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Abstract 
 
Using pheromones to control and monitor stored grain pests is a technology applied in different countries. 

The present review identified the primary compounds used to prevent or monitor stored grain pests, their 

chemical structures, functional groups and attraction mechanisms. We discuss the aspects of historical 

evolution, the geographic distribution of research on stored grain pests, the methodological approaches 

used in developing this research, the strategies used to control and monitor these pests, and the chemical 

synthesis of the compounds used as pheromones. We found 109 published articles that reported data on 

pheromones. Aggregation and sexual pheromones were the most used for control and monitoring. The 

surveys were distributed across six continents; most studies were conducted in North America. Laboratory 

studies were the most common, followed by field studies. Management using pest monitoring was the most 

common. Different synthetic routes were observed when conducting the studies. These works showed the 

improvement of these synthetic routes to obtain pheromone constituents. This review highlighted the main 

aspects of using pheromones for controlling or monitoring stored grain pests. 
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Introduction  

Agribusiness is one of the main segments of the 

Brazilian economy, contributing significantly to 

national and international trade and standing out by 

exporting commodities in the sector. The 2020/2021 

Brazilian crop reached a production of 253.2 million 

tons of grains, with Brazil becoming the world leader 

in soybean production, estimated at 136 million tons. 

Brazil is also one of the largest producers of rice and 

corn, with an average output of 93 and 12 million 

tons, respectively (CONAB, 2021). The 2022 harvest 

is forecast at 261.6 million tons of grains. This is a 

3.8% growth in production for 2020/2121, and with 

an increase of 3.4% in the planted area, it is estimated 

that it could reach 6.4%. Such voluminous production 

requires safe and efficient storage of these products to 

guarantee quality products to the consumer market. 

The Food and Agriculture Organization of the United 

Nations (FAO) recommends that grain-producing 

countries have more than 20% static storage capacity 

for the quantity produced (CONAB, 2021), indicating 

the importance of storing and preserving the products 

to minimize losses caused by deterioration and 

insects to ensure a better food supply to consumers. 

Global losses caused by insect pests in stored 

products are estimated at 9% in developed countries 

and over 20% of production in developing countries, 

both qualitative and quantitative. The presence of 

insects, fragments of dead insects and excretions that 

cause contamination make the grains unfit for human 

consumption (Pimentel, 1991; Tripathi, 2018; Weaver 

and Petroff, 2004), which justifies the precautions for 

preventing insects in stored grain. In Brazil, most 

problems with stored grain pests are caused by 

beetles (Coleoptera) and moths (Lepidoptera) 

(Ashworth, 1993; Lorini, 2015). 

 

These insects are commonly controlled using 

chemical insecticides such as phosphine and a group 

of pyrethroids such as deltamethrin and bifenthrin 

(Fig. 1). However, the emergence of pests resistant to 

these compounds is a global problem (Hagstrum and 

Phillips, 2017; Lorini, 2015; Urrutia et al., 2021). For 

example, phosphine, one of the main insecticides 

used to control stored grain pests, is recognised for 

having little residual effects and has shown a 

reduction in its efficiency due to the emergence of 

resistant insect populations, which may be related to 

the presence of a specific gene, or the selection 

pressure caused by the consistent application of the 

product. Furthermore, the continuous and sometimes 

excessive use of insecticides can cause harm to human 

health and non-target organisms and cause 

environmental pollution (Wakil et al., 2021).  

 

 

Fig. 1. Most commonly used chemical insecticides to 

control stored grain insect pests. 

 

Countries such as Brazil, a large grain producer, 

should prioritise the search and adoption of methods 

capable of rationally reducing the use of conventional 

techniques to control pests that affect stored products 

(Sammani et al., 2020a). The main advances capable 

of combating or alleviating the problems caused by 

conventional pest control of stored grains are 

hermetic storage, use of modified/controlled 

atmosphere, diatomaceous earth, use of compounds 

of botanical origin, bioinsecticides or bioinsecticides 

of bacterial origin such as compounds obtained from 

the bacterium Saccharopolyspora spinosa, and the 

use of pheromones to monitor and control these pests 

(Mudiyanselage et al., 2020). Pheromones are 

compounds of natural origin used alone or in 

combinations that stimulate different behavioural 

responses in recipient individuals such as aggregation 

behaviours or sexual attractiveness. For example, 

they can be used as attractants in traps, serving as 

bait in pest monitoring and control (Campos and 

Phillips, 2013; Chambers et al., 1990). Among the 

main control and monitoring, techniques are mating 

interruption or sexual disruption, mass capture and 

attract-and-kill techniques (Campos and Phillips, 

2013; El-Sayed et al., 2006). The advantages of using 

pheromones are that they have high specificity and 

are not harmful to non-target organisms such as 

natural enemies, and they do not present toxicity to 

humans and the environment (Campos and Phillips, 

2013; Chambers et al., 1990). 
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In the present study, we review the current knowledge 

on insects that act as pests in stored grains. We also 

seek and determine which are the primary pests 

controlled and monitored through pheromones and 

describe the products used to manage the insect pests 

of grain storage.  
 

Research questions  

1. Which pheromones are described?  

2. Which pests are monitored?  

3. Which pests are controlled?  

4. Which pheromones are attractive?  

5. What are repellents?  

6. Which pheromone structures have already been 

described?  

7. What pheromones are commercially available, and 

how are they used?  

8. What is the control form?  
 

Materials and methods 

Experimental database 

A search was carried out for articles that evaluated 

the control or monitoring of stored grain pests 

through pheromones from February to April 2022, 

covering studies published from 1969 to 2022 using 

Scopus, Scielo, and PubMed, respectively Web of 

Science and Elsevier. The employer descriptors were 

“storage pests” or “stored product insects” and 

“aggregation pheromone” and “grain” or “grain 

storage” or “grain weevil” and “insect damage to 

stored grains” or “pest control” or “pests in storage” 

and “semiochemicals” or “sexual pheromone” and 

“stored product”. This resulted in 715 articles. The 

articles had to comply with the inclusion criteria 

established in the protocol, which was studies that 

reported the efficiency of pheromones in pest control 

that were fully available in the databases and showed 

how to use pheromones in monitoring/controlling, 

attracting or repelling stored grain pests. The 

exclusion criteria were works from dissertations, 

course conclusion work, theses, and reviews, that 

were not in English or did not show the form of 

application of pheromones in the control/monitoring 

of stored grain pests. In total, 128 manuscripts were 

selected for the systematic review. After selection, the 

articles were read in their entirety, and the 

information extracted included the year of 

publication, the country where the research was 

carried out, type of evaluation (control/monitoring), 

type of pheromone (including chemical class, 

commercial or standard name, structure or chemical 

name, commercial use, efficiency and if used in 

combination), the herbivore and parasitoid species 

and whether there was attraction and repellence, 

whether is it was a field or laboratory study, type of 

trap and bioassay and statistical test applied (result, 

standard deviation, standard error, N sample). 

 

Results and discussion  

Results and Discussion  

After reading the articles, 20 compounds used to 

control or monitor stored grain pests were identified 

using pheromone baits (Table 2. Fig. 2).  

 

Table 1. Pests of higher occurrence in stored grains in Brazil. 

