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Abstract 

The widespread use of drugs in agriculture and husbandry poses a significant risk to human health through direct 

exposure via dairy products. In this study, the effects of drug interactions on the conformation, binding modes 

and affinities was investigated by employing in-silico methods, including homology modeling and molecular 

docking. Bovine milk proteins (PDB ID: ICE2, 3GC1, 7ER3, 4F5S), and drugs (oxytetracycline CID:54675779, 

enrofloxacin CID:2082, penicillin, CID: 5904 and albendazole CID:71188) were sourced from the RCSB protein 

data bank and PubChem database, respectively. Since Bovine β-casein crystal structure is experimentally not 

resolved and, its structure is absent in PDB bank, homology modeling was used to construct a 3D structure.   

MODELLER and I-TASSER were used to model the protein with an accuracy of 87.4% and 89.6%, respectively. 

Molecular docking simulations reveal that enrofloxacin and oxytetracycline, with Bovine lactoperoxidase (3GC1), 

showed a strong affinity of -8.4 kcal/mol and -8.3 kcal/mol, respectively. This study provides insights into 

molecular interactions pivotal for understanding milk quality. The implications extend to environmental, human 

health, and animal welfare, emphasizing the need for informed strategies in the dairy sector and in 

pharmaceutical industries during drug design and development. 

* Corresponding Author: Zabron Janes  janesz@nm-aist.ac.tz 
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Introduction 

The dairy industry holds a pivotal role, serving as a 

key economic sector for small-scale dairy farmers, 

contributes significantly to food, security, 

employment, and energy production  (Lemma et al., 

2018; Herrero et al., 2013; FAO, 2018). Milk proteins 

serve as essential components in various dairy 

products, contributing to their nutritional value, 

functionality, and sensory properties (Fox, 2003; 

Davoodi et al., 2016; Mizumachi and Kurisaki, 2005). 

Proteins such as caseins and whey proteins are 

abundant in milk and play crucial roles in processes 

like emulsification, foaming, and gelation, thereby 

influencing the texture and stability of dairy products 

(De Wit, 1998; Balivo et al., 2024; Whitney, 1988). 

Moreover, milk proteins are also valued for their 

high-quality amino acid composition, making them 

valuable dietary sources of essential nutrients, 

particularly for infants, children, and individuals with 

specific dietary requirements (Gellrich et al., 2014). 

Despite the advantages, the industry faces various 

challenges, including low milk production, 

inadequate infrastructures, diseases like mastitis and 

poor milk quality (Maleko et al., 2018; 

Bandyopadhyay and Joshi, 2022). Milk quality 

encompasses a combination of factors, including 

chemical composition, physical characteristics, 

bacteriological aspects, and aesthetic properties that 

enhance the desirability of milk products (Merwan et 

al., 2018; Vincent et al., 2016).   

 

Despite increased dairy cattle production in peri-

urban and urban areas of Tanzania aimed at meeting 

the high demand for milk, there still exists a notable 

gap between supply and demand. To bridge this gap, 

intensified milk production systems are being 

adopted, necessitating the use of pharmaceuticals and 

antibiotics for preventive, control, or treatment 

purposes (Van Boeckel et al., 2015). However, the 

misuse of antibiotics, including failure to adhere to 

withdrawal periods, has led to the presence of drug 

residues in animal products such as milk. Several 

studies conducted in Tanzania have reported 

antibiotic residues in milk, some of which exceed 

maximum residue limits (Azabo et al., 2022). This 

misuse of antibiotics not only poses risks to human 

health due to potential ingestion of these residues but 

also contributes to the development of antimicrobial 

resistance (Kosgey et al., 2018; Caneschi et al., 2023; 

Bukuku et al., 2020). 

 

In the dairy sector, commonly drugs used to combat 

bacterial infections are such as penicillin, 

oxytetracycline, enrofloxacin, sulfamethoxazole, 

tylosin, and albendazoles for worms (Mdegela et al., 

2021). The primary objective of this study was to 

investigate the most commonly used drugs in the 

dairy sector, specifically, to explore the binding 

interactions and modes between the drugs and major 

milk proteins using homology modeling and 

molecular docking techniques (Genheden et al., 

2017). Traditional methods for assessing drug 

residues in milk include both quantitative and 

qualitative techniques such chromatography, mass 

spectrometry, and immunoassays (Kumar et al., 

2022). While these techniques offer sensitivity and 

accuracy, they may not comprehensively capture 

drug-protein interactions and are expensive. 

