1, Straw weight plant<sup>-1</sup>, Biological yield (ton ha<sup>-1</sup>), Grain yield (ton ha<sup>-1</sup>), Straw yield (ton ha<sup>-1</sup>), was V<sub>5</sub>T<sub>1</sub>, V<sub>4</sub>T<sub>1</sub>, V<sub>4</sub>T<sub>1</sub>, V<sub>4</sub>T<sub>1</sub>, V<sub>4</sub>T<sub>1</sub>, V<sub>4</sub>T<sub>1</sub>, V<sub>5</sub>T<sub>1</sub>, V<sub>5</sub>T<sub>3</sub>, V<sub>5</sub>T<sub>3</sub>, V<sub>5</sub>T<sub>3</sub>, V<sub>5</sub>T<sub>3</sub>, V<sub>2</sub>T<sub>2</sub>, V<sub>3</sub>T<sub>2</sub>, V<sub>5</sub>T<sub>1</sub>, V<sub>4</sub>T<sub>1</sub>, V<sub>4</sub>T<sub>1</sub>, V<sub>6</sub>T<sub>2</sub>, V<sub>1</sub>T<sub>1</sub>, V<sub>5</sub>T<sub>2</sub>, V<sub>4</sub>T<sub>3</sub>, V<sub>1</sub>T<sub>1</sub>, V<sub>1</sub>T<sub>1</sub>,  $V_4T_3$  and  $V_1T_1$  respectively. The results of the numerous characters evaluated in the studies also revealed that there are certain beneficial characters in local aromatic rice cultivars that can be exploited through breeding.

\* Corresponding Author: Parvin Akter Bithy  $\boxtimes$  parvin<br/>bithysau19@sau.edu.bd

#### Introduction

Rice is the staple food source for over half the world's population. In Bangladesh, rice production occurs over an area of 11.4 million hectares (ha), generating 51.6 million tons of rice annually (BBS 2015), with 77% of the total cropped area being devoted to rice production, contributing more than 80% to the total food supply, and with rice providing 76% of the country's countries caloric intact as well as 66% of its total required daily protein intake (Majumder, 2013). At present, rice alone constitutes about 93% of the total food grains produced annually in Bangladesh (BER, 2013). Historically, thousands of local rice varieties have been cultivated across Bangladesh (Hamid et al., 1982) and local landraces, including aromatic ones, which have often been cultivated in less than favorable ecosystems that cover 12.16% of the total rice growing areas1. Some of these local varieties have desirable characteristics around aroma, better taste, and higher cooking quality, all of which potentiate value-added parameters to the rice both socially and economically. These aromatic rice varieties constitute a small but important group of rice which familiar in many countries of the world for their aroma or super-fine grain quality or both (Singh *et al.*, 2000).

There are thousands of local land races in this country, many of which some good qualities i.e, fitness, taste, aroma and protein content (Kaul et al., 1982). Consumer demand for the fine rice genotypes is higher due to its good nutrition quality, palatability, taste, cooking quality and fragrance (Kaul et al., 1982). Most of the consumers prefer fine rice genotypes with good cooking quality that have aroma. Due to special flavor and taste, aromatic rice is highly favored. This quality of rice receives a premium price in the market and has export potential (Arumugachamy et al., 1992).

Sakor, Sagardana Chini, Sagar, Meny, Tilkapur, Binnaphul, Kalobhog, Jabsiri, Kalgochi, Chinisakkor, Chiniatob, Noyonmoni, Saubail, Chinniguri, Kalomala, Begunmala, Gopalbhog, Tulsimoni, Jirabuti, Khirshabuti, Rajbut, Soru kamina, Kamini soru, Doiarguru, Premful, Begun bichi, Elai, Gua masuri, Luina, Lal Soru, Chini Kanai, Kalijira, Rajbhog, Philippines, Baoibhog, Baoijhaki, Jirabhog (Bolder), Chinigura, Tulsimala, Bashmati, Uknimodhu, Ranisalut, Jira dhan, Gandhakusturi, Sakkorkhora, Badshabhog, Jirakatari, Desikatari, Thakurbhog, Tulsimaloty, Raduni pagal, Sugandhi dhan, Kalijira (long grain), Jesso balam, Dakshahi, Hatisail, Khasa, Buchi, Awned, Black, Straw, Dubsail, Duksail, Khaskani, Khazar, Basmati, BR5, BRRI dhan34, BRRI dhan37, BRRI dhan38, BRRI dhan50, Mukpura, Uknimodhu, Khasa Bawaibhog-2, Chiniatob-2, Tilokkachari, Begunbichi-2, Chinairri, Bhatir chikon, Gordoi, Dolagocha, Kalonunia, Dhan chikon, Badshabhog-2, Thakurbhog-2, Khuti chikon, Sunduri samba, Basmati, Basnatu sufaid, Tulsimala-2, Chinisail. Malshira, Sadagura, Modhumadab, Parbatjira, Chinikanai-2, Meedhan, Gobindhabhog, Kataribhog, Fulkari, BU dhan2R, Padmabhog, Dudsail, Sakkorkhana, Maloti, Bashful, Kalijira, Oval, Kalobakri etc. are the different varieties local and modern aromatic rice in Bangladesh (Islam et al., 2016).

So we need to improve the yield of aromatic rice for worldwide purpose. Different cultivation method in our country applied for rice production such as transplantation, drilling, broadcast, Japanese and SRI. Among them transplantation is very popular in our country. But our most of the farmer illiterate, they don't know the exact transplanting time of rice in different season. As a result most of the time yield is lower. Considering the above facts this study has been undertaken to investigate the improvement of yield of aromatic rice by different cultivation method such different transplanting time.

#### Detailed project objective(s)

The objectives of this research proposal are as follows – 1. To find out the exact transplanting time for the aromatic rice in aman season.

2. To study the improvement of yield of aromatic rice by using different transplanting time.

## Materials and methodology

The experiment was conducted in the experimental field of Department of Agricultural Botany, SAU during *aman season*, and July, 2020 to March, 2021.

### a) Plant material

Six traditional aromatic rice cultivars *viz*. Kataribhog, Kalizira, Chiniatap, Zirabhog, Modhumala, Badshabhog, were used in these study.

#### Plan of action

Seeds of afore-mentioned cultivars/varieties were collected from Rice Research Institute (BRRI) and SAU Germplasm, respectively. The field experiment was carried out during July, 2020 to March, 2021.

#### Experimental design, layout

The experiment was laid out in Randomized Complete Block Design (RCBD) with three replications. There were 18 (6x3) treatment combinations. The total numbers of unit plots were 54. The size of unit plot is  $2m \ge 1.5m = 3m^2$ . The distances between plant to plant 15 cm and row to row 20cm.