Name Common name Main grains and derivatives affected 
Coleoptera 
Cryptolestes ferrugineus (Stephens, 1831) (Coleoptera: 
Laemophloeidae) 

Rusty Grain Beetle 
  
Flour, Bran, various kinds of cereal 

Lasioderma serricorne (F., 1792) (Coleoptera: 
Anobiidae) 

Cigarette beetle Tobacco, Soy, Tobacco, Maize (corn) 

Oryzaephilus surinamensis (L., 1758) (Coleoptera: 
Silvanidae) 

Grain beetle Maize, all occurrence cultures 

Rhyzopertha dominica (F., 1792) (Coleoptera: 
Bostrichidae) 

Beetle Rice, Barley, Soybeans, Maize, Wheat, 
Sorghum 

Sitophilus zeamais Motschulsky, 1855 (Coleoptera: 
Curculionidae) 

Sawtoothed grain 
beetle 

Rice, Barley, Maize, Wheat, Sorghum 

Tribolium castaneum (Herbst, 1797) (Coleoptera: 
Tenebrionidae) 

Red flour beetle 
 

Rice, Oats, Soybean Meal, Maize, Wheat 

Lepidoptera 
Ephestia kuehniella Zeller, 1879 (Lepidoptera: 
Pyralidae) 

Mediterranean flour 
moth 

Maize, Rice, Wheat Flour, Bran, 
Cornmeal 

Plodia interpunctella (Hübner, 1813) (Lepidoptera: 
Pyralidae) 

Indianmeal moth 
Rice, Maize, Wheat, Beans, Tobacco, 
Soybeans 

Sitotroga cerealella (Olivier, 1789) (Lepidoptera: 
Gelechiidae) 

Angoumois grain 
moth 

Rice, Barley, Rice, Maize, Wheat 
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Table 2. Classification, organic function, chemical and commercial name of the pheromones identified in the 

cited literature. 

Name / Chemical structure 
Commercial 
name 

Organic 
function References 

Aggregation pheromone 
1-Nonanol; (Z)-3-noneol; (Z)-
2-octenol; (s)-(+)-1-octen-3-
ol; (R)-(-)-1-octen-3-ol 

* Alcohol Pierce et al. (1989); Pierce, et al. (1991b); 
Chambers et al. (1990) 

(4R,8R) dimethyldecanal DMD Aldehyde 

Obeng-Ofori and Coaker.,(1990a); Barak and 
Burkholder (1985); Lindgren et al. (1985); Bloch 
Qazi et al. (1998); Hawkin et al. (2011); Duehl et 
al. (2011); Obeng-Ofori and Coaker., (1990b); 
Loschiaho et al. (1986); Dissanayaka,et al. 
(2020c); Phillips and Doud,(2020); Sajeewani et 
al. (2020); Dissanayaka et al. (2020a); 
Dissanayaka et al, (2020b); Sammani et al.. 
(2020a); Rajan et al. (2018); Daglish et al. 
(2017); Ridley et al. (2016); Jittanun and 
Chongrattanameteekul ,(2014); Buckman et al. 
(2013); Arthur et al. (2014); Campbell, (2012); 
Toews et al. (2009); Larson et al. (2008); Small, 
(2007); Campbell, (2013); McKay et al. (2019) 

 
(4S, 5R)-5-Hydroxy-4-
methyl-3-heptanone 

Sitophynone Ketone 

Wakefield et al. (2004); Trematerra and Girgenti  
(1989); Walgenbach et al. (1986); Phillips and 
Throne ,(2010); Walgenbach et al. (1983); 
Likhayo and Hodges,(2000); Carvalho et al. 
(2013); Athanassiou et al. (2006); Tang et al. 
(2009) 

4-(p-acetoxyphenyl)-butan-
2-one * Ketone Perez et al. (2020) 

(Z,Z)-5,8-tetradecadien-13-
olide; (Z, Z)-3,6-dodecadien-
11-olide; 3Z,6Z-dodecadien-
12-olide 

* Lactone Pierce et al. (1987) 

(S)-(+)-1-methylbutyl-E-2-
methyl-2-pentenoate; (2S, 3R)- 
ethylpropyl-2-methyl-3-
hydroxypentanoate 

(Dominicalure-1 
[DL-1]) e 
(Dominicalure-2 
[DL-2]) 

Ester 

Sammani et al.. (2020a); Dissanayaka et al. (2020c); 
Dissanayaka et al. (2020a); Rajan et al. (2018);Daglish 
et al. (2017); Dowdy et al. (1993); McKay et al. (2017); 
Toews et al. (2006); Mahroof et al. (2010) 

1-ethylpropyl (2S, 3R)- 2-
methyl-3-hydroxypentanoate Sitophyllate Ester 

Likhayo and Hodges ,(2000); Athanassiou et al. 
(2006); Chambers et al. (1996)  

Isopropyl (2E,4E)-2,4-
heptadienoate; 1-methyl (E)-
2-methyl-2-heptenoate 

Trunk-call e 
Trunc-call II Ester 

Obeng-Ofori and Coaker, (1990a); Ramírez‐
Martínez et al. (1994); Smith et al. (1999); 
Fadamiro et al. (1996); Fadamiro et al. (1998); 
Omondi et al. (2011); Cork et al. (1991) 

(Z)-3-dodecen-11-olide; 4,8-
dimethyl, E, E-4,8-decadienolide 

(Ferrulactona I) e 
(Ferrulactona II) Lactones 

Chambers et al. (1990); Holloway et al. (2018); 
Losey et al. (2019) 

(2Z-6E)-7-ethyl-33,11-
dimethyl-2,6,10-dodecatriene 

* Unsaturated 
hydrocarbon 

Chiluwal et al. (2018) 

Sex pheromone 
Octadecanal * Aldehyde Vuts et al. (2015) 

(Z)-14-methyl-8-hexadecanal Trogodermal Aldehyde 
Morrison et al. (2020); Castañé et al. (2020); 
Larson et al. (2008); Arthur et al. (2014); McKay 
et al. (2017) 

(4S, 6S, 7S)-7-hdroxy-4,6-
dimethyl-3-nonanone Serricornine Ketone  Fardisi and Mason, (2013); Perez et al. (2020); Arthur 

et al. (2014); McKay et al. (2017); Larson et al. (2008) 

(Z, E)-9,12-tetradecadienayl 
acetatate ZETA OU TDA Ester 

Mullen and Dowdy, (2001); Trematerra et al. (2011); 
Sambaraju and Phillips ,(2008); McKay et al. (2017); 
Campos et al. (2013); Campos et al. (2014); Trematerra 
et al. (2013); Small, (2007); Perez et al. (2020) 

(2Z, 6E)-7-ethyl-3,11-dimethyl-
2,6,10-dodecatrienal Homofarnesal Aldehyde Chiluwal et al. (2017) 

R, E- methyl-2, 4,5- 
tetradacatrienoate; methyl (2E, 
4E, 7Z)- 2,4,7- decatrienoate 

* 
 
Ester 
 

Vuts et al. (2015) 
 

(3E, 6Z)- 3,7,11-trimethyldodeca-
1,3,6,10-tetraene α-Farnesene Unsaturated 

hydrocarbons 
Vuts et al. (2015) 

*Not informed in the articles. 
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Research on pheromone traps, both in pest control 

and monitoring, has been growing since the 1990s 

and has helped to minimize the use of synthetic 

insecticides. Pheromone traps can be applied to 

detect insect presence, population density and flight 

activity. The benefits of pheromones include their 

ability to generate an alert of the incidence of the 

insect and its distribution in both area and time 

(Zarbin et al., 2009).  The most used types of 

pheromones in control or monitoring are 

aggregation and sexual pheromones. The prevalence 

of these two groups of semiochemicals is explained 

by their being the most frequent in stored grain 

pests and, consequently, the most studied, in 

addition to being efficient in pest monitoring and 

control strategies (Moreira et al., 2005). Among the 

compounds most cited in research (Fig. 3) is (R, R)-

4,8-dimethyldecanal, an aggregation pheromone used 

to control T. castaneum and R. dominica. Other 

aggregation pheromones are (S)(+) -(E)-2-methyl-2-

pentenoate of 1-methyl butyl and (S)(+)(E)-2,4-

dimethyl-2-pentenoate of 1- methyl butyl, applied to 

control or monitor R. dominica. One of the leading 

sex pheromones is o (Z, E)-9,12-tetradecadienyl 

acetate, used to monitor and control the Indianmeal 

moth, P. interpunctella. Table 2 shows the 

pheromones with their chemical structure, IUPAC 

and commercial names and chemical function, and 

(Fig. 3) shows the citation percentages of pheromones 

in the consulted literature. 

