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Abstract 

   
Tuberculosis, caused by the infectious pathogenic bacteria Mycobacterium tuberculosis, is one of the top 10 

infectious agents (above AIDS/HIV) that cause death globally, and a large number of people contract the disease 

every year. Significantly, the four first-line drugs (rifampicin, isoniazid, pyrazinamide, and ethambutol) that 

make up the foundation of treatment regimens throughout the first six to nine months of treatment are delivered 

in various combinations when administering TB treatments. It is very important to continuously update 

information on molecular mechanisms of action and resistance to the anti-tuberculosis drugs against M. 

tuberculosis due the global rises in 558 000 new cases of rifampicin-resistant/ multidrug-resistant tuberculosis 

recently.In many countries and regions, even more severe cases of drug resistance have been documented in 

recent years. The aim of this review is to provide an overview of the latest report on molecular mechanisms of 

action and resistance to the first-line drugs against M. tuberculosis.A better knowledge of the mechanisms of 

action and resistance of anti-tuberculosis drugs would be very helpful for efficient tuberculosis therapy and 

clinical care. 
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Introduction 

Tuberculosis is a communicable disease and one of 

the top ten causes of death worldwide from a single 

infectious agent (above AIDS/HIV) and a lot of 

people fall sick with the TB disease each year (Bu et 

al., 2022; Islam et al.,2023). The COVID-19 

pandemic is still having a negative effect on the 

burden of tuberculosis disease and the availability of 

tuberculosis diagnosis and treatment. Global 

tuberculosis targets are not being met, and progress 

gained in the years leading up to 2019 has slowed, 

halted, or reversed. Globally, there is an estimate that 

10.6 million people have developed tuberculosis 

disease by the year 2021, a rise of 4.5% from 

10.1 million in 2020 (WHO, 2022). According to 

estimates, the number of new cases of drug-resistant 

tuberculosis increased from 2020 to 2021, accounting 

for 450 000 cases of rifampicin-resistant tuberculosis 

in 2021. Geographically, the Western Pacific (18%), 

Africa (23%) and South-East Asia (45%) areas of the 

World Health Organization (WHO) had the highest 

percentage of tuberculosis cases in 2021 (18%), 

followed by the Eastern Mediterranean (8.1%), the 

Americas (2.9%) and Europe (2.2%).  87% of the 

estimated incident cases worldwide were from the 30 

countries with the highest tuberculosis burdens 

(WHO, 2022). More than two thirds of the world's 

total came from eight of these nations, including 

Nigeria (4.4%), Bangladesh (3.6%), Pakistan (5.7%), 

the Philippines (7.0%), and the Democratic Republic 

of the Congo (2.9%).  

 

Drug-resistant tuberculosis is still a danger issue to 

public health (Boshoff et al.,2023). Almost all existing 

antibiotics are no longer as effective against M. 

tuberculosis due to the rising incidence of drug 

resistance in this disease, which makes efforts to stop 

its spread worldwide more difficult (Waller et 

al.,2023). The major worry is resistance to rifampicin, 

the most efficient first-line treatment (Prasad et 

al.,2018). Multidrug-resistant tuberculosis is 

described as having resistance to rifampicin and 

isoniazid. Rifampicin-resistant tuberculosis and 

multidrug-resistant tuberculosis both need to be 

treated with second-line drugs. Between 2015 and 

2020, the predicted annual number of people who 

developed multidrug-resistant tuberculosis or 

rifampicin-resistant tuberculosis was largely steady, 

but it increased in 2021 (WHO, 2022). A projected 

450 000 incident cases were reported in 2021, an 

increase of 3.1% from the 437 000 reported in 2020. 

Multidrug-/rifampicin-resistant tuberculosis were 

expected to account for 3.6% of new cases and 18% of 

those that had previously been treated in tuberculosis 

in 2021; in 2015, the corresponding numbers were 

3.9% and 20%. 26% of cases worldwide in 2021 were 

in India, 8.5% were in the Russian Federation, and 

7.9% were in Pakistan (WHO, 2022). These three 

nations accounted for 42% of all cases worldwide. The 

COVID-19 pandemic's effects on tuberculosis 

detection are thought to be the primary reason for the 

overall rise in tuberculosis incidence between 2020 

and 2021, which is the key explanation for the rise 

(WHO, 2022).  