 

In silico analysis, including homology modeling and 

molecular docking simulations, offers a 

complementary approach to traditional methods for 

studying drug-protein interactions in milk (Guntero 

et al., 2021). Through computational models and 

algorithms, three-dimensional structures of milk 

proteins and binding drugs to these proteins were 

studied.  This approach enables the exploration of 

molecular interactions at the atomic level, providing 

insights into binding affinities and binding sites. 

Results shows that oxytetracycline, the widely used 

antibiotic has strong affinity with the milk proteins 

used in this study this imply that, there is higher 

residues of such drug in milk and hence contributing 

to antibiotic resistance in human. 

 

Materials and methods 

Identification of potential templates for homology 

modelling 

Potential templates for homology modeling were 

searched against the Protein Data Bank (PDB). 
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Homology modeling was employed to generate a 3D 

model for bovine β-casein due to the unavailability of 

experimentally resolved crystal structure. The β-

casein sequence, initially obtained from the Uniprot 

database (entry P02666), underwent sequence 

alignment using the Basic Local Alignment Search 

Tool (BLAST) within the UniProt database's post-

translational modifications (PMT) section. A BLAST 

search with a query length of 209 amino acids (aa 16-

224) yielded 228 hits with known protein structures 

matching the sequence. Two templates, α/β-gliadin 

MM1 UniProtKB (entry: P08079) and Bel602-DQ8.5-

glia-γ1 complex Uniport (entry: P18573), were 

selected through this process (Zhou et al., 2019). To 

compare and assess the similarities between the 

obtained fasta file of the target sequence and the 

selected templates, a sequence alignment was 

performed using Clustal W Omega for further analysis 

and visualization of secondary structures in ESpript. 

MODELLER (Modeller10.4) played a crucial role in 

template determination, extracting spatial restraints 

by aligning sequences with available crystal structures 

(Jalily Hasani and Barakat, 2017). The aligned 

sequences of both templates and target were then 

employed to generate 100 potential homology 

models. The selection of the best model was based on 

criteria such as Discrete Optimized Protein Energy 

(DOPE) and Root Mean Square Deviation (RMSD) 

concerning the template structure. 

 

For comparison, I-TASSER was employed to 

construct separate 3D models of β-casein. I-TASSER 

contributed by identifying structural templates from 

the Protein Data Bank and assembling models. The 

quality of the model was predicted by C-score and 

checked by local accuracy via I-TASSER server (Yang 

et al., 2015). Typically, C-scores range between -5 and 

2, to assess the quality of its predicted models but 

based on the model generated the C-scores was 1.06 

which was selected indicated good quality. To refine 

the models, the SAVES6.0 web server, incorporating 

tools like Verify 3D, PROVE, ERRAT, and 

PROCHECK, was utilized, ensuring comprehensive 

structural validation. PROCHECK analysis focused on 

stereochemical parameters, contributing to the 

overall assessment of model precision through 

Ramachandran plots (Dastmalchi et al., 2016). 

 

Molecular docking simulation 

Protein preparation 

In this study, 3D structures of various milk proteins, 

including β-lactoglobulin (PDB ID: 7ER3), chymosin 

(PDB ID: 4AA8), Bovine lactoperoxidase (PDB ID: 

3GC1), lactoferrin (PDB ID: 1CE2), and Bovine serum 

albumin (PDB ID: 4F5S), were acquired from the 

RCSB Protein Data Bank (PDB) (Burley et al., 2023). 

3D structure of β-casein was modelled using I-

TASSER and MODELLER tools. Initially, the proteins 

were prepared by removing all crystallographic water, 

ions, and co-crystallized ligands. Additionally, any 

missing side chain residues were added, and polar 

hydrogens were added at a physiological pH of 7.4 

using the Auto Dock Vina tool as described by (Huey 

and Morris, 2008). Gasteiger charges were assigned 

to all proteins following the methodology outlined by 

(Gasteiger and Marsili, 1978). To facilitate grid-based 

molecular docking, the binding pockets of the 

proteins were identified utilizing co-crystallized 

ligands. In addition, blind docking experiments were 

conducted; the entire proteins were utilized as the 

receptor, allowing ligands to autonomously identify 

potential binding pockets within the protein structure 

(Torres et al., 2019). 