 

 

Fig. 2. Chemical structure and trade name of identified pheromones in the consulted literature for stored grains 

pests. *Not informed in the articles. 
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Fig. 3. Citation index of compounds identified as pheromones in the consulted literature. 

 

Research with pests in stored grains - historical 

evolution  

The database search strategy resulted in 715 articles. 

In the screening, 30 duplicate articles were excluded. 

After analysing the title, keywords and abstracts, 287 

articles were excluded for failing to meet the inclusion 

criteria. The 398 remaining articles were read in total, 

which resulted in the exclusion of another 289 

studies, including bibliographic reviews and research 

that presented only the synthesis of stored grain pest 

pheromones but still needed to demonstrate their 

application. In total, 109 manuscripts were included 

in the systematic review (Fig. 4) 

 

There has been a significant increase in the number of 

studies published since the 1970s (Fig. 3). The number 

of publications demonstrates an expansion of research 

on stored grain pests. The first identified and isolated 

insect pheromone was the sex pheromone released by 

the moth Bombyx mori L., 1758 (Lepidoptera: 

Bombycidae) (Butenandt et al., 1961). The first study 

on stored grain pests was published in France in 1974 

by Burkholder and Boush (1974) and referred to the 

use of pheromones to capture insects of the genera 

Attagenus, Trogoderma, Anthrenus and Lasioderma.  

 

Studies on pheromones for various stored product 

pests have been identified and are included in the 

synthesis. In the last 50 years, several pheromones 

have become commercially available, and they are 

used for monitoring and detecting stored grain pests 

and control (Phillips and Throne, 2010). Although 

pheromones of some species have been identified 

since the 1970s, for example, the lack of commercially 

available products for their control, the search for 

healthy foods and care for the environment mitigated 

the search for new pheromones for the application of 

pheromones already determined for some species. 
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Fig. 4. Data summary 

 

After the description of the first pheromones, the 

number of publications remained low until the 1980s, 

when the search for the control of these insects 

increased and continued over time, always aiming to 

investigate the possible pheromones of the different 

species of insect pests of stored grains, highlighting 

among them S. granarius (L., 1758), S. oryzae (L., 

1763), S. zeamais and T. castaneum. Scientists were 

always looking to control these insects through 

behaviour to reduce the presence of insecticides in 

food, whether for human or animal use. The 

aggregation pheromone produced by males was 

identified in a study on S. zeamais. This same 

compound was determined for two other species of 

the same genus, S. granarius and S. oryzae 

(Burkholder and Boush, 1974; Faustini, 1982; Obeng-

Ofori and Coaker, 1990a). 

 

The identified aggregation pheromones were used to 

monitor and detect beetles in stored products and 

grains (Barak and Burkholder, 1985). Since the 1990s, 

as shown in (Fig. 5), the number of publications has 

increased significantly, thus indicating that research 

on insect behaviour to monitor and control of 

numerous species has important implications for the 

integrated management of stored grain pests. 

 

Fig. 5. Time trend of pheromone research of stored 

product pests over the last 50 years. 

 

Geographic distribution of studies  

Research studies were carried out in 27 countries 

(Fig. 6) distributed across six continents, with 37.42% 

of these studies originating in North American 

countries, mainly in the United States (n = 50) and 

Canada (n = 12). A total of 28.91% of the studies were 

carried out in 11 countries on the European continent, 

with most studies concentrated in the United 

Kingdom (n = 20), followed by Italy (n = 6). Already 

14.05% of the studies originated from the Asian 

continent, highlighting studies carried out in Japan (n 

= 22). About 2.79% were carried out in South 

America, 3.91% in Oceania and 2.23% in Africa. 

Brazil, which has a humid tropical climate, is the 

largest grain exporter and the second largest producer 

but has minimal participation in these studies, 

highlighting the need to invest in this area to protect 

crops. Insects associated with stored agricultural 

products cause numerous direct and indirect losses 

(Hagstrum and Subramanyam, 2006). Quantitative 

losses in the harvested crop due to damage caused by 

these insects vary with the geographic area: 10% in 

temperate countries and 50% in the humid tropics 

(Wijayaratne et al., 2018). These insect losses occur in 

different magnitudes during post-harvest practices. 

As cereal production is seasonal, harvested 

production must be stocked to meet demand during 

the off-season (Dowell and Dowell, 2017). About 20-

40% of post-harvest losses occur during field and 

post-harvest operations; among these losses, 55% 

occur during storage. The worldwide damage to food 

grains from insect infestation is estimated to be 10-

40% per year (de Souza et al., 2016) (de Souza et al., 

2016). In India, storage losses for cereals were around 
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0.75-1.21%, while losses for pulses and oilseeds were 

1.18-1.67% and 0.22-1.61%, respectively (Jha et al., 

2015). In Asia, about 6% of total post-harvest losses 

are due to inadequate storage facilities, of which 

insects and fungi account for half (3%) of storage 

losses (Sharon et al., 2014). 

 

 

Fig. 6. Geographic distribution of research on pest 

management of stored grains. 

 

In Sri Lanka, post-harvest losses of paddy rice 

amount to approximately 15%, including a storage 

loss of 4-6% (Palipane, 2000; Wijayaratne et al., 

2009). Surplus production of post-harvest rice in Sri 

Lanka is subject to severe insect infestations, 

necessitating appropriate pest management methods 

during grain storage (Dissanayaka et al., 2018a). In 

Brazil, estimates of losses caused by insect attacks on 

the 35 leading crops vary between 2% and 43%. It is 

estimated that, on average, insects cause losses of 

7.7% in these crops, causing significant annual 

damage to the Brazilian economy, despite the 

adoption of control measures (Oliveira et al., 2014). 

Massive losses while storing durable agricultural 

commodities in different geographic regions are a 

critical challenge to global food security (Kumari et 

al., 2020). Insect damage is not limited to weight and 

nutritional loss but includes monitoring and 

management costs. In a world scenario, some cultures 

are highlighted, but due to biotic factors, such as 

insect pests, the quality of a given product will not be 

the same. These insects are primarily polyphagous 

and can be essential pests for stored products and the 

culture itself. Contamination can come from the field 

of production. Some insect pests can attack about 69 

different products worldwide (Hagstrum and 

Subramanyam, 2009); generally, the exempt ones 

acquired resistance to most of the used insecticides 

(Konemann et al., 2017). This causes most affected 

countries to look for new methods to use in their 

control to promote the early detection of certain 

insect pest species in these products. One of the main 

grains of importance for the world scenario is the 

maize Zea mays L. (Poaceae). Over the last few 

decades, this cereal has become the largest 

agricultural crop in the world, in addition to being 

relevant in terms of food safety and human and 

animal nutrition. It is possible to use maize to 

produce many products, such as fuels, beverages and 

biodegradable polymers, including natural polymers 

such as chitosan, cellulose and collagen (Contini et 

al., 2019; Tabasum et al., 2019).  