### Treatments

There were two factors in this experiment as follows-

Factor a) Variety

| $V_1 = Badshabhog$ | V <sub>4</sub> = Kataribhog |
|--------------------|-----------------------------|
| $V_2 = Modhumala$  | $V_5 = Zirabhog$            |
| $V_3 = Chiniatap$  | $V_6 = Kalijira$            |

Factor b) Treatments: Transplanting time

i. T<sub>1</sub> = 20 DAS (30<sup>th</sup> July 2020) ii. T<sub>2</sub> = 30 DAS (9<sup>th</sup> August 2020) iii. T<sub>3</sub>= 40 DAS (19<sup>th</sup> August 2020)

# Transplanting and fertilization

Twenty, Thirty and Fourty days-old seedlings were transplanted according to treatments in the experimental field in  $30^{\text{th}}$  July,  $9^{\text{th}}$  August and  $19^{\text{th}}$  August respectively. Fertilizers were applied @ 88.92-51.87-59.28-44.46-0 kg N, P<sub>2</sub>O<sub>5</sub>, K<sub>2</sub>O, S and Zn ha<sup>-1</sup> (BRRI, 2013). All fertilizers except urea were applied as basal during final land preparation. Urea was top-dressed in three equal splits at early tillering, mid tillering and at 4-5 days before panicle imitation stages.

#### Other cultural operations

Proper intercultural operations were done to ensure the normal growth of the crops. Seedlings in some hills, if die off, then these were replaced by new one within one week of transplanting with seedlings from the respective source. Weeding was done as and when necessary. Plant protection measures *viz.* insecticide and fungicide were sprayed as require to keep the crop free from insect and pathogen attack.

## Data collection

Data were collected on the following parameters: Ten plants were sampled from each plot.

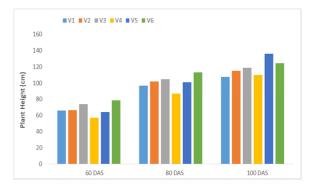
- Plant height: Plant heights were recorded at 60DAS, 80DAS and 100DAS. The height of 10 randomly selected plants in each plot was collected from ground level to top portion of the plant and the mean value of plant height was recorded in cm.
- No. of tiller/plant: Number of tillers plant<sup>-1</sup> were recorded at 60DAS, 80DAS and 100DAS. 10 randomly selected plants in each plot were collected and the mean value was recorded.
- 3. *Booting of 50% plant:* Time required for booting (Days After Sowing, DAS) was recorded from each plot
- Emergence of (1<sup>st</sup>, 50, 100)% panicle: Time required for panicle emergence (Days After Sowing, DAS) was recorded from each plot.
- 5. *Starting of maturity:* Time required for maturity (Days after Sowing, DAS) was recorded from each plot.
- 6. *100% maturity:* Time required for maturity (Days after Sowing, DAS) was recorded from each plot.
- 7. *Harvesting day (DAT):* Time required for harvesting (Days after Transplanting, DAT) was recorded from each plot.
- 8. *Life cycle (DAS) duration:* Time required for life cycle duration (Days after Sowing, DAS) was recorded from each plot.
- 9. *Life cycle duration (DAT):* Time required for life cycle duration (Days after Transplanting, DAT) was recorded from each plot.
- 10. *No. of effective or fertile tiller/plant:* The number of effective tillers plant-1 was recorded at harvesting stage by counting average of same 10 plants selected from each treatment of each plot.

# Int. J. Biosci.

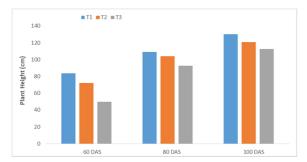
- No. of ineffective or sterile tiller/plant: The number of ineffective tillers plant<sup>-1</sup> was recorded at harvesting stage by counting average of same 10 plants selected from each treatment of each plot.
- 12. *Length of panicle:* The length of the panicle was measured with a meter scale from 10 selected panicles and the average value was recorded.
- Seed weight/plant: Weight of number of filled grain/panicle multiplied by panicle/plant
- 14. *Weight of panicle/plant:* The weight of the panicle was measured with a digital balance from 10 selected panicles and the average value was recorded.
- 15. *Dry weight/plant:* For data recording at first 10 plants were selected from each plot after harvesting with root enough. Then these plants were cut into small pieces and packed in paper bags for oven dry. These samples were kept in oven at 700C for 72 hours. Then dry weight were taken from these samples where each bag contain 10 plant parts sample. Then dry weight (gm per plant) was calculated from of different parts and lastly total dry matter in gm was calculated. For TDM calculation need seed wt. per plant was also included.
- 16. No. of fertile or filled spikelets/panicle: Average number of filled grains panicle<sup>-1</sup> was calculated by counting the number of filled grain of 10 panicles plant<sup>-1</sup>
- 17. *No. of sterile or unfilled spikelets /panicle:* Number of unfilled grains panicle<sup>-1</sup> was also counted.
- Total no. of spikelets/panicle: Total number of grains panicle<sup>-1</sup> was calculated by counting the number of filled grain of 10 panicles plant<sup>-1</sup>
- 19. *1000grain weight:* One thousand grains were counted randomly from the total cleaned harvested grains of each individual plot and then weighed in grams and recorded.
- 20. *Grain weight/plant:* The weight of the grain was measured with a digital balance from 10 selected plant and the average value was recorded
- 21. *Straw weight/plant:* The weight of the straw was measured with a digital balance from 10 selected plant and the average value was recorded
- 22. Biological yield: Biological yield was determined using the following formula Biological yield = Grain yield + Straw yield

- 23. Grain yield ton/ha: Grain from each plot area was thoroughly sun dried till constant weight was attained. Then yield per hectare was determined based on net plot area.
- 24. *Straw yield ton/ha:* After separation of grains from plants of each plot the straw was sun dried till a constant weight is obtained and expressed as tonha<sup>-1</sup>.

#### Statistical analysis of data

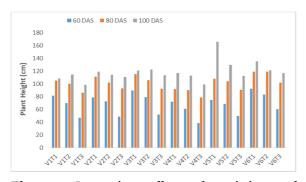

The data obtained for different parameters will be statistically analyzed following computer based software Statistix 10 and mean separation will be done by LSD at 5% level of significance. (Gomez and Gomez, 1984)

#### **Results and discussion**


#### Plant Height (cm)

Significant variation was observed of plant height among the test rice varieties at 60, 80,and 100 DAS. In case of varieties, at 60 DAS highest plant height was observed in  $V_3$  (Chiniatap) and lowest in  $V_4$ (Kataribhog). At 80 DAS highest plant height was observed in  $V_6$  (Kalizira) and lowest in  $V_4$ (Kataribhog). At 100 DAS highest plant height was observed in  $V_5$  (Zirabhog) and lowest in  $V_1$ (Badshabhog) (Fig. 1).