 

Immune system of human body can’t stop growing of 

bacteria, when M. tuberculosis becomes active form, 

this is called tuberculosis disease (Miggianoet 

al.,2020). It is very significant that persons who have 

tuberculosis disease are treated by several drugs for 

six to nine months. More than twenty drugs have 

been introduced for the treatment of tuberculosis 

until now. These drugs have been divided into first-

line drugs and second line drugs, and have been 

categorized into five different groups bythe WHO.  

 

The anti-tuberculosis drugs isoniazid, rifampicin, 

streptomycin, ethambutol and pyrazinamide are 

collectively called the first-line drugs. In general, the 

first-line drugs have the significant activity against 

drug-susceptible tuberculosis (Dartois and Rubin, 

2022). These drugs are the core component of 

tuberculosis control problem worldwide. In fact, 

isoniazid and rifampicin drugs are still the 

cornerstones for treating in drug-susceptible 

tuberculosis (Stemkens et al.,2023). Both drugs are 

available and cheap worldwide. The aim of this review 

is to provide an overview of the latest report on 

molecular mechanisms of action and resistance to the 

first-line drugs against M. tuberculosis. 
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Mechanisms of action and resistance to first-line 

drugs 

Drug sensitive disease is treated effectively by using 

first-line drugs: isoniazid, rifampicin, pyrazinamide, 

ethambutol and streptomycin. However, the 

continuation phase of the tuberculosis treatment is 

very important to kill slow growing strains of M. 

tuberculosis. The WHO recommends that drug 

sensitive tuberculosis patience has to take 

tuberculosis drug treatment more than six months 

including a two month intensive treatment phase 

followed by a continuation phase of four or seven 

months. Sometimes, the first-line drugs treatment 

can fail to cure tuberculosis for several factors. Anti-

tuberculosis drugs emerges resistance arise primarily 

due to inappropriate treatment regimens, previous 

use of anti-tuberculosis drugs, primary infection with 

drug-resistant strains, and poor adherence to 

regulated treatment (Gandhi et al., 2010; Dhedaet 

al.,2014). Mechanisms of drug resistance of first- and 

second-line drugs are presented in Table 1. First-line 

anti-tuberculosis drugs areisoniazid, rifampicin, 

pyrazinamide, ethambutol and streptomycin and 

second-line anti-tuberculosis drugs areofloxacin, 

levofloxacin, moxifloxacin, ciprofloxacin, kanamycin, 

amikacin, capreomycin, ethionamide/prothionamide, 

cycloserine/terizidone, p-aminosalicylic acid. 

 

Isoniazid 

One of the most important first-line drugs for treating 

both the conventional treatment regimen and drug 

sensitive M. tuberculosis strains is isoniazid 

(Mitchison, 1985). In 1952, isoniazid was first offered 

as an anti-tuberculosis drug (Fox, 1952). Isoniazid 

does not work against non-growing bacilli; it is only 

effective against M. tuberculosis that is growing 

(Zhang et al., 1992). Like other tuberculosis drugs, 

pyrazinamide, ethionamide, and prothionamide, 

isoniazid is a pro-drug that needs to be activated by 

the catalase/peroxidase enzyme that is encoded by 

the katG gene (Zhang et al., 1992). A hypothetical 

isonicotinoyl anion or radical is formed when the 

catalase/peroxidase enzyme activates INH (Zhang et 

al., 1992; Lei et al.,2000). When this substance 

combines with NAD+, an INH-NAD adduct is created 

that binds. There are two main ways that the 

fundamental mechanisms of isoniazid resistance 

might occur. First, mutations in the katG gene or in 

the regulator region can be used to block the 

activation of the isoniazid medication (Vilchèze and 

Jacobs, 2014). For example, up to 97.5% of clinical 

isolates of M. tuberculosis that is resistant to 

isoniazid had the katG gene mutation S315 

(Kiepielaet al.,2000). Worldwide, mutations in the 

katG gene, primarily the S315T alteration, have been 

most commonly associated with INH resistance. 

Second, mutations in the inhA gene or its promoter 

region can circumvent the inhibition of InhA by the 

isoniazid-NAD adduct (Vilchèze and Jacobs, 2014). 

The most common mutations after katG gene 

mutations are found in the mabA-inhAregulatory 

region. Significantly, two of the most prevalent 

variants are inhA-15, which results in low-level INH 

resistance, and katG 315, which results in high-level 

INH resistance (Zenteno-Cuevas et al., 2019; Hsu et 

al., 2023; Khan et al.,2023). However, it has not yet 

been shown that mutations in the oxyR-ahpC area 

directly confer INH resistance (Kandler et al., 2018; 

Hsu et al.,2023). 