 

Maize and rice Oryza sativa L. (Poaceae) are 

important cereals with high nutritional value and 

potential for energy conversion (biofuels), thus 

promoting food security and clean energy production 

worldwide. Brazil is the largest corn exporter and the 

world's largest producer of soybeans, Glycine max 

(L.) Merr. (Fabaceae) and is responsible for 50% of 

the world market for this grain. Soybean is the most 

cultivated oilseed in the world, and production is 

expanding in Brazil (EMBRAPA, 2021). One of the 

leading agricultural products sold abroad is soy. Since 

the 1990s, its global demand has increased by 145% 

worldwide, and it is projected to increase by 70-80 

million metric tons annually over the next ten years. 

Argentina, Brazil, and the United States are the main 

actors in global soy production; together, they 

accounted for 80.5% of world production between 

2012 and 2018 and 86.2% of exports during that 

period (FAO, 2021). Massive losses that occur during 

the storage of agricultural products constitute a 

significant challenge for world food security. A 

common feature of the work carried out in each 

country is that they are related to beetles of the genus 

Tribolium, whose insects are considered the main 

pests of many food products. They have a devastating 

action, are voracious and attack different agricultural 

commodities, both raw and processed, stored after 

harvest and coexist in different habitats of the post-

harvest supply chain (Kumari et al., 2020). 
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Due to the growing environmental concerns caused 

by insecticides, many countries seek new monitoring 

and control methods (Wijayaratne et al., 2018). 

Among these new methods, synthetic pheromones 

gained space and are now widely used in monitoring 

programs to determine these insects' presence and 

population density in stored products (Hagstrum et 

al., 2012). Pheromone bait traps are the most used 

method in many countries (Campbell, 2012). There 

are many traps developed to monitor the presence of 

these insects, and one of the most used methods in 

the U.S. and other countries, which are always 

looking for the most convenient model for each 

situation, is the so-called dome trap (Phillips and 

Throne, 2010).  

 

The dome trap is widely used for integrated pest 

management of meal beetles and other stored product 

insects in many countries' grain and food industries. 

This type of trap monitors both flying and non-flying 

insects simultaneously. The trap uses the pheromone 

produced by males of T. castaneum. The pheromone 

4,8-dimethyldecanal (DMD) is released in an 

impregnated rubber septum and a food-based oil as 

attractants. The exact composition of the cooking oil 

sold with the trap is proprietary information, but it 

contains a grain-based cooking oil such as wheat 

germ oil. Food volatiles can be significant attractants. 

Many products have been evaluated as kairomones 

for stored-product insect pests, such as crude extracts 

or specific isolated compounds present in these foods 

(Collins et al., 2007). The so-called wheat weevil S. 

granarius is by far the most studied stored product 

insect pest in terms of its response to kairomones. 

This species responds to whole or crushed seeds of 

rice, wheat, corn and oats (Wakefield et al., 2004). 

Combining food odours with pheromones can 

increase the capture of insects belonging to 

Sitophilus, an effect observed in behavioural 

bioassays and traps (Wakefield et al., 2004). 

Assessment of the attraction of T. castaneum to food 

volatiles has been more limited, although most 

commercial monitoring uses a combination of 

pheromone and kairomone. 

However, not all cooking oils have a pleasing effect on 

stored product insects. Specific cooking oil may have 

different levels of attraction (and even repellence) for 

other species of these insects.  

 

Several applications of pheromones and kairomones 

in managing T. castaneum have been extensively 

researched (Dissanayaka et al., 2020a). The 

simultaneous use of pheromones with commercially 

available kairomone solution increases the percentage 

of the capture of T. castaneum (Doud et al., 2021; 

Phillips and Doud, 2020). In addition, the combined 

use of 4.8 DMD with Cocos nucifera L. (Arecaceae) 

coconut oil and Azadirachta indica A. Juss neem oil 

(Meliaceae) increases the capture of T. castaneum 

(Dissanayaka et al., 2018a); this effect was recently 

observed with other species, where the sex 

pheromone (Z,E)-9,12-tetradecadienyl acetate 

(ZETA) combined with neem oil increases the 

successful mating cycle of Cadra cautella (Walker, 

1863) (Lepidoptera: Pyralidae).  

 

Thus, the effect of fats, especially neem, has been 

shown to improve the response of adults of some 

adult insects, such as T. castaneum, when added to its 

aggregation pheromone 4.8 DMD, but this effect still 

needs further observation (Bandara, Dissanayaka, 

Wijayaratne, and Morrison, 2020: Sammani et al., 

2020b). With the evolution of insecticide resistance 

and concern about the risks posed by insecticides to 

human health and the environment (Bandara et al., 

2021), new research has been developed that aims to 

obtain more friendly methods and more innovative 

ways to control insects in the sector storage in several 

countries such as the United States, United Kingdom, 

Japan, Russia and Canada such as behaviour control. 

Considering all insect pest genera presented in the 22 

countries studied, the species addressed in the 

articles in more significant numbers belong to the 

genus Tribolium, with 48.43% of the species. The 

beetle T. castaneum was the most studied insect, with 

34.08% of the articles, followed by R. dominica and 

P. interpuctella with 9.50% (Table 3).  



Int. J. Agron. Agri. R. 

 

Gutierrez et al.                                                                                                                          Page 37

Table 3. Species observed in the analysed articles. 

Family Genera Species Articles Grain or derivatives 

Anobiidae 
Lasioderma L. serricorne 7 Peanut and Rice 

Wheat flour 
Stegobium S. paniceum (L., 1758) 2 Wheat flour 

Bostrichidae 
 

Prostephanus P. truncatus (Horn, 1878) 10 Maize 

Rhyzopertha R. dominica 16 Wheat 
Rice 

Chrysomelidae 
Acanthoscelides A. obtectus (Say, 1831) 1 Bean 
Calosobruchus C. chinensis (L., 1758) 3 Bean 

Cleridae Necrobia N. rufipes (De Geer, 1775) 1 Uninformed 

Curculionidae 

Sitona S. lineatus (L., 1758) 1 Uninformed 

Sitophilus 

S. granaries 5 Wheat and Rice 

S. oryzae 13 

Rice 
Wheat 
Wheat flour 
and Yeast 

S. ssp. 1 Uninformed 

S. zeamais 12 
Wheat 
Maize 
Rice 

Dermestidae 

Anthrenus A. sp. 1 Uninformed 

Attagenus 
A. brunneus Faldermann, 
1835 1 Uninformed 

Trogoderma 

   
T. granarium Everts, 1898 1 Rice and Wheat 

T. variabile Ballion, 1878 8 
Wheat 
Rice 
Wheat flour 

Gelechiidae Sitotroga S. cerealella 1 Maize 
Histeridae Teretrius T. nigrescens (Lewis, 1891) 1 Maize 

Laemophloeidae Cryptolestes 
C. ferrugineus 9 

Wheat 
Silo grains 

C. pusillus (Schénherr, 1817) 2 Uninformed 

Mycetophagidae Typhaea T. stercorea (L., 1758). 2 Peanut 
Wheat flour 

Nitidulidae Carpophilus C. hemipterus (L., 1758) 1 Peanut 

Pyralidae 

Cadra C. cautella 4 
Peanut 
Almond 
Rice flour and Bean 

Ephestia 
E. cautella 1 Wheat 
E. elutella (Hübner, 1796) 1 Uninformed 
E. kuehniella 3 Wheat 

Plodia P. interpunctella 15 
Wheat 
Peanut 
Rice 

Silvanidae 
 

Ahasverus A. advena (Walt, 1832) 2 
Oat 
Wheat flour 

Cathartus 
C. quadricollis (Guérin-
Méneville, 1844) 

1 Uninformed 

Oryzaephilus O. mercator (Fauvel, 1889) 5 Oat 
Tenebrionidae Gnatocerus G. cornutus (F., 1798) 8 Wheat flour 

 Tribolium 
T. castaneum 42 Wheat flour 
T. confusum (Duval, 1868) 12 Wheat Wheat flour e Yeast 

  
T. destructor Uyttenboogaart, 
1934 

1 Wheat flour 

 

Methodological approaches adopted in the analysed 

works  

Pheromones have been increasingly important in pest 

control in agriculture; several works describe their 

use in monitoring and controlling stored grain pests. 