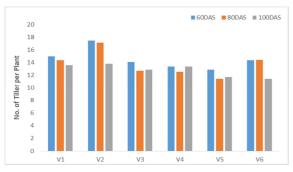
In case of transplanting time, at 60 DAS highest plant height was observed in  $T_1$  (20 DAS) and lowest in  $T_3$ (30 DAS). At 80 DAS highest plant height was observed in  $T_1$  (20 DAS) and lowest in  $T_3$  (30 DAS). At 100 DAS highest plant height was observed in  $T_1$  (20 DAS) and lowest in  $T_3$  (30 DAS) (Fig. 2).




**Fig. 1.** Effect of varieties on plant height at different DAS of aromatic rice.



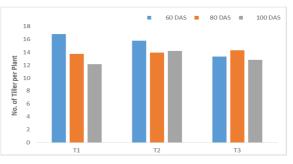
**Fig. 2.** Effect of transplanting time on plant height at different DAS of aromatic rice.


In case of interaction, at 60 DAS highest plant height was observed in  $V_6T_1$  (Kalizira+ 20 DAS). At 80 DAS highest plant height was observed in  $V_6T_2$  (Kalizira+ 30 DAS). At 100 DAS highest plant height was observed in  $V_5T_1$  (Zirabhog+ 20 DAS) (Fig. 3).

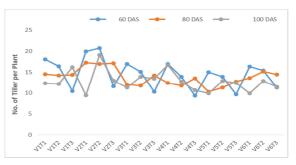


**Fig. 3.** Interaction effect of varieties and transplanting time on plant height at different DAS of aromatic rice.

#### No. of Tiller plant<sup>1</sup>


Significant variation was observed in no. of tiller plant<sup>-1</sup> among the test rice varieties at 60, 80 and 100 DAS. In case of varieties, at 60 DAS, 80 DAS and 100 DAS the highest plant height was observed in  $V_2$  (Modhumala) (Fig. 4).




**Fig. 4.** Effect of varieties on No. of Tiller plant<sup>-1</sup> at different DAS of aromatic rice.

In case of transplanting time, at 100 DAS highest in  $T_2$  (30 DAS) and others are statistically similar (Fig. 5).

In case of interaction, at 60 DAS highest in  $V_2T_2$ (Modhumala + 30 DAS) others are statistically similar. At 80 DAS highest in  $V_2T_1$  (Modhumala + 20 DAS). At 100 DAS highest in  $V_4T_1$  (Kataribhog + 20 DAS) (Fig. 6).



**Fig. 5.** Effect of transplanting time on No. of Tiller plant<sup>-1</sup> at different DAS of aromatic rice.



**Fig. 6.** Interaction effect of varieties and transplanting time on No. of Tiller plant<sup>-1</sup> at different DAS of aromatic rice.

#### 50% Booting of plant

Significant variation was observed of 50% booting of plant among the test rice varieties. In case of varieties, early booting was observed in  $V_4$  (Kataribhog) (Table 1).

In case of transplanting time, early booting was observed in  $T_1$  (20 DAS) (Table 1).

In case of interaction, early booting was observed in  $V_4T_1$  (Kataribhog + 20 DAS) (Table 2).

#### Emergence of panicle

Significant variation was observed in panicle emergence of plant among the test rice varieties.

In case of variety early was observed in  $V_4$  (Kataribhog) (Table 1).

In case of transplanting time early was observed in  $T_1$  (20 DAS) (Table 1).

In case of interaction early was observed in  $V_4T_1$  (Kataribhog + 20 DAS) (Table 2).

**Table 1.** Effect of varieties and transplanting time on

 Booting and Emergence of panicle at different DAS of

 aromatic rice.

| Variety | 50% Booting of | Emerger         | nce of pan | nicle(DAS) |
|---------|----------------|-----------------|------------|------------|
| variety | plant(DAS)     | 1 <sup>st</sup> | 50%        | 100%       |
| $V_1$   | 99.5           | 106.5           | 113.5      | 120.5      |
| $V_2$   | 97.5           | 104.5           | 111.5      | 118.5      |
| $V_3$   | 95.83          | 102.83          | 109.83     | 116.83     |
| $V_4$   | 88.83          | 95.83           | 102.83     | 109.83     |
| $V_5$   | 97.5           | 104.5           | 111.5d     | 118.5      |
| $V_6$   | 101.17         | 108.17          | 115.17     | 122.17     |
| LSD     | 1.6813         | 1.6813          | 2.5347     | 1.6813     |
| CV%     | 1.47           | 1.37            | 1.94       | 1.21       |
| Transpl | anting time    |                 |            |            |
| $T_1$   | 96.781         | 103.78          | 111.09     | 117.78     |
| $T_2$   | 98.938         | 105.94          | 112.63     | 119.94     |
| $T_3$   | 99.5           | 106.5           | 113.72     | 120.5      |
| LSD     | 0.7280         | 0.7280          | 1.0976     | 0.7280     |
| CV%     | 1.47           | 1.37            | 1.94       | 1.21       |

**Table 2.** Interaction effect of varieties and transplanting time on Booting and Emergence of panicle at different DAS of aromatic rice.

| Interaction                   | 50% Booting of | Emergence of<br>panicle(DAS) |        |        |
|-------------------------------|----------------|------------------------------|--------|--------|
|                               | plant(DAS) -   | 1 <sup>st</sup>              | 50%    | 100%   |
| $V_1T_1$                      | 99.5           | 106.5                        | 113.5  | 120.5  |
| $V_1T_2$                      | 99.5           | 106.5                        | 113.5  | 120.5  |
| V <sub>1</sub> T <sub>3</sub> | 99.5           | 106.5                        | 113.5  | 120.5  |
| $V_2T_1$                      | 99.5           | 106.5                        | 113.5  | 120.5  |
| $V_2T_2$                      | 93.5           | 100.5                        | 107.5  | 114.5  |
| $V_2T_3$                      | 99.5           | 106.5                        | 113.5  | 120.5  |
| $V_3T_1$                      | 102.5          | 109.5                        | 116.5  | 123.5  |
| $V_3T_2$                      | 85.5           | 92.5                         | 99.5   | 106.5  |
| $V_3T_3$                      | 99.5           | 106.5                        | 113.5  | 120.5  |
| $V_4T_1$                      | 83.5           | 90.5                         | 97.5   | 104.5  |
| $V_4T_2$                      | 95.5           | 102.5                        | 109.5  | 116.5  |
| $V_4T_3$                      | 87.5           | 94.5                         | 101.5  | 108.5  |
| $V_5T_1$                      | 88.5           | 95.5                         | 102.5  | 109.5  |
| $V_5T_2$                      | 99.5           | 106.5                        | 113.5  | 120.5  |
| $V_5T_3$                      | 104.5          | 111.5                        | 118.5  | 125.5  |
| $V_6T_1$                      | 99.5           | 106.5                        | 113.5  | 120.5  |
| $V_6T_2$                      | 101.5          | 108.5                        | 115.5  | 122.5  |
| $V_6T_3$                      | 102.5          | 109.5                        | 116.5  | 123.5  |
| LSD                           | 2.9122         | 2.9122                       | 4.3902 | 4.3902 |
| CV%                           | 1.47           | 1.37                         | 1.94   | 1.21   |

Maturity, harvesting day (DAT), Life cycle (DAS) and Life cycle (DAT)

Significant variation was observed in maturity, harvesting day (DAT), life cycle (DAS) and life cycle (DAT). In case of variety early was observed in  $V_5$  (Zirabhog) (Table

3). In case of transplanting time early was observed in  $T_1$  (20 DAS) (Table 3). In case of interaction early was observed in  $V_5T_1$  (Zirabhog + 20 DAS) but in case of harvesting day (DAT) and life cycle (DAT) early was observed in  $V_5T_3$  (Zirabhog + 40 DAS) (Table 4).