 

Ligand selection and preparation  

The ligands, including oxytetracycline (CID: 

54675779), penicillin (CID: 5904), albendazole (CID: 

2082), and enrofloxacin (CID: 71188), were selected 

for the study. Their 3D structures were obtained from 

the PubChem Database (Kong et al., 2020; Jagadeesh 

et al., 2023). The ligands selected for investigation 

were prepared to ensure their suitability for docking 

simulations within a physiological context, 

characterized by a pH of 7.4. Initially polar hydrogen 

was added to the structures.  Gasteiger charges 

(Gasteiger and Marsili, 1978) were added   to account 

for electrostatic effects. Structures were energy 

minimized using MMFF94 force field and converted 

into the pdbqt file format using Open Babel (Kumar 

et al., 2021) ready for docking calculation as required 

by Auto Dock Vina 11.2v tool (Trott and  Olson, 2010). 
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Docking calculations 

During docking simulations, proteins were positioned 

at the following coordinates, the dimensions for β-

lactoglobulin (X = -13.658, Y= -0.878, Z= 0.477), 

lactoferrin (X = 10.832, Y= 12.521, Z= 68.967) bovine 

albumin serum (X = 10.720, Y= -13.963, Z= -11.393) 

Chymosin (X = 17.456, Y= 33.675, Z= 42.342), bovine 

lactoperoxidase (X = 9.542, Y= -14.012, Z= -12.201) 

and β-casein (X = 31.651, Y= 37.174, Z= 39.729). The 

docking boxes surrounding each protein were defined 

with dimensions ranging from 20 to 100 units along 

each axis (X, Y, and Z) with 8 set of exhaustiveness 

(Attique et al., 2019). 

 

Throughout the process, the proteins remained rigid, 

while the ligands were allowed to flexibly interact. 

Default docking parameters were applied consistently 

across all experiments. Each ligand was docked 

independent to all proteins, with 10 iterations 

conducted for each protein-ligand pair. For post-

docking simulation, Discovery Studio tools was 

employed for analysis of the resulting interactions 

between the milk proteins and ligands, offering 

visualization of their binding configurations and 

intermolecular contacts. 

 

Results and discussion 

Homology modeling of bovine β-casein protein 

To address the lack of experimental resolution for β-

casein, a 3D structure was constructed based on its 

amino acid sequences using homology modeling. A 

template search with BLAST homology was 

conducted, and the most effectively identified 

template were γ-gliadin (PDB ID: 5KSA, E-value 5.6 × 

10-6 resolved at 3.05Å) and α/β gliadin MM1(PDB 

ID: 2NNA, E-value 1.1×10-2 resolved at 2.0Å) and 

selected as templates with 29.8% and 32.4% 

sequences identity and the sequence coverage was 

83% and 68% with that β-casein, respectively, (Zhou 

et al., 2019). The homology modeling process started 

with the use of sequence search tools to identify 

sequences showing evolutionary similarity and 

identity. In selecting templates for homology 

modeling, a criterion was set that the chosen 

sequences must exhibit ≥ 30% identity Fiser (2010). 

This threshold ensured that the selected templates 

shared a substantial degree of similarity with the 

target β-casein, laying the foundation for accurate 

and meaningful homology modeling. 

 

Fig. 1. The aligned sequence conveys into the 

functional and evolutionary relationships on target 

(Bovine β-casein) with templates γ-gliadin (5KSA) 

and α/β-gliadin (2NNA) 

Key: *Residues or nucleotides in that column are 

identical in all sequences in the alignment. 

:Conserved substitutions have been observed, 

according to the COLOUR 

:Semi-conserved substitutions are observed, i.e., 

amino acids having a similar 

 

Fig. 2. Ramachandran Plot of the modelled protein 

from the (a) MODELLER and (b) I-TASSER tools 

 

Sequences alignment of target-templates 

Amino acid sequences of target (bovine β-casein was 

aligned using Clustal W Omega tools with sequences of 

templates (γ-gliadin (5KSA) and α/β-gliadin (2NNA). 