However, it is possible to determine the compounds' 

efficiencies through laboratory tests with insects 

(bioassays) and field tests (analysis of insect response 

at the storage site). Of most of the 109 articles, 70 

were carried out in the laboratory, while 58 described 

field studies (Table 4).  

 

To investigate the effects of pheromones on pest 

control, it is necessary to carry out bioassays; of the 109 
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articles analysed, 45 presented the type of behavioural 

bioassay indicated in Table 5.  

 
Table 4. Total number and percentage of works that 

presented laboratory and field approaches. 

Study location Total Number Percentage (%) 
Laboratory 56 51.8 
Field 50 46.2 

 

For this system, two airflow sources merge at a 

decision point (Y tube) to form a blade flow down the 

corridor to an initial area where the insects or larvae 

are placed at the beginning of an experiment 

(Stevenson et al., 2017). The Yolfactometer is the most 

used to test the bioactivity of the insect against the 

semiochemicals.

 

Table 5. Total number and percentage of bioassays performed in the analysed studies. 

Bioassay in olfactometry 
Total 

Number (%) Reference 

Petri dish arena 1 0.92 Bloch Qazi et al. (1998) 

Arena 10 9.2 

Awater-Salendo et al. ( 2020); Athanassiou et al. (2006); 
Smith et al. (1999); Wakefield et al. (2004); Phillips et al. 
(1993); Dowdy et al. (1993); Trematerra and Girgenti, 
(1989); Lindgren et al. (1985); Hodges et al. (1983); 
Athanassiou et al. (2006) ; Jittanun and 
Chongrattanameteekul, (2014); Walgenbach et al. (1986) 

Y-olfactometer 15 21.2 

Pierce et al. (1987), Edde et al. (2005); Pierce et al. (1991a); 
Pierce et al. (1989); Gerken et al. (2018); Athanassiou et al. 
(2006); Faustini et al. (1981) McKay et al.( 2017); Vuts et al. 
(2015); Tang et al.( 2009); Smith et al. (1999) Phillips et al. 
(1993);Barak and Burkholder, (1985); Losey et al. (2019) 
Dissanayaka et al. (2018b) 

semi-field-controlled climate 5 5.5 
Phillips and Doud, (2020) Dissanayaka et al. (2018b); 
Gerken et al. (2018); Sambaraju and (Phillips, 2008); 
Wakefield et al. (2004) 

Wind tunnel tests 3 5.5 Fadamiro et al. (1998); Gerken et al., 2018); Campos and 
Phillips, (2013) 

Electroantennography (EAG) 1 1.8 Chambers et al. (1990) 

  

Most studies carried out the olfactometer test in the 

laboratory, which is quite common as it allows us to 

ascertain the “preference” of insects for one or more 

options (treatments and controls). Olfactometry is a 

technique used to study how a given semiochemical 

affects the behaviour or physiology of the insect. The 

primary function of olfactometry is to produce 

qualitative or quantitative data, depending on the 

question, to be answered quickly, efficiently and 

accurately. Most of this study uses olfactometers, 

which are commercially available and have the same 

operating principle and can and should be adapted to 

the insect tested (Eiras and Mafra-Neto, 2001). 

Olfactometers have the same elements: a chamber for 

inserting the tested insects, an area for inserting the 

chemical compound (or odour source) and a reading 

area (the section where insects fly or walk if attracted 

by the chemical compound). The data are generated 

through bioassays classified into (1) indiscriminate 

bioassays that evaluate the attraction or not of the 

insect to the odour source and (2) discriminant 

bioassays evaluating the entire behaviour of the insect 

to the odour source, observing behavioural changes 

even when the insect does not reach the olfactometer 

reading area (Eiras and Mafra-Neto, 2001). The 

development of different types of traps for sampling 

insects from stored products, along with progress in 

the identification and synthesis of pheromones and 

attractants for the main insect species, has been the 

subject of much research in the last two decades. In 

addition, the demand for products without insect 

contamination makes traps for the early detection of 

insects indispensable tools to keep grains and their 

products free from damage or loss (Barak et al., 

1990). Several traps are efficient at controlling and 

monitoring stored grain pests; of the 109 articles 

analysed, 81 showed the types of traps.  

 

Stored product pest insect traps fall into three 

categories: aerial insect traps, including sticky and 

funnel traps, surface traps to capture insects while 

walking using pheromones or food attractants and 
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lures used directly on the grain mass, such as the loss 

of the glue-type trap (Barak et al., 1990). These 

categories become less distinct as traps are used for 

species other than those they were designed for. Two 

types of traps were used the most frequently, pitfall 

and dome traps. Pitfall traps are commonly used to 

estimate the relative abundance of terrestrial 

arthropods and have been used in many ecosystems. 

These traps are the most used method to capture 

invertebrates. Pitfall traps are popular because they 

are more affordable, cost-effective, and relatively 

simple to build and deploy. The fundamental design 

of the pitfall trap consists of a container buried in the 

ground with the top flush with the surface. The 

simplicity of this method attracts many wildlife 

researchers who want to investigate patterns of 

abundance and monitor arthropods. 

 
Pest control and monitoring activities-approaches 

adopted in the studies  

The management of stored grain pests is a set of 

monitoring and control techniques to maintain high-

quality grains. (Fig. 7) and (Fig. 8) show the number 

and percentage of articles that controlled and 

monitored insect pests of stored grains in the 

analysed reports. There is a much greater prevalence 

of articles that showed the monitoring of stored grain 

pests as an object of study, a total of 93 articles. On 

the other hand, we observed a total of 12 articles that 

presented preventive control as an essential step 

towards the success of an integrated pest 

management program in stored grains.  

To implement an effective integrated management 

program with reduced infestation potential, the 

management of the storage unit must be aware of the 

importance of the influence of ecological factors, such 

as temperature, grain moisture content, the relative 

humidity of the environment and the storage period 

involved in the system. In the same way, the choice of 

cultivar, the harvesting process, reception and 

cleaning, grain drying, aeration and refrigeration are 

also essential factors for the preventive control of 

stored grain pests. Several articles presented studies 

on pest control with different compound and grain 

types, as seen in Table 7. 

 

Once stored, the grains must be monitored 

throughout their storage period. Tracking the 

evolution of pests that occur in the mass of stored 

grains is of fundamental importance, as it allows 

for detecting the beginning of infestations that may 

alter the final quality of the grain. This monitoring 

is based on an efficient pest sampling system, such 

as using fixed traps to capture insects or sieves 

with a mesh size of not less than 20 mm, and the 

measurement of variables such as grain 

temperature and humidity, which influence the 

conservation of the stored product. It allows 

researchers to record the beginning of the 

infestation and direct the decision-making by the 

storer to guarantee the quality of the grain (Lorini 

et al., 2015). Several articles that monitored several 

pests, with their respective pheromones in 

different types of grains, are listed in Table 8.  

 

Table 6. Total number and percentage of traps used. 