**Table 3.** Effect of varieties and transplanting time on Maturity, Harvesting day and Life cycle at different DAS of aromatic rice.

|         | Mat       | urity  | Harvesting | Life           | Life           |
|---------|-----------|--------|------------|----------------|----------------|
| Variety | 1st       | 100%   | day (DAT)  | cycle<br>(DAS) | cycle<br>(DAT) |
| $V_1$   | 131.17    | 161.17 | 132.17     | 162.17         | 132.17         |
| $V_2$   | 129.67    | 159.67 | 130.67     | 160.67         | 130.67         |
| $V_3$   | 133.17    | 163.17 | 134.17     | 164.17         | 134.17         |
| $V_4$   | 131.17    | 161.17 | 132.17     | 162.17         | 132.17         |
| $V_5$   | 103.5     | 133.5  | 104.5      | 134.5          | 104.5          |
| $V_6$   | 133.17    | 163.17 | 134.17     | 164.17         | 134.17         |
| LSD     | 0.3556    | 0.3556 | 0.3556     | 0.3556         | 0.3556         |
| CV%     | 0.24      | 0.19   | 0.24       | 0.19           | 0.24           |
| Transp  | lanting t | ime    |            |                |                |
| $T_1$   | 127.06    | 157.06 | 138.06     | 158.06         | 138.06         |
| $T_2$   | 129.38    | 159.38 | 130.38     | 160.38         | 130.38         |
| $T_3$   | 130.59    | 160.59 | 121.59     | 161.59         | 121.59         |
| LSD     | 0.1540    | 0.1540 | 0.1540     | 0.154          | 0.1540         |
| CV%     | 0.24      | 0.19   | 0.24       | 0.19           | 0.24           |

**Table 4.** Interaction effect of varieties and transplanting time on Maturity, Harvesting day and Life cycle at different DAS of aromatic rice.

|                               | Mat    | urity  | -Harvesting | Life           | Life           |
|-------------------------------|--------|--------|-------------|----------------|----------------|
| Interaction                   | 1st    | 100%   | day (DAT)   | cycle<br>(DAS) | cycle<br>(DAT) |
| $V_1T_1$                      | 126.5  | 156.5  | 137.5       | 157.50         | 137.5          |
| $V_1T_2$                      | 133.5  | 163.5  | 134.5       | 164.50         | 134.5          |
| V <sub>1</sub> T <sub>3</sub> | 133.5  | 163.5  | 124.5       | 164.50         | 124.5          |
| $V_2T_1$                      | 127.5  | 157.5  | 138.5       | 158.5          | 138.5          |
| $V_2T_2$                      | 129.5  | 159.5  | 130.5       | 160.5          | 130.5          |
| $V_2T_3$                      | 132    | 162    | 123         | 163h           | 123            |
| $V_3T_1$                      | 130.5  | 160.5  | 141.5       | 161.5          | 141.5          |
| $V_3T_2$                      | 134.5  | 164.5  | 135.5       | 165.5          | 135.5          |
| $V_3T_3$                      | 134.5  | 164.5  | 125.5       | 165.5          | 125.5          |
| $V_4T_1$                      | 115.5  | 145.5  | 126.5       | 146.5          | 126.5          |
| $V_4T_2$                      | 146.5  | 176.5  | 147.5       | 177.5          | 147.5          |
| $V_4T_3$                      | 131.5  | 161.5  | 122.5       | 162.5          | 122.5          |
| $V_5T_1$                      | 100.5  | 130.5  | 111.5       | 131.5          | 111.5          |
| $V_5T_2$                      | 102.5  | 132.5  | 103.5       | 133.5          | 103.5          |
| $V_5T_3$                      | 107.5  | 137.5  | 98.5        | 138.5          | 98.5           |
| $V_6T_1$                      | 134.5  | 164.5  | 145.5       | 165.5          | 145.5          |
| $V_6T_2$                      | 132.5  | 162.5  | 133.5       | 163.5          | 133.5          |
| $V_6T_3$                      | 132.5  | 162.5  | 123.5       | 163.5          | 123.5          |
| LSD                           | 0.6160 | 0.6160 | 0.6160      | 0.6160         | 0.616          |
| CV%                           | 0.24   | 0.19   | 0.24        | 0.19           | 0.24           |

# No. of effective or fertile tiller plant<sup>-1</sup>

Significant variation was observed in no. of effective tiller plant<sup>-1</sup> of plant among the test rice varieties. In case of varieties, highest was observed in V<sub>2</sub> (Modhumala) (Table 5).

In case of transplanting time, highest was observed in  $T_3$  (40 DAS) (Table 5). In case of interaction, highest was observed in  $V_2T_2$  (Modhumala+ 30 DAS) (Table 6).

# No. of ineffective or sterile tiller plant<sup>1</sup>

Significant variation was observed in no. of ineffective tiller plant<sup>-1</sup> of plant among the test rice varieties. In case of varieties, highest was observed in V<sub>6</sub> (Kalizira) (Table 5). In case of transplanting time, highest was observed in T<sub>2</sub> (30 DAS) (Table 5). In case of interaction, highest was observed in V<sub>3</sub>T<sub>2</sub> (Chiniatap + 30 DAS) (Table 6).

# Panicle length (cm)

Significant variation was observed in panicle length (cm) of plant among the test rice varieties. In case of varieties, highest was observed in  $V_5$  (Zirabhog) (Table 5). In case of transplanting time, highest was observed in  $T_1$  (20 DAS) (Table 5). In case of interaction, highest was observed in  $V_5T_1$  (Zirabhog + 20 DAS) (Table 6).