The conserved regions in both target (bovine β-casein) 

with templates γ-gliadin (5KSA) and α/β-gliadin 

(2NNA), are indicated by the same color in the column 

(Fig. 1). Conserved residues play a crucial role in 

maintaining the protein 3D structure, which is essential 

for its proper function (Bianchetti et al., 2005). 
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Table 1. The summary of the Ramachandran plot for statistical analysis of modelled β-casein from MODELLER 

and I-TASSER 

Ramachandran plot regions and number of residues MODELLER I-TASSER 
No. residues % No. residues % 

Residues in most favored regions [A, B, L] 146 87.4 146 89.4 
Residues in additional allowed regions[a,b,l,p] 13 7.8 17 10.4 
Residues in generously allowed regions [⁓a, ⁓b,⁓l,⁓p] 5 3.0 0 0.0 
Residues in disallowed regions 3 1.8 0 0.0 
Number of glycine and non-proline residues 167  163  
Number of end residues (ex. Gly and Pro) 2  7  
The number of Glycine residues shown as triangles 5  5  
Number of proline residues 35  4  
Total number of residues 209 100 209 100 
 

The Ramachandran plot was utilized to characterize 

the modeled protein structure, offering insights into 

the dihedral angles of the polypeptide chain and the 

distribution of phi (ϕ) and psi (ψ) angles of residues 

within the protein. These angles govern the rotation 

of peptide bonds between consecutive residues and 

are pivotal in determining the overall conformation of 

the protein backbone. Residues falling within the 

favored regions on the plot indicate accurately 

modeled regions, while outliers may suggest potential 

errors or inaccuracies in the modeled structure. Both 

Modeller and I-Tasser assessments indicate the 

quality of the modeled protein at 87.4% and 89.6%, 

respectively, with residues predominantly situated in 

the favored regions (Fig. 2, Table 1).  The favored 

regions depicted on a Ramachandran plot represent 

combinations of phi and psi angles that are both 

energetically allowed and sterically favored. Residues 

positioned within these favored and allowed regions 

signify well-modeled backbone conformations, 

suggesting higher-quality structures, particularly 

when the percentage of residues in favored regions 

equals or exceeds 90% Zhang (2008). 

 

Table 2.   Experimental binding free energy and 

calculated binding energy values, and root mean 

square deviation (RMSD) 

PDB code Calculated 
energy 

Experimental 
energy 

RMSD  
(Å) 

2ZC9 -38.911 -35.4 0.26 
2ZF0 -37.656 -34.8 0.87 
2ZHQ -37.234 -37.8 1.01 
2ZIQ -37.237 -37.4 1.12 
2ZI2 -33.890 -32.8 1.21 
2ZFP -33.472 -31.3 1.17 
2ZDA -44.003 -46.1 1.22 
 

 

Fig. 3. Correlation of experimental binding energy 

values with corresponding calculated binding energy 

in kJ/mol (r2 = 0.91) 

 

Molecular docking benchmarking and validation 

Molecular docking benchmarking and validation are 

essential prerequisites for any docking calculations 

for ensuring the accuracy, reliability, and predictive 

power of docking methodologies (Torres et al., 2019). 

The docking protocol underwent validation using an 

experimental dataset reported by (Bauman et. al 

2009) serving as a benchmark for evaluation. The 

validation results, presented in Table 2 and Fig. 3, 

demonstrate the tool capability to reproduce 

experimental binding affinities. Additionally, Root 

Mean Square Deviation (RMSD) analysis was 

employed, a metric known for its ability to replicate 

experimental binding modes. This study revealed that 

the re-docked complexes exhibited an RMSD value of 

less than 2 Å, a threshold consistently reported in 

literature to accurately replicate experimental binding 

modes (Gohlke et al., 2000). Such meticulous 

validation instilled confidence in the reliability of the 

protocol and tool, thereby enabling the subsequent 

docking calculations with assurance. 
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(a) (b) (c) 

  
(d) (e) (f) 

Fig. 4. The binding affinity between drugs and milk proteins (a) Lactoferrin (b) Chymosin (c) β-lactoglobulin (d) 

Bovine albumin serum (e) Bovine lactoperoxidase (f) β-casein 

 