 

Rifampicin 

One of the most effective first-line anti-tuberculosis 

drugs is rifampicin, which also acts as a surrogate 

marker for the identification of multidrug-resistant 

tuberculosis (Sinha et al.,2020). Rifampicin has very 

good sterilizing properties and was first 

commercialized in 1972 as an anti-tuberculosis 

antibiotic. Rifampicin inhibits bacterial transcription 

activity by binding to the β-subunit of RNA 

polymerase (rpoB) (Ramaswamy and Musser, 1998), 

the enzyme responsible for mycobacterial gene 

transcription and expression. This ultimately leads to 

the organism's death. Rifampicin's ability to 

effectively inhibit both actively developing and slowly 

metabolizing (non-growing) bacilli is a crucial feature 

(Mitchison, 1979). Adverse responses to RIF are 

comparatively rare. It might irritate someone's 

stomach. Compared to the administration of 

isoniazid, hepatotoxicity is less common.Treating 

tuberculosis is hampered by the rapid identification 
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of genes linked to rifampicin resistance in Mtb 

strains. The primary cause of Mtb resistance to 

rifampicin drug is mutations of the rpoB gene (Lai et 

al.,2002; Zaczek et al.,2009). Research has 

demonstrated that rifampicin resistance emerges 

infrequently in comparison to other anti-tuberculosis 

drugs, and approximately 90% of cases resistant to 

rifampicin drug are also resistant to isoniazid drug 

(Farooqi et al.,2012). Genetic alterations in the rpoB 

gene are present in over 90% of clinical cases of 

rifampicin-resistant tuberculosis, and over 80% of 

these cases are multidrug-resistant tuberculosis 

(Huang et al., 2018; Jagielski et al.,2018).Of note, 

mutations in an 81-bp segment of the rpoB gene, 

which is situated in Mtb between rpoB codons 426 

and 452, are mostly linked to rifampicin resistance 

(Jagielski et al., 2018; Zaw et al.,2018). Another 

recent study reported that 98.06% of the rifampicin-

resistant tuberculosis cases contained the rpoB gene 

alterations, and 47.57% of them were resistant to both 

rifampicin and isoniazid at the same time (Zenget 

al.,2021). Though the resistance mechanism for the 

remaining 5% of rifampicin-resistant isolates is still 

unknown, it's possible that there are alternative 

mechanisms at play, such as increased efflux pump 

activity or decreased cell wall permeability (Xu et 

al.,2021). 

 

Streptomycin 

In 1942, the first utilized as first-line drug to treat 

tuberculosis cases was streptomycin, an aminocyclitol 

drug, along with the four other drugs in the regimen 

includes rifampicin, isoniazid, ethambutol and 

pyrazinamide. Following the discovery of the 

streptomycin drug, it was used as tuberculosis mono-

therapy, which quickly caused streptomycin-resistant 

strains to become resistant. While streptomycin is 

inactive against non-growing tubercle bacilli, it 

destroys those that grow slowly. Mutations in the 

rpsL gene (Rv0682) and the rrs gene (Rvnr01), which 

are encoding for the 16S rRNA and the ribosomal 

protein S12, respectively, have been linked to 

streptomycin resistance (Nahid et al., 2019; Cohen et 

al., 2020; Jia et al., 2021; Shafipouret al.,2022). The 

majority of chromosomal alterations are that cause 

streptomycin resistance. Intermediate or higher levels 

of streptomycin resistance have been associated with 

mutations in the rpsL or rrs genes (Nahid et al., 2019; 

Cohen et al., 2020; Jia et al.,2021). Depending on the 

population and geographic area, different STR 

resistance related mutations have different types and 

frequencies. Nonetheless, a number of studies 

revealed that the prevalence of mutations varies from 

37.7% to 94.6% depending on the nation (Cohen et 

al., 2020; Jia et al.,2021; Shafipouret al., 2022). In 

STR-resistant M. tuberculosis isolates, the most 

notable alterations are located in the rpsL gene at 

codons 43 and 88 (Nahidet al., 2019; Cohen et al., 

2020; Jia et al., 2021; Shafipouret al., 2022). In STR-

resistant M. tuberculosis isolates, the most prevalent 

mutations in the rrs gene are found at many locations, 

including 513, 514, 517, 905, 906, 907, 908, and 1401 

(Nahid et al.,2019).  

 

The gidB (Rv3919c) gene has been shown to encode a 

7-methylguanosine (m7G) methyltransferase that is 

dependent on S-adenosylmethionine (SAM) and that 

methylates the G527 in the 530 loop of the 16S rRNA. 