**Table 5.** Effect of varieties and transplanting time on No. of effective or fertile tiller plant<sup>-1</sup>, No. of ineffective or sterile tiller plant<sup>-1</sup> and Panicle length (cm) at different DAS of aromatic rice.

| Variety                                            | No. of<br>effective or<br>fertile tiller<br>plant <sup>-1</sup> | No. of<br>ineffective or<br>sterile tiller<br>plant <sup>-1</sup> | Panicle<br>length<br>(cm) |
|----------------------------------------------------|-----------------------------------------------------------------|-------------------------------------------------------------------|---------------------------|
| $V_1$                                              | 18.3                                                            | 1.467                                                             | 23.6                      |
| $V_2$                                              | 25.167                                                          | 2.233                                                             | 25.767                    |
| $\frac{\mathrm{V}_3}{\mathrm{V}_4}}{\mathrm{V}_5}$ | 16.733                                                          | 1.8                                                               | 25.45                     |
| $V_4$                                              | 16.067                                                          | 0.5                                                               | 24.883                    |
| $V_5$                                              | 13.3                                                            | 1.467                                                             | 26.933                    |
| V <sub>6</sub>                                     | 17.9                                                            | 2.267                                                             | 26.35                     |
| LSD                                                | 3.5127                                                          | 3.9385                                                            | 2.0906                    |
| CV%                                                | 16.6                                                            | 112.17                                                            | 6.93                      |
| Transplanti                                        | ng time                                                         |                                                                   |                           |
| $T_1$                                              | 16.275                                                          | 2.7625                                                            | 26.559                    |
| $T_2$                                              | 18.963                                                          | 3.325                                                             | 26.053                    |
| T <sub>3</sub>                                     | 19.419                                                          | 2.9813                                                            | 25.28                     |
| LSD                                                | 1.521                                                           | 1.7054                                                            | 0.9053                    |
| CV%                                                | 16.6                                                            | 112.17                                                            | 6.93                      |
|                                                    |                                                                 |                                                                   |                           |

#### Seed wt. plant<sup>1</sup>

Significant variation was observed in seed wt. plant<sup>-1</sup> of plant among the test rice varieties. In case of varieties, highest was observed in V<sub>4</sub> (Kataribhog) (Table 7). In case of transplanting time, there is no significant difference (Table 7). In case of interaction, highest was observed in V<sub>4</sub>T<sub>1</sub> (Kataribhog + 20 DAS) (Table 8).

| Interaction | No. of<br>effective or<br>fertile tiller<br>plant <sup>-1</sup> |        |        |
|-------------|-----------------------------------------------------------------|--------|--------|
| $V_1T_1$    | 14.7                                                            | 3      | 22.25  |
| $V_1T_2$    | 17.9                                                            | 0.4    | 24.5   |
| $V_1T_3$    | 22.3                                                            | 1      | 24.05  |
| $V_2T_1$    | 20.9                                                            | 3.7    | 26     |
| $V_2T_2$    | 29.7                                                            | 1.5    | 25.3   |
| $V_2T_3$    | 24.9                                                            | 1.5    | 26     |
| $V_3T_1$    | 16.7                                                            | 0.7    | 25.15  |
| $V_3T_2$    | 16.6                                                            | 4.5    | 25.95  |
| $V_3T_3$    | 16.9                                                            | 0.2    | 25.25  |
| $V_4T_1$    | 16.9                                                            | 0.7    | 25.65  |
| $V_4T_2$    | 14.9                                                            | 0.1    | 26.35  |
| $V_4T_3$    | 16.4                                                            | 0.7    | 22.65  |
| $V_5T_1$    | 10.6                                                            | 2.3    | 29.9   |
| $V_5T_2$    | 15.3                                                            | 1      | 27     |
| $V_5T_3$    | 14l                                                             | 1.1    | 23.9   |
| $V_6T_1$    | 15.6                                                            | 2.3    | 26.75  |
| $V_6T_2$    | 21.6                                                            | 2.8    | 26.45  |
| $V_6T_3$    | 16.5                                                            | 1.7    | 25.85  |
| LSD         | 6.0842                                                          | 6.8217 | 3.6211 |
| CV%         | 16.6                                                            | 112.17 | 6.93   |
|             |                                                                 |        |        |

 Table 7. Effect of varieties and transplanting time on

 Seed wt. plant<sup>-1</sup>, Panicle wt. plant<sup>-1</sup> and Dry wt. plant<sup>-1</sup>

 <sup>1</sup>at different DAS of aromatic rice.

| Variety                            | Seed wt.<br>plant-1 | Panicle wt.<br>plant <sup>-1</sup> | Dry wt. plant <sup>-</sup> |
|------------------------------------|---------------------|------------------------------------|----------------------------|
| $V_1$                              | 27.767              | 36.467                             | 53.568                     |
| $V_2$                              | 26.63               | 37.3                               | 45.791                     |
| $V_3$                              | 29.067              | 36.1                               | 49.212                     |
| $rac{\mathrm{V}_4}{\mathrm{V}_5}$ | 38.6                | 53.26                              | 50.174                     |
| $V_5$                              | 24.867              | 34.2                               | 53.729                     |
| $V_6$                              | 25.967              | 31.43                              | 57.832                     |
| LSD                                | 6.6653              | 18.39                              | 9.2173                     |
| CV%                                | 20.18               | 40.29                              | 15.10                      |
| Transplant                         | ting time           |                                    |                            |
| $T_1$                              | 27.719              | 36.44                              | 54.311                     |
| $T_2$                              | 28.569              | 42.79                              | 56.09                      |
| $T_3$                              | 29.044              | 38.66                              | 47.26                      |
| LSD                                | 2.8861              | 7.9632                             | 3.9912                     |
| CV%                                | 20.18               | 40.29                              | 15.10                      |

#### Panicle wt. plant<sup>1</sup>

Significant variation was observed in panicle wt. plant<sup>-1</sup> of plant among the test rice varieties. In case of varieties, highest was observed in  $V_4$  (Kataribhog) (Table 7). In case of transplanting time, there is no significant difference (Table 7). In case of interaction, highest was observed in  $V_4T_1$  (Kataribhog+ 20 DAS) (Table 8).

# Dry wt. plant<sup>1</sup>

Significant variation was observed in dry wt. plant<sup>-1</sup> of plant among the test rice varieties. In case of varieties, highest was observed in V<sub>6</sub> (Kalizira) (Table 7). In case of transplanting time, there is no significant difference (Table 7). In case of interaction, highest was observed in V<sub>6</sub>T<sub>2</sub> (Kalizira+ 30 DAS) (Table 8).