Trap Type 
Total 

Number (%) References 

Pitfall traps 30 

29.6 
 
 
 
 

  
Bloch Qazi et al. (1998); Hodges et al., 1998); Fadamiro et al. (1998); Tigar 
et al. (1994); Fargo et al. (1994); Perez et al. (2020); Stevens et al. (2019); 
McKay et al. (2019); McKay et al. (2017); Wong-Corral et al. (2001); 
Obeng-Ofori and Coaker,(1990a); Loschiaho et al. (1986); Dissanayaka et 
al. (2018b); Holloway et al. (2018); Rajan et al. (2018); Daglish et al. 
(2017); Ridley et al. (2016); Arthur et al. (2014); Carvalho et al. (2013); 
Likhayo and Hodges ,(2000); Athanassiou et al. (2006); Edde et al. (2006); 
Edde et al. (2005); Wakefield et al. (2004); Campbell and Arbogast, 
(2004); Birkinshaw et al. (2004); Wong-Corral et al. (2001) ,(2001); 
Gerken et al. (2018); Campos et al. (2013); Losey et al. (2019) 
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Trap Type 
Total 

Number (%) References 

Dome 21 20.3 

Dissanayaka et al. (2018a); Smith et al. (1999); Wakefield et al. (2004); 
Jittanun and Chongrattanameteekul, (2014); Vuts et al. (2015); Tang et al. 
(2009); Omondi et al. (2011); Toews et al. (2009); Larson et al. (2008); 
Small, (2007); Fedina et al. (2007); Toews et al. (2006); Hawkin et al. 
(2011); (Campbell and Mullen, (2004) Pierce et al. (1989); Pierce et al. 
(1987); Tang et al. (2009); Smith et al. (1999); Phillips et al. (1993) 

Adhesive traps 9 8.3 
Campbell et al. (2002); Dowdy et al. (1998), Chambers et al. (1996); 
Ramírez‐Martínez et al. (1994), Boake, (1985); Campos et al. (2014), 
Campos et al. (2013); Trematerra et al., 2013), Buckman et al. (2013) 

Bucket traps with 
funnels 

4 1.8 
Obeng-Ofori and Coaker (1990b); Sambaraju and Phillips, (2008), 
Fadamiro et al. (1998); Faustini et al. (1981) 

Panel trap 1 0.92 Bloch Qazi et al. (1998) 

 

Table 7. Pest control studies on stored grains using pheromones. 

Grain Family Plague species Compounds References 

Rice 

Pyralidae Cadra cautela 
(Z,E)-9,12-tetradecadienylacetate 
(ZETA) e (Z)-9-tetradecadien-1-yl 
acetate (ZTA) 

Sammani et al.. 
(2020a) 

Bostrichidae Rhyzopertha 
dominica 

( S ) - (+) - 1-metilbutil- ( E ) -2-metil-
2-pentenoato (DL-1) e ( S ) - (+) - 1-
metilbutil- ( E ) -2,4-dimetil-2-
pentenoato (DL-2) 

Dissanayaka et al. 
(2020d) 

Tenebrionidae Tribolium castaneum 4,8-dimethyldecanal 
Dissanayaka et al. 
(2020a) 

 
Oat 

 
Silvanidae 

Oryzaephilus 
surinamensis 

1-octen-3-ol Pierce et al. (1989) 
Oryzaephilus 
mercator 

Oryzaephilus 
surinamensis 

(R, S)-(Z,Z)-3,6-dodecadien-11-olide 
(lactone II); (Z,Z)-3,6 dodecadienolide 
(lactone III) e (R,S)-(Z,Z)- 5,8-
tetradecadien-13-olide (lactone IV) 

White and Chambers, 
(1989),White, 
Chambers, et al. 
(1989) 

Bean Chrysomelidae 
Callosobruchus 
chinensis (L., 1758) 

2E-: 2Z-homofarnesal Chiluwal et al. (2017) 

 
Wheat 

Tenebrionidae Tribolium castaneum 
Dimethyldecanal (DMD) e 
dominicalure 1 e 2 

Stevenson et al. (2017) 

Bostrichidae Rhyzopertha 
dominica 

Dominicalure-1 ((S)-1-Methylbutyl 
(E)-2,4-dimethyl-2-pentenoate) 
Dominicalure-2 ((S)-1-Methylbutyl 
(E)-2-methyl-2-pentenoate) 

Edde et al. (2005) 

Curculionidae 

Sitophilus granarius 

4S, 5R-sitophinone Trematerra and 
Girgenti, (1989) 

Sitophilus oryzae 

Sitophilus zeamais 
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Table 8. Monitoring of stored grain pests with pheromones. 

Grain Type Family Species Prague Compound Reference 

Rice 
Pteromalidae 

Lariophagus 
distinguendus Not specified Tang et al. (2016) 
Theocolax elegans 

Curculionidae 
Sitophilus 
granarius 

Sitophyllate 
Chambers et al. 
(1996) 

Oat 

Silvanidae 
Ahasverus advena 

3-Octanol (racemico) and 3-octanona 
Pierce, et al. 
(1991a) 

Oryzaephilus 
surinamensis 

Silvanidae C. quadricollis 

Laemophoeidae Cryptolestes 
ferrugineus 

Pea and 
Beans 

Bostrichidae Rhyzopertha 
dominica 

Dominicalure-1 (S)-1-Methylbutyl (E)-
2,4-dimethyl-2-pentenoate) 
Dominicalure-2 (S)-1-Methylbutyl (E)-2-
methyl-2-pentenoate) 

Edde et al. (2006); 
Selitskaya and 
Shamshev(1995) 

Curculionidae Sitona lineatus 4-methyl-3,5-heptanedione Smart et al. (1994) 

Maize 

Bostrichidae 
Prostephanus 
truncutus (Horn, 
1878) 

Trun-call 1 (1-Methylethyl (E)-2-methyl-
2-pentenoate) 

Wong-Corral et al. 
(2001) 
Muatinte et al. 
(2018) 

Trun-call 2 (2 1-Methylethyl (E,E)-2,4-
dimethyl-2,4-heptadienoate) 

Tenebrionidae Tribolium confusum 4,8-dimethyldecanal 
Gerken et al. 
(2018) 

Curculionidae Sitophilus oryzae Sitophilure Likhayo and 
Hodges, (2000) 

Bostrichidae Rhyzopertha 
dominica 

Dominicalure-1 (S)-1-Methylbutyl (E)-
2,4-dimethyl-2-pentenoate) 
Dominicalure-2 (S)-1-Methylbutyl (E)-2-
methyl-2-pentenoate) 

Mahroof et al. 
(2010) 

Wheat 

Mycetophagidae Typhaea stercorea 
4,8-dimethyldecanal 

Phillips and Doud, 
(2020) 
 Silvanidae Ahasverus advena 

Bostrichidae Oryzaephilus 
surinamensis 

Not specified Arthur et al. (2014) 

Laemophloeidae 
Cryptolestes 
ferrugineus 

Cucujolide I e Cucujolide II Losey et al. (2019) 

Anobiidae 
Lasioderma 
serricorne 

Not specified 
Fardisi and Mason 
,(2013) 

Dermestidae Trogoderma 
variable 

Not specified Arthur et al. (2014) 

Pyralidae Cadra cautella 
(ZETA) Z, E)-9,12-tetradecadienyl acetate 
(ZTA) (Z)-9-tetradecadien-1-yl acetate 

Trematerra et al. 
(2011) 

 

 

Fig. 7. Number of articles with monitoring and 

control studies of stored grain pests. 

 

Fig. 8. Percentage of articles on monitoring and 

controlling stored grain pests. 
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Synthesis of pheromones 

Aggregation pheromone of T. confusum and T. 

castaneum  

In the search for articles on the synthesis of stored grain 

pest pheromones, 15 references were found related to 

the synthesis of tribolure, an aggregation pheromone of 

T. confusum and T. castaneum, composed of a mixture 

of stereoisomers (4R,8S), (4R, 8R), (4S,8S) and (4S,8R) 

of 4,8-dimethyl decanal in a 4:4:1:1 ratio (Fig. 9). Here, 

we separate the synthetic routes into two groups. Group 

1 includes the routes in which citronellic acid, or its 

derivatives, was used as starting material. Group 2 

encompasses all the other routes; these departed from 

the most varied compounds. The two groups follow a 

chronological order of publication. These data are 

presented in Table 9.  