High-performance liquid chromatography analysis of 

16S rRNA revealed that the gidB mutant lacked an 

m7G alteration, which was linked to resistance to STR 

(Rodríguez-García et al,2021). Interestingly, non-

synonymous mutations in gidB typically correspond 

to low resistance values (Jia et al.,2021; Shafipouret 

al.,2022). 

 

Pyrazinamide 

One of the cornerstone drugs for the treatment of 

multidrug-resistant tuberculosis is pyrazinamide, a 

significant first-line anti-tuberculosis drug used in 

short-course chemotherapy (Mitchison, 1985).PZA, a 

prodrug and structural analogue of nicotinamide, 

must be transformed by the non-essential enzyme 

pyrazinamidase, which is encoded by the pncA gene, 

into pyrazinoic acid (POA).Both the function of 

membrane transporters and membrane energetics are 

disrupted by pyrazinoic acid. Numerous genes, 

including pncA, panD, rpsA, clpC, and the putative 

efflux pumps Rv3756c, Rv0191, Rv1667c, and 

Rv3008 have been associated to PZA resistance; 
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nevertheless, pncA mutations are highly associated 

with PZA resistance and account for the majority of 

PZA resistance cases (70–97%) throughout the entire 

coding region of pncA gene. Up to 20% of non-multi-

drug resistant tuberculosis patients have PZA 

resistance, indicating that resistance has been greatly 

underestimated despite the critical role PZA plays in 

clinical outcomes (Juma et al.,2019). 

 

Table 1. Genes involved in mechanisms of action and resistance to the first-line and second-line drugs in 

M.tuberculosis. 

Drugs Gene involved in 

resistance 

Role of gene product Resistance  mechanism of 

action 

Reference 

 

 

Isoniazid 

katG Catalase-peroxidase  

 

 

Inhibits of mycolic acid 

synthesis and other effects 

 

Banerjee et al.,1994; Zhang et al., 1992; Wilson 

et al., 1996; Mdluliet al., 1998 ; 

Parish et al., 2007 

 

 

inhA Enoyl ACP reductase 

ahpC Alkyl hydroperoxide reductase 

fabG1 3-Oxoacyl (acyl-carrier protein) reductases 

iniA Efflux pump associated 

fadE24 Involved in fatty acid β-oxidation 

kasA Ketoacyl acyl carrier protein synthase 

ndh NADH dehydrogenase 

 

Rifampicin 

rpoB β-subunit of RNA polymerase  

Inhibits of RNA synthesis 

Telentiet al.,1993; Comas et al., 2012 

 rpoA α-subunit of  RNA polymerase 

rpoC β´-subunit of  RNA polymerase 

 

Pyrazinamide 

pncA PZase Inhibits of trans-translation and 

pantothenate and CoA synthesis 

Scorpio and Zhang, 1996; Zhang et al., 2013 

rpsA Ribosomal S1 protein 

panD Aspartate decarboxylase 

 

Streptomycin 

rpsL S12 ribosomal protein  

Inhibits of protein synthesis 

Nair et al.,1993; Okamoto et al., 2007 

rrs 16S rRNA 

gidB 7-methylguanosine methyltransferase 

 

 

Ethambutol 

embB Arabinosyl transferase  

 

Inhibits of arabinogalactan 

synthesis 

Telentiet al.,1997; Safi et al., 2013 

embA Arabinosyl transferase 

embC Arabinosyl transferase 

embR Regulator of embCAB operon expression 

rmlD dTDP-4-dehydrorhamnose reductase 

ubiA DPPR synthase 

Fluoroquinolone gyrA DNA gyrase subunit A  

Inhibition of DNA synthesis 

Ginsburg et al. 2003 ; Zhang et al. 2005 

gyrB DNA gyrase subunit B 

kanamycin / 

amikacin 

rrs 16S rRNA  

Inhibits of protein synthesis 

Alangadenet al.,1998;Reeves et al., 2013 

eis Aminoglycoside acetyltransferase 

whiB7 Transcriptional regulator 

Capreomycin / 

viomycin 

tlyA rRNA methyltransferase Inhibits of protein synthesis Maus et al.,2005;  Johansenet al., 2006 

rrs 16S rRNA 

 

Ethionamide/ 

 