  
(a) (b) 

  
(c) (d) 

Fig. 5. The binding interactions of lactoferrin (1CE2) (a) oxytetracycline (b) enrofloxacin (c) penicillin and (d) 

albendazole 
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Binding free energy analysis 

In the docking process, the binding affinity values 

were scrutinized, where more negative values indicate 

favorable and energetically stable interactions 

between drugs and the proteins. On the other hand, 

the observed strong affinity provides suggestive drug 

residues in milk proteins as observed in 

lactoperoxidaese and enrofloxacin and 

oxytetracycline Fig. 4. The general observation is that, 

albendazole, a molecule used to treat worms, 

generally ranked the least, (with poor binding 

affinity) across all the proteins (Fig. 4 a-f). 

Enrofloxacin, is another molecular that showed least 

binding affinity across the proteins, except two 

protein PDB IDs: 3GC1 and ZABC (Fig. 4 e, f). 

Penicillin shows an appreciable strong affinity across 

milk proteins. The most ligand that consistently 

ranked high across all proteins was oxytetracycline. 

The general trends of the binding affinity are 

enrofloxacin > oxytetracycline > penicillin > 

albendazole. These findings suggest that, 

oxytetracycline has high affinity with milk proteins, 

and could have higher residues in milk, a factor that 

could contribute to antibiotic drug resistance in 

human. The findings, collaborates well with (Liang et 

al., 2024) who reported the high oxytetracycline 

residues in milk protein (Mohamed et al., 2020). 

 

Binding interaction analysis 

To gain further insights and establish the origin of the 

difference in binding affinity, interaction analysis of 

drugs and their receptor was carried out. The 

interaction of drugs with lactoferrin (PDB ID: ICE2) 

(Fig. 5 a-d) displays diverse interaction patterns that 

resulted in difference binding affinities.  For example, 

oxytetracycline which displayed a binding affinity of -

7.9 kcal/mol interacted with Thr636, Arg531, Glu635, 

and Lys637 forming hydrogen bonds (Fig. 5a). 

However, drugs such as albendazole which showed 

poor affinity only interacted with lactoferrin by 

forming a single hydrogen bond with Gln 249 (Fig. 

5d), such residue was not observed to form a 

hydrogen bond with oxytetracycline or even other 

drugs that showed a strong affinity with the receptor 

lactoferrin (Fig. 5c-d). This suggests that albendazole 

exhibited a slightly different binding mode in the 

active site of lactoferrin which resulted in a weaker 

interaction and affinity.  

 

  
(a) (b) 

  
(c) (d) 

Fig. 6. The binding interactions Chymosin (4AA8) with molecule (a) oxytetracycline, (b) enrofloxacin, (c) 

penicillin, and (d) albendazole 
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The interaction of chymosin (PDB ID: 4AA8) with 

various drugs provides insights into the observed 

differences in binding affinities (Fig. 6a-d). For 

instance, oxytetracycline (-7.7 kcal/mol) which 

showed the strongest affinity than albendazole (-5.8 

kcal/mol), interacted with chymosin by forming 

hydrogen bonds with His76, Gly78, Gly36 and 

Asp216. Some van der Waals interactions with Ile75, 

Ser38, Ser37, Ty190, Tyr77 and Leu130 which 

stabilized the interaction are also observed in 

oxytetracycline complex. Enrofloxacin forms 

hydrogen bonds with Asp112, Thr116, and Thr79. It 

also shows van der Waals interactions with Ala117, 

Tyr77, and Phe119, π-alkyl interactions with Val113, 

and π-sigma interactions with Phe113. Penicillin only 

forms a single hydrogen bond with Ser220, however, 

van der Waals interactions with Gly78, Phe119, 

Glu118, Ser14, Tyr116, Asp13, plays an important role 

in stabilization of the complex.  Albendazole forms 

hydrogen bonds with Tyr16, Asn10, and Arg304. It 

also forms π-alkyl interactions with Tyr11, and Alkyl 

interactions with Leu12 that favors hydrophobic 

interaction. Albendazole, with a binding energy of -

5.8 kcal/mol, has a less negative value compared to 

oxytetracycline. This suggests a relatively weaker 

binding affinity between albendazole and chymosin. 