**Table 8.** Interaction effect of varieties andtransplanting time on Seed wt. plant<sup>-1</sup>, Panicle wt.plant<sup>-1</sup> and Dry wt. plant<sup>-1</sup> at different DAS ofaromatic rice.

| Interaction | Seed wt. | Panicle wt. | Dry wt. |
|-------------|----------|-------------|---------|
| Interaction | plant⁻¹  | plant⁻¹     | plant-1 |
| $V_1T_1$    | 25.1     | 34.4        | 56.82   |
| $V_1T_2$    | 25.5     | 33.4        | 52.67   |
| $V_1T_3$    | 32.7     | 41.6        | 51.21   |
| $V_2T_1$    | 27.5     | 37.2        | 43.607  |
| $V_2T_2$    | 26.6     | 38.3        | 53.049  |
| $V_2T_3$    | 25.8     | 36.4        | 40.716  |
| $V_3T_1$    | 33.1     | 40.7        | 58.306  |
| $V_3T_2$    | 30.7     | 38b         | 52.07   |
| $V_3T_3$    | 23.4     | 29.8        | 37.256  |
| $V_4T_1$    | 45.9     | 61.9        | 61.676  |
| $V_4T_2$    | 30.7     | 48.5        | 44.86   |
| $V_4T_3$    | 39.2     | 49.4        | 43.986  |
| $V_5T_1$    | 16.4     | 29.8d       | 51.344  |
| $V_5T_2$    | 24.1     | 34.5        | 64.82   |
| $V_5T_3$    | 34.1     | 38.3        | 45.02   |
| $V_6T_1$    | 22.1     | 27.3        | 58.006  |
| $V_6T_2$    | 34.4     | 40.1        | 68.768  |
| $V_6T_3$    | 21.4     | 26.9        | 46.72   |
| LSD         | 11.545   | 31.853      | 15.965  |
| CV%         | 20.18    | 40.29       | 15.10   |

# No. of fertile spikelets/ filled grain panicle-1

Significant variation was observed in no. of filled grain panicle<sup>-1</sup> of plant among the test rice varieties. In case of varieties, highest was observed in V<sub>6</sub> (Kalizira) (Table 9). In case of transplanting time, highest was observed in T<sub>3</sub> (40 DAS) (Table 9). In case of interaction, highest was observed in V<sub>6</sub>T<sub>3</sub> (Kalizira + 40 DAS) (Table 10).

# No. of sterile or unfilled spikelets/grain panicle -1

Significant variation was observed in no. of unfilled grain panicle<sup>-1</sup> of plant among the test rice varieties. In case of varieties, highest was observed in  $V_5$  (Zirabhog) (Table 9). In case of transplanting time, highest was observed in  $T_1$  (20 DAS) (Table 9). In case of interaction, highest was observed in  $V_5T_1$  (Zirabhog + 20 DAS) (Table 10).

# Total no. of spikelets/grain panicle-1

Significant variation was observed in no. of filled grain panicle<sup>-1</sup> of plant among the test rice varieties. In case of varieties, highest was observed in V<sub>6</sub> (Kalizira) (Table 9). In case of transplanting time, highest was observed in T<sub>3</sub> (40 DAS) (Table 9). In case of interaction, highest was observed in V<sub>6</sub>T<sub>3</sub> (Kalizira + 40 DAS) (Table 10).

**Table 9.** Effect of varieties and transplanting time on No. of filled grain panicle<sup>-1</sup>, No. of unfilled grain panicle<sup>-1</sup> and Total no. of grain panicle<sup>-1</sup> at different DAS of aromatic rice.

| Variety        | No. of filled<br>grain panicle <sup>-1</sup> | No. of<br>unfilled<br>grain panicle | Total no. of<br><sub>-1</sub> grain panicle <sup>-1</sup> |
|----------------|----------------------------------------------|-------------------------------------|-----------------------------------------------------------|
| $V_1$          | 143.19                                       | 16.31                               | 159.50                                                    |
| $V_2$          | 136.15                                       | 16.422                              | 152.57                                                    |
| $V_3$          | 144.75                                       | 17.345                              | 162.1cd                                                   |
| $V_4$          | 134.92                                       | 20.668                              | 155.58                                                    |
| $V_5$          | 71.74                                        | 51.619                              | 123.36                                                    |
| $V_6$          | 731.84                                       | 13.413                              | 745.25                                                    |
| LSD            | 26.175                                       | 3.5892                              | 29.462                                                    |
| CV%            | 12.81                                        | 15.66                               | 12.96                                                     |
| Transpla       | anting time                                  |                                     |                                                           |
| $T_1$          | 147.75                                       | 23.435                              | 171.19                                                    |
| $T_2$          | 141.9                                        | 20.272                              | 162.17                                                    |
| T <sub>3</sub> | 238.14                                       | 15.48                               | 253.62                                                    |
| LSD            | 11.334                                       | 1.5542                              | 12.757                                                    |
| CV%            | 12.81                                        | 15.66                               | 12.96                                                     |

# 1000 grain weight

Significant variation was observed in 1000 grain wt. of plant among the test rice varieties. In case of varieties, highest was observed in  $V_4$  (Kataribhog) (Table 11). In case of transplanting time, there is no significant difference (Table 11). In case of interaction, highest was observed in  $V_5T_2$  (Zirabhog+ 30 DAS) (Table 12).

# Grain wt. plant<sup>1</sup>

Significant variation was observed in grain wt. plant<sup>-1</sup> of among the test rice varieties. In case of varieties, highest was observed in  $V_4$  (Kataribhog) (Table 11). In case of transplanting time, there is no significant difference (Table 11). In case of interaction, highest was observed in  $V_4T_3$  (Kataribhog + 40 DAS) (Table 12).

# Int. J. Biosci.

**Table 10.** Interaction effect of varieties and transplanting time on No. of filled grain panicle<sup>-1</sup>, No. of unfilled grain panicle<sup>-1</sup> and Total no. of grain panicle<sup>-1</sup> at different DAS of aromatic rice.

| Interaction | No. of<br>filled grain<br>panicle-1 | No. of<br>unfilled grain<br>panicle-1 | Total no. of<br>grain panicle-1 |
|-------------|-------------------------------------|---------------------------------------|---------------------------------|
| $V_1T_1$    | 158.7                               | 19.229                                | 177.9                           |
| $V_1T_2$    | 158.3                               | 19.922                                | 178.2                           |
| $V_1T_3$    | 112.6                               | 9.791                                 | 122.4                           |
| $V_2T_1$    | 141.2                               | 18.378                                | 159.5                           |
| $V_2T_2$    | 130.2                               | 12.95                                 | 143.2                           |
| $V_2T_3$    | 137.1                               | 17.937                                | 155                             |
| $V_3T_1$    | 203.6                               | 18.585                                | 222.1                           |
| $V_3T_2$    | 124.1                               | 15.576                                | 139.6                           |
| $V_3T_3$    | 106.6                               | 17.874                                | 124.5                           |
| $V_4T_1$    | 120                                 | 31.391                                | 151.4                           |
| $V_4T_2$    | 171.8                               | 19.761                                | 191.5                           |
| $V_4T_3$    | 113                                 | 10.851                                | 123.9                           |
| $V_5T_1$    | 72                                  | 90.577                                | 162.6                           |
| $V_5T_2$    | 54.3                                | 55.418                                | 109.7                           |
| $V_5T_3$    | 89                                  | 8.863                                 | 97.8                            |
| $V_6T_1$    | 154.4                               | 14.754                                | 169.1                           |
| $V_6T_2$    | 155.6                               | 13.493                                | 169.1                           |
| $V_6T_3$    | 1885.5                              | 11.992                                | 1897.5                          |
| LSD         | 45.336                              | 6.2167                                | 51.029                          |
| CV%         | 12.81                               | 15.66                                 | 12.96                           |

#### Straw wt. plant1

Significant variation was observed in straw wt. plant<sup>-1</sup> of among the test rice varieties. In case of varieties, highest was observed in  $V_1$  (Dholabhog) (Table 11). In case of transplanting time, highest was observed in  $T_1$  (20 DAS) (Table 11). In case of interaction, highest was observed in  $V_1T_1$  (Badshabhog + 20 DAS) (Table 12).