Prothionamide 

inhA Fatty acid enoyl acyl carrier 

protein reductase A 

Disrupts cell wall 

biosynthesis 

Baulardet al., 2000 

ethA Flavin monooxygenase 

ethR Transcriptional repressor 

Para-

aminosalicylic 

acid 

thyA Thymidylate synthase A Inhibits of folic acid and thymine 

nucleotide metabolism 

 

Rengarajan et al., 2004 folC Dihydrofolate synthase 

dfrA Dihydrofolate reductase 

ribD Riboflavin biosynthesis 

 

D-cycloserine 

alr D-alanine racemase  

Inhibits the synthesis of 

peptidoglycan in the cell wall 

Caceres et al.,1997;Bruninget al., 2011; Saieret 

al., 2009 ddl D-alanine: D-alanine ligase 

ald L-alanine dehydrogenase 

CycA D-serine proton symporter 

 

Clofazimine 

Rv0678 Transcription repressor for efflux pump 

MmpL5 

Produces of reactive oxygen 

species, inhibits of energy 

production 

Milano et al., 2009 ; Zhang et al., 2015 

rv1979c Unknown 

rv2535c Unknown 

ACP = acyl-carrier-protein; NADH = Nicotinamide adenine dinucleotide; CoA = coenzyme A; DPPR = 5-phospho-a -d-ribose-1-diphosphate: 

decaprenyl-phosphate 5-phosphoribosyltransferase. 

The most frequent causes of pyrazinamide resistance 

in M. tuberculosis are mutations in the pncA gene or 

its promoter region, which lowers PZase activity (Mok 

et al.,2021). It is very significant to note that whole 

genome sequencing may help identify pyrazinamide 

resistance because it will be difficult to build a quick 

molecular drug susceptibility screening due to the 

distributed nature of mutations throughout the entire 



 

43 Hasan et al. 
 

Int. J. Biosci. 2024 

pncA gene.A very recent study reported that PZA 

resistance has increased recently among MDR-TB 

cases (55% to 58%), which emphasizes the need for 

the development of both conventional and innovative 

treatment regimens (Wang et al.,2023). 

 

Ethambutol  

One crucial first-line anti-TB drug for treating drug-

susceptible tuberculosis and halting the development 

of treatment resistance is EMB. Because of the strong 

synergistic benefits of ethambutol when combined 

with other drugs, it is also frequently utilized to create 

regimens for drug-resistant tuberculosis (Zhu et al., 

2018; Wang et al.,2020). In the intense phase of 

tuberculosis treatment, the drug is usually prescribed 

as part of a four-drug regimen that also includes 

isoniazid, rifampicin, and pyrazinamide. It is 

alarming to note that more than 4 percent of clinical 

isolates of M. tuberculosis have been shown to be 

resistant to ethambutol. The embCAB gene locus, 

which is involved in the synthesis of the cell wall 

components arabinogalactan and 

lipoarabinomannan, is the main target of ethambutol 

(Telentiet al.,1997). Most often, mutations in the 

embB gene-particularly the classic mutations at 

codons 306, 406, and 497—are linked to the 

emergence of ethambutol resistance (Zhao et 

al.,2015). Changes in the embB gene, specifically in 

embB codon 306, also known as the ethambutol 

resistance determining region (ERDR), have been 

frequently linked to resistance to ethambutol. It has 

been thought that ERDR sequence analysis can 

quickly screen for ethambutol resistance. 

Nevertheless, isolates of M. tuberculosis that are 

sensitive to ethambutol have also been found to have 

mutations at these codons (Plinkeet al.,2006). 

Concerns are raised regarding the clinical importance 

of ethambutol mutations for the development of 

ethambutol resistance due to the inconsistent results 

between phenotypic and genotypic resistance tests. 

Because of this, the molecular diagnostics for 

ethambutol susceptibility are considerably behind 

those for other anti-tuberculosis drugs, which present 

a significant obstacle to the development of an 

appropriate treatment strategy. 

Conclusion 

Treatment for tuberculosis clinical strains resistant to 

first-line tuberculosis regimens is more challenging 

than for drug-susceptible strains; it requires 

prolonged chemotherapy (up to two years of 

treatment), costly and toxic medications, and a higher 

risk of treatment failure and mortality. In conclusion, 

our review article contributes to the evaluation of the 

current knowledge regarding mutations linked to the 

drug-resistant M. tuberculosis complex.  

 

Therefore, early identification of first-line drugs 

resistance in M. tuberculosis clinical isolates will have 

clear benefits for patients as well as the general 

public's health issues, as it will allow for early access 

to the right effective treatment and the prevention of 

drug-resistant strains of M. tuberculosis strains. 
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