 

Table 9. Pheromone syntheses of T. confusum and T. castaneum found in the literature from 1981 through 2015.  

Pest insects Products Key step Overall yield Number 
of steps 

Synthesis 

  GROUP 1    

T. confusum e T. 
castaneum 
 
 
 
 
 

4,8-dimethyldecanal 

Wittig 4%* 
 
5 Suzuki, (1981) 

Alkylation and 
Grignard reaction 
 

54%*  
3 

Zarbin et al. 
(1998) 

58%* 3 
Santangelo et 
al. (2006) 

Alkylation 
 
25% 

 
6 

Akasaka et al. 
(2011) 

(4R,8R)-4,8-
dimethyldecanal 

 
Alkylation 

(4S, 8R)-: 15% e (4S, 
8S)-: 18% 

 
Ten and 10 

Mori and 
Takikawa, 
(1991) 

 
T. castaneum 
 
 

 
4,8-dimethyldecanal 
 
 

Alkylation and 
Grignard 

58%* 3 Santangelo et 
al. (2006) 

Alkylation 
 
25% 

 
6 

Akasaka et al. 
(2011) 

 
Kolbe's electrolysis 

(4R, 8R)-: 8% e 
(4R, 8S)-: 10% 

 
5 and 5 

Mori et al. 
(1985) 

Wittig and 
Alkylation 

(4S, 8S)-:8%* e 
(4R, 8R/4R,8S)-:0,9% 

5 and 5 
Suzuki et al. 
(1983) 

Kolbe's electrolysis, 
Alkylation and 
Grignard 

(4S, 8R)-: 11%, (4S, 
8S)-: 28%, (4R, 8R)-: 
7,2% e (4R, 8S)-: 5,4% 

7, 8, 6 and 6 Mori et al. 
(1983) 

  GROUP 2    

 
T. castaneum 

(4R,8R)-4,8-
dimethyldecanal Grignard 5,9%* 9 

Fuganti et al. 
(1988) 

 
T. confusum e T. 
castaneum 
 
 

 
4,8-dimethyldecanal 
 

Wittig 
(4R,8R)-: 15% e 
(4R,8S)-: 19% 

9 and 9 
Cheskis et al. 
(1988) 

Grignard 34% 7 Odinokov et al. 
(1989) 

Alkylation 15,5% 7 
Odinokov et al. 
(1991) 

Ozonolysis 34%* 7 
Ismuratov et 
al. (2003) 

Conjugate addition 7% 11 
Kameda and 
Nagano, 
(2006) 

Grignard (4R, 8R/S)-: 30% e 
(4S, 8R/S)-: 67% 

6 and 3 Wang et al. 
(2015) 
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Fig. 9. T. confusum and T. castaneum aggregation 

pheromone.  

 

The synthetic routes for preparing tribolure 

components have generally improved over the years 

by increasing global yields, execution, and the 

number of steps. Furthermore, chain growth 

reactions using Grignard and Wittig are common in 

these routes and are present in most key steps. For 

scale preparation, overly complex and expensive 

reactions are only sometimes attractive. Routes like 

those of Zarbin et al. (1998) and Santangelo et al. 

(2006) are just three steps and of little complexity, 

resulting in products with 54% and 58% global yields, 

respectively, they are good candidates for this 

purpose. From an environmental point of view, 

emphasis should be given to the work of Wang et al. 

(2015) They used compost derived from industrial 

waste as a starting material and reached the products 

through routes of 3 and 5 steps with overall yields of 

67% and 30%, respectively.  

Synthesis of sitophilure, aggregation pheromone of 

S. oryzae and S. zeamais and sitophilate aggregation 

pheromone of S. granaries 

Six publications concerning the synthesis of Sitophilus 

pheromones were found. Three of them deal with the 

synthesis of (4R,5S)-5-hydroxy-4-methyl-3-heptanone 

(sitophilure), an aggregation pheromone of S. oryzae 

and S. zeamais (Fig. 10). The others deal with the 

synthesis of 1-ethylpropyl (2S,3R)-3-hydroxy-2-methyl 

pentanoate, known as sitophilate, an aggregation 

pheromone of S. granarius (Fig. 10). All were 

published between 1988 and 2013 and Table 10 

summarises the syntheses of each pheromone in 

chronological order of publication. 

 

For both sitophilure and sitophilate, routes that use 

chemoenzymatic steps are of great importance from a 

scalable point of view. Kalaitzakis et al. (2006) used 

this approach and in just two steps, obtained the 

highest yield described so far in the synthesis of 

sitophilure. In the same group, Kalaitzakis et al. 

(2007) prepared the sitophilate with a high yield in 

just four steps. Emphasis should be given to Ravía et 

al. (2013), who, in addition to using enzymes, also 

used microwave irradiation under solvent-free 

conditions in two of their five steps and obtained a 

high overall yield. 

 

Table 10. Synthesis of S. oryzae, S. zeamais and S. granarius pheromones. 

Pest insects Products Key step 
Overall 
yield 

Number 
of steps Synthesis 

Sitophilure 

 
S. oryzae e S. 
zeamais 
 
 

(4S,5R)-5- 
hydroxy-4-methyl-

3-heptanone 

Grignard  
16% 

7 Mori et al. (1988) 

Microbiological reduction 
(Saccharomyces cerevisiae)  

18% 12 
Pilli and Riatto, (1999) 

Stereoselective enzymatic 
reduction and alkylation  

81% 
2 

Kalaitzakis et al. (2006) 

Sitophilato 

 
S. granarius 
 
 

(2S,3R)- e (2S, 
3S)-3-hydroxy-2-
methylpentanoate 

Beilis-Hillman condensation 
 
35% 

2 
Cheskis et al. (1990a) 

 
(2S,3R)-3- 
hydroxy-2-

methylpentanoate 

Stereoselective enzymatic 
reduction and enzymatic 
hydrolysis 

 
63% 

4 Kalaitzakis et al. (2007) 

Alkylation; stereoselective 
enzyme reduction and 
Mitsunobu inversion, 

 
50% 

5 

Ravía et al. (2013) 
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Fig. 10. A) Aggregation pheromone from S. oryzae 

and S. zeamais. B) S. granaries aggregation 

pheromone. 

Synthesis of methyl (R)-(-)-(E)-2,4,5-tetradecatrienoate 

and methyl (2E,4Z)-2,4-decadienoate, aggregation 

pheromone from A. obtectus  

For the aggregation pheromone of A. obtectus, eight 

articles were found that approached the acquirement 

of the molecule (R)-(-)-(E)-2,4,5- methyl 

tetradecatrienoate (Fig. 11) between the years 1981 

and 2018. Investigations continued over the years, 

which led to the discovery of another attractive 

compound, methyl (2E,4Z)-2,4-decadienoate (Mori, 

2012) (Mori, 2012). Two articles were published 

referring to its synthesis, presented in Table 11.  

 

Table 11. Synthesis of A. obtectus pheromones found in the literature. 