**Table 11.** Effect of varieties and transplanting time on 1000 grain wt., Grain wt. plant<sup>-1</sup> and Straw wt. plant<sup>-1</sup> at different DAS of aromatic rice.

| Variates   | 1000 gran | Grain wt. | Straw wt. |
|------------|-----------|-----------|-----------|
| Variety    | wt.       | plant-1   | plant-1   |
| V1         | 10.983    | 12.833    | 37.625    |
| $V_2$      | 7.963     | 10.083    | 28.188    |
| $V_3$      | 12.558    | 11.667    | 33.438    |
| $V_4$      | 18.722    | 17.333    | 28.646    |
| $V_5$      | 26.149    | 8.75      | 30.133    |
| V6         | 6.709     | 10.492    | 34.396    |
| LSD        | 3.1649    | 2.0496    | 9.6508    |
| CV%        | 22.12     | 14.83     | 26.06     |
| Fransplant | ting time |           |           |
| $\Gamma_1$ | 12.517    | 11.555    | 37.892    |
| $\Gamma_2$ | 12.367    | 11.461    | 30.387    |
| $T_3$      | 12.075    | 12.694    | 27.363    |
| LSD        | 1.3704    | 0.8875    | 4.1789    |
| CV%        | 22.12     | 14.83     | 26.06     |

**Table 12.** Interaction effect of varieties andtransplanting time on 1000 grain wt., Grain wt. plant<sup>-1</sup>and Straw wt. plant<sup>-1</sup> at different DAS of aromatic rice.

| Interaction                   | 1000 grain<br>wt. | Grain wt.<br>plant-1 | Straw wt.<br>plant <sup>-1</sup> |
|-------------------------------|-------------------|----------------------|----------------------------------|
| $V_1T_1$                      | 10.767            | 14.750               | 45.75                            |
| $V_1T_2$                      | 9.201             | 11.5                 | 35.063                           |
| $V_1T_3$                      | 12.981            | 12.25                | 32.063                           |
| $V_2T_1$                      | 9.36              | 11.25                | 40.875                           |
| $V_2T_2$                      | 6.96              | 10.5                 | 22.313                           |
| $V_2T_3$                      | 7.564             | 8.5                  | 21.37                            |
| $V_3T_1$                      | 9.761             | 11.25                | 39                               |
| $V_3T_2$                      | 14.918            | 12.25                | 35.813                           |
| $V_3T_3$                      | 12.995            | 11.5                 | 25.5                             |
| $V_4T_1$                      | 22.776            | 14.625               | 26.5                             |
| $V_4T_2$                      | 12.226            | 16.25                | 27.563                           |
| $V_4T_3$                      | 21.162            | 21.125               | 31.875                           |
| $V_5T_1$                      | 21.643            | 6.25                 | 31.15                            |
| $V_5T_2$                      | 29.111            | 5.75                 | 32.438                           |
| $V_5T_3$                      | 27.692            | 14.25                | 26.813                           |
| V <sub>6</sub> T <sub>1</sub> | 9.173             | 10.25                | 37.75                            |
| $V_6T_2$                      | 10.267            | 11.25                | 33.563                           |
| $V_6T_3$                      | 0.688             | 9.975                | 31.875                           |
| LSD                           | 5.4817            | 3.55                 | 16.716                           |
| CV%                           | 22.12             | 14.83                | 26.06                            |

#### Biological yield (ton ha<sup>-1</sup>)

Significant variation was observed in biological yield (ton ha<sup>-1</sup>) of among the test rice varieties. In case of varieties, highest was observed in V<sub>1</sub> (Badshabhog) (Table 13). In case of transplanting time, highest was observed in T<sub>1</sub> (20 DAS) (Table 13). In case of interaction, highest was observed in V<sub>1</sub>T<sub>1</sub> (Badshabhog + 20 DAS) (Table 14).

#### Grain yield (ton ha<sup>-1</sup>)

Significant variation was observed in grain yield (ton  $ha^{-1}$ ) of among the test rice varieties. In case of varieties, highest was observed in V<sub>4</sub> (Kataribhog) (Table 13). In case of transplanting time, highest was observed in T<sub>3</sub> (40 DAS) (Table 13). In case of interaction, highest was observed in V<sub>4</sub>T<sub>3</sub> (Kataribhog + 40 DAS) (Table 14).

#### Straw yield (ton ha-1)

Significant variation was observed in straw yield (ton  $ha^{-1}$ ) of among the test rice varieties. In case of varieties, highest was observed in V<sub>6</sub> (Kalizira) (Table 13). In case of transplanting time, highest was observed in T<sub>1</sub> (20 DAS) (Table 13). In case of interaction, highest was observed in V<sub>1</sub>T<sub>1</sub> (Badshabhog+ 20 DAS) (Table 14).

**Table 13.** Effect of varieties and transplanting time on Biological yield, Grain yield and Straw yield at different DAS of aromatic rice.

| Variety                                          | Biological yield Grain yield |            | Straw yield |  |
|--------------------------------------------------|------------------------------|------------|-------------|--|
| variety                                          | (ton ha-1)                   | (ton ha-1) | (ton ha-1)  |  |
| $V_1$                                            | 20.183                       | 5.13       | 15.05       |  |
| $V_2$                                            | 15.308                       | 4.03       | 11.275      |  |
| $     \frac{V_3}{V_4} \\     \frac{V_5}{V_6}   $ | 18.042                       | 4.667      | 13.375      |  |
| $V_4$                                            | 18.392                       | 6.93       | 11.458      |  |
| $V_5$                                            | 15.553                       | 3.5        | 12.053      |  |
| $V_6$                                            | 17.955                       | 4.2        | 13.758      |  |
| LSD                                              | 3.8824                       | 0.8198     | 3.8603      |  |
| CV%                                              | 19.09                        | 14.83      | 26.06       |  |
| Transplanting time                               |                              |            |             |  |
| $\Gamma_1$                                       | 19.779                       | 4.6219     | 15.157      |  |
| $\Gamma_2$                                       | 16.739                       | 4.5844     | 12.155      |  |
| $\Gamma_3$                                       | 16.023                       | 5.0775     | 10.945      |  |
| LSD                                              | 1.6811                       | 0.355      | 1.6716      |  |
| CV%                                              | 19.09                        | 14.83      | 26.06       |  |

**Table 14.** Interaction effect of varieties andtransplanting time on Biological yield, Grain yield andStraw yield at different DAS of aromatic rice.

| Interaction                   | Biological<br>yield (ton<br>ha <sup>-1</sup> ) | Grain yield<br>(ton ha-1) | Straw yield<br>(ton ha <sup>-1</sup> ) |
|-------------------------------|------------------------------------------------|---------------------------|----------------------------------------|
| $V_1T_1$                      | 24.2                                           | 5.9                       | 18.3                                   |
| $V_1T_2$                      | 18.625                                         | 4.6                       | 14.025                                 |
| V <sub>1</sub> T <sub>3</sub> | 17.725                                         | 4.9                       | 12.825                                 |
| $V_2T_1$                      | 20.85                                          | 4.5                       | 16.35                                  |
| $V_2T_2$                      | 13.125                                         | 4.2                       | 8.925                                  |
| $V_2T_3$                      | 11.95                                          | 3.4                       | 8.55                                   |
| $V_3T_1$                      | 20.1                                           | 4.5                       | 15.6                                   |
| $V_3T_2$                      | 19.225                                         | 4.9                       | 14.325                                 |
| $V_3T_3$                      | 14.8                                           | 4.6                       | 10.2                                   |
| $V_4T_1$                      | 16.45                                          | 5.85                      | 10.6                                   |
| $V_4T_2$                      | 17.525                                         | 6.5                       | 11.025                                 |
| $V_4T_3$                      | 21.2                                           | 8.45                      | 12.75                                  |
| $V_5T_1$                      | 14.96                                          | 2.5                       | 12.46                                  |
| $\frac{V_5T_2}{V_5T_3}$       | 15.275                                         | 2.3                       | 12.975                                 |
| $V_5T_3$                      | 16.425                                         | 5.7                       | 10.725                                 |
| $V_6T_1$                      | 19.2                                           | 4.1                       | 15.1                                   |
| $V_6T_2$                      | 17.925                                         | 4.5                       | 13.425                                 |
| V <sub>6</sub> T <sub>3</sub> | 16.74                                          | 3.99                      | 12.75                                  |
| LSD                           | 6.7245                                         | 1.42                      | 6.6863                                 |
| CV%                           | 19.09                                          | 14.83                     | 26.06                                  |

# Conclusion

Transplanting time is the one of the important method of cultivation. Highest Plant height, No. of tiller plant<sup>-1</sup>, Booting of 50% plant, Emergence of (1<sup>st</sup>, 50, 100)% panicle, Starting of maturity, 100% maturity, Harvesting day (DAT), Life cycle (DAS) duration, Life cycle duration (DAT), No. of fertile tiller plant<sup>-1</sup>, No. of sterile tiller plant<sup>-1</sup>, Length of panicle, Seed weight plant<sup>-1</sup>, Dry weight plant<sup>-1</sup>, No. of filled grain panicle<sup>-1</sup>, No. of unfilled grain panicle<sup>-1</sup>, 1000grain weight, Grain weight plant<sup>-1</sup>, Straw weight plant<sup>-1</sup>, Biological yield (ton ha<sup>-1</sup>), Grain yield (ton ha<sup>-1</sup>), Straw yield (ton ha<sup>-1</sup>), was  $V_5T_1$ ,  $V_4T_1$ ,  $V_4T_1$ ,  $V_4T_1$ ,  $V_4T_1$ ,  $V_4T_1$ ,  $V_5T_1$ ,  $V_5T_3$ ,  $V_5T_1$ ,  $V_5T_3$ ,  $V_2T_2$ ,  $V_3T_2$ ,  $V_5T_1$ ,  $V_4T_1$ ,  $V_4T_1$ ,  $V_6T_2$ ,  $V_1T_1$ ,  $V_5T_1$ ,  $V_5T_2$ ,  $V_4T_3$ ,  $V_1T_1$ ,  $V_1T_1$ ,  $V_4T_3$  and  $V_1T_1$  respectively and lowest grain yield was observed in  $V_4T_3$ . These results of various characters studied in the experiments also suggested that some good characters exist in local aromatic rice cultivars which can be exploited through breeding.

## Recommendation

For aromatic rice breeding program, emphasis should be given on high dry matter accumulation trait and its remobilization to the grains.

# Acknowledgement

I am feeling proud of expressing my sincere appreciation and gratitude to the Ministry of Science and Technology, the People's Republic of Bangladesh for selecting me as a Research and development (R and D) project researcher under National Science and Technology (2020-2021) to conduct this research.

#### **Competing interests**

There are no competing interests in this research article.

### Authors' contributions

This work was carried out by PAB. Author PAB designed the study, performed the statistical analysis, wrote the protocol and wrote the first draft of the manuscript, managed the literature searches, read and approved the final manuscript.

#### References

Arumugachamy S, Vairavan S, Vivekanandan P, Palanisamy S. 1992. Aromatic and quality rice improvement in Tamil Nadu. Intl. Rice Res. Newsl. 17(6), 11-12.

**BBS.** 2015. Year book of agricultural statistics. 27th ed. Bangladesh Bureau of Statistics, Statistics and Informatics Division, Ministry of Planning, Gov. of the People's Republic of Bangladesh, www.bbs.gov.bd.

# Int. J. Biosci.

**BER.** 2013. Bangladesh Economic Review, Ministry of Finance, Government of the People's Republic of Bangladesh, Dhaka.

**Gomez KA, Gomez AA.** 1984. Statistical procedures for agricultural research (2 ed.). John wiley and sons, NewYork p. 680.

Hamid A, Uddin N, Haque M, Haque E. 1982. Deshi Dhaner Jat (In Bangla), Publication no. 59. Bangladesh Rice Research Institute p. 117.

**Islam MZ.** 2016. Variability Assessment of Aromatic and Fine Rice Germplasm in Bangladesh Based on Quantitative Traits. Sci. World J. 2796720, https://doi.org/10.1155/2016/2796720. Kaul AK, Khan MRI, Monir KM. 1982. Rice Quality: A survey of Bangladesh Germplasm. Bangladesh Rice Res. Inst. Gazipur, Bangladesh pp. 1-178

**Majumder S.** 2013. The Economics of Early Response and Resilience: Bangladesh Country Study. 29.

Singh RK, Gautam PL, Saxena S, Singh S. 2000. Scented rice germplasm: conservation, evaluation and utilization. In: Singh RK, Singh US, Khush GS (eds) Aromatic rices. Kalyani, New Delhi pp 107-133.