Pest insects Products Key step Overall yield 
Number 
of steps 

Synthesis 

Acanthoscelides 
obtectus 
 

(R)-(-) -(E)-2,4,5- 
Methyl 

tetradecatrienoate 

Claisen rearrangement of 
ortho ester 

 
1% 

 
7 

Mori et al. 
(1981) 

Horner-Wadsworth-
Emmons reaction 

 
29% 

 
3 

Franck-
Neumann et al. 
(1998) 

Horner-Wadsworth-
Emmons reaction 

 
35% 

 
5 

Satoh et al. 
(2002) 

Asymmetric catalytic 
reaction with palladium 

 
uninformed 
o 

 
6 

Ogasawara et 
al. (2005) 

Claisen rearrangement 22% 8 Mori, (2012) 

(±) -(E)- Methyl 
tetradeca-2,4,5-

trienoate 

Wittig Olefination 35% 3 
Sakhautdinov 
et al. (2018) 

Alkylation and lactonisation 10% 5 Melikyan et al. 
(1990) 

Wittig and Schlosser 
reactions 

uninformed 
o 

uninformed 
o 

Badanyan et al. 
(2001) 

(2E,4Z)- Methyl 2,4-
decadienoate 

Thermal rearrangement of 
allenic 3,4-esters 

40% 2 Mori, (2012) 

Wittig Olefination 42% 3 
Shakhmaev et 
al. (2017) 

 

 

 

Fig. 11. (R)-(-)-(E)-2,4,5-methyl tetradecatrienoate 

trienoate. 

 

From the analysis of the articles, we observed that the 

most used reactions for the synthesis of methyl (R)-(-

)-(E)-2,4,5-tetradecatrienoate are Wittig, Horner-

Wadsworth-Emmons and Claisen rearrangements. 

The progress in routes over the years regarding yields, 

reaction conditions, route shortening, and economy is 

also visible. The routes described by most authors are 

asymmetrical because of the complexity of the 

reaction and difficulties in elaborating the reactions. 

The proposal of the racemic synthesis was published 

in 2018 in three stages with a yield of 35%, thus 

having a low number of steps, the economy of 

reagents, mild conditions and satisfactory yield is a 

promising route for large-scale pheromone 

production (Sakhautdinov et al., 2018). For the 

methyl (2E,4Z)-2,4-decadienoate molecule, the best 

synthesis is the one described by Shakhmaev et al. 

(2017) which occurs in three steps with an overall 

yield of 42%. 

Synthesis of cucujolides aggregation pheromones of 

C. ferrugineus and O. surinamensis 

Macrolide lactones, the “cucujolides” (Fig. 12), are a 

class of aggregation pheromones (Hötling et al., 2014). 
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In this review, 15 articles referred to synthesising these 

compounds from C. ferrugineus and O. surinamensis. 

For C. ferrugineus, there are two macrolides, (4E,8E)-

4,8-dimethyl-4,8-decadien-10-oIide (ferrulactone I or 

cucujolide I) and (3Z,11S)-3-dodecen-11-olide 

(ferrolactone II or cucujolide II) (Hötling et al., 2015). 

For O. surinamensis there are five macrolides, (3Z,6Z)-

dodeca-3,6-dien-11-olide (cucujolide IV), (5Z,8Z,13R)-

tetradeca-5,8-dien-13-olide (cucujolide V), (3Z,6Z)-

dodeca-3,6-dien-12-olide (cucujolide IX), (5Z, 8Z,12R)-

tetradeca-5,8-dien-12-olide (cucujolide X) and 

(9Z,12Z,15R))-octadeca-9,12-dien-15-olide (cucujolide 

XI) (Hötling et al., 2014). Table 12 shows the articles 

that synthesized these compounds in chronological 

order of publication. 

In general, the articles described obtaining 

ferrulactone starting from geraniol; lactonisation is 

the common step among them. The most exciting 

commercial synthesis is described by Cheskis et al. 

(1990b), a six-step synthesis with a 28% yield. For 

ferrulactone II, its production converges as a whole 

to form hydroxy acids that are subsequently 

lactonised. The routes presented have low yields. 

However, studies on obtaining the pheromone via 

fatty acids are promising for shortening the route 

and higher yields (Odinokov, Ishmuratov, 

Botsman, Vakhidov, Khametova, et al., 1992; 

Vanderwel et al., 1992). Finally, Cucujolide X and 

XI are synthesized with satisfactory yields of 29% 

and 37%, respectively. 

 

Table 12. Synthesis of A. obtectus pheromones found in the literature. 

Insect pest Products Key step Overall 
yield 

Number 
of steps 

Synthesis 

Cryptolestes 
ferrugineus 
 

 
Ferrulactone I 
 

Intramolecular alkylation 11% 5 
Oehlschlager et al. 
(1983) 

Macro lactonisation by 
Corey's method 

10% 7 
Sakai and Mori, 
(1986) 

Lactonization of α,ω-
hydroxy acid 

28% 6 Cheskis et al. 
(1990b) 

Oxidative cleavage uniformed 2 
Vanderwel et al. 
(1992) 

Cycling with palladium 17% 5 Kukovinets et al. 
(1996) 

Ferrulactone II 
 

Grignard reaction and 
lactonisation. 1.7% 17 

Sakai and Mori, 
(1986) 

Wittig reaction and 
enantioselective 
reduction 
 

17.5% 5 Keinan et al. (1991) 

Hydroxy acid cyclization uniformed 3 
Vanderwel et al. 
(1992) 

Ozonolysis and hydroxy 
acid cyclization uniformed 

uniformed 
 

Odinokov et al. 
(1992) 

Wittig reaction 
 

19% 8 Czeskis et al. (1993) 

20% 8 Cheskis et al. 
(1993) 

Cadiot - Chodkiewicz 
cross coupling 

 
10% 

10 
Mavrov and 
Serebryakov, 
(1993) 

Horner-Emmons 
reaction 

9% 5 Vasil’ev et al. 
(1996) 

Oryzaephilus 
Surinamensis 
 

Cucujolide X 
Wittig reaction and Ring-
closing alkyne metathesis 
(RCAM) 

29% 7 Hötling et al. 
(2014) 

Cucujolide XI 
Wittig reaction and 
carbodiimide 
esterification 

37% 3 
Hötling et al. 
(2015) 
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Fig. 12. Macrolide lactones 

 

Conclusion  

To our knowledge, 17 distinct compounds are used to 

control and monitor stored grain pests as pheromone 

baits, including ten aggregations and seven sexual. 

The compounds used as pheromones belong to 

different chemical classes, four alcohols, four 

aldehydes, three ketones, fifteen esters and two 

hydrocarbons. This highlights a low chemical 

diversity among the chemical constituents of the 

pheromones. The number of publications was higher 

in 1990, showing a decrease in 2000, an increase in 

2010 and a sharp reduction in 2021, demonstrating a 

lack of interest in this topic for some countries. A 

more significant number of research studies on the 

use of stored grain pest pheromones have been 

carried out in the North American continent, 

demonstrating that countries like the U.S.A. have 

invested massively in this area of research. Despite 

being the largest corn exporter and the largest 

soybean producer in the world, Brazil does not have 

the most scientific studies in this area. This fact 

highlights the need for more significant investments 

in this area of research by South American countries, 

mainly Brazil. Considering the main pests of many 

food products, beetles of the genus Tribolium were 

the most addressed in the articles. The beetle T. 

castaneum is being studied, followed by R. dominica 

and P. interpuctella. Most of the articles in the 

present review monitored stored grain pests, totalling 

93 articles. This is probably because this approach 

prevents the overuse of insecticides to control these 

pests. Finally, most of the studies were carried out in 

the laboratory, and little has been studied about the 

performance of these products in the field, which 

opens a critical window for evaluating this approach 

in an environment closer to reality. Since factors such 

as climate and location can influence the response of 

the pest to the pheromone, it is necessary to evaluate 

each pheromone compound in the context of each 

region, thus avoiding the wrong execution of 

strategies and frustration with programs that 

integrate different control and monitoring strategies.  
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