 

  
(a) (b) 

  
(c) (d) 

Fig. 7. The binding interactions β-lactoglobulin(7ER3), (a) oxytetracycline, (b) enrofloxacin, (c) penicillin, and 

(d) albendazole 

 

The interaction of β-lactoglobulin (PDB ID: 73R3) 

with various drugs provides insights into the observed 

differences in binding affinities (Fig. 7a-d). For 

instance, oxytetracycline demonstrates a higher 

binding affinity of -6.5 kcal/mol with β-lactoglobulin 

and formed a hydrogen bond with Arg40, Gly155, and 

Gly35. Additionally, van der Waals interactions are 

observed with His161, Phe151, and Phe162, 

contributing to stabilization. Furthermore, a π-alkyl 

interaction with Leu149 enhances the interaction 

between oxytetracycline and β-lactoglobulin complex. 

Enrofloxacin, on the other hand, presents a moderate 

binding affinity, reflected in its binding energy of -6.1 

kcal/mol. It creates hydrogen bonds involving Ser116 

and Asn109 and exhibits van der Waals interactions 

with Leu87, Val41, Ile71, and Ile84. Moreover, it 

demonstrates π-alkyl interactions with Leu39, π-

sigma interactions with Leu39, and Alkyl interactions 

with Pro38, Leu58, Lys69, and Lys60 as in (Fig. 7a). 

Lastly, albendazole demonstrates a weaker binding 

affinity, with a binding energy of -5.3 kcal/mol (Fig.  

7d). Hydrogen bond formed with Asn88 and engages 
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in van der Waals interactions with Asn109, Leu39, 

Leu31, Ser116, and Gly115 and π-alkyl interactions 

with Ala86 and alkyl interactions with Ala86, Ile84, 

and Ile71. The aromatic rings of oxytetracycline 

engage in π-alkyl interactions with aliphatic 

hydrocarbon chains found in amino acid residues like 

leucine, isoleucine, and valine within beta-

lactoglobulin (Makwana and  Mahalakshmi, 2015). 

Lastly, pi-anion interactions occur between the 

aromatic rings of oxytetracycline and negatively 

charged side chains, such as aspartate and glutamate, 

within β-lactoglobulin, contributing to the 

electrostatic component and further stabilizing the 

complex as reported by (Habibian-Dehkordi et al., 

2022). 

 

Bovine Serum Albumin (PDB ID: 4F5S) interacts 

with oxytetracycline and provides the binding 

affinities of -7.2 kcal/mol (Fig. 8a), the 

oxytetracycline, forms hydrogen bonds with Ser109, 

Asp111, and Arg185, while engaging in van der Waals 

interactions with Asp108, Arg144, His145, Lys114, 

and Pro110 that stabilizes bovine serum albumin the 

complex. Enrofloxacin and penicillin forms 

hydrogen, van der Waals interactions, π-alkyl 

interactions and Pi-cation interactions (Fig. 8 a-d). 

Albendazole forms a -6.1kcal/mol and formed 

hydrogen bond with Ser191, engages in van der 

Waals interactions with Tyr156, Glu152, Tyr149, 

Arg198, and Arg194. Furthermore, it demonstrates 

π-alkyl interactions with Lys187, π-sigma 

interactions with Thr290, and π-alkyl interactions 

that destabilizes the complex. The hydrogen bonds 

formed by oxytetracycline contribute to the stability 

of the drug-protein complex by forming strong 

electrostatic interactions. In addition to hydrogen 

bonding, oxytetracycline also engages in van der 

Waals interactions with other amino acid residues 

within the binding pocket, including Asp108, 

Arg144, His145, Lys114, and Pro110. These van der 

Waals interactions enhance the overall binding 

affinity of oxytetracycline by promoting close 

contact and favorable interactions between the drug 

molecule and the protein. Oxytetracycline fit more 

into the binding pocket compared to other drugs, 

allowing for more extensive interactions and a 

higher binding affinity. The chemical structure of 

oxytetracycline possess functional groups or motifs 

that are particularly complementary to the binding 

pocket of the bovine serum albumin, enabling strong 

and specific interactions that contribute to its high 

binding affinity  (Chi et al., 2010). 

 

  
(a) (b) 

  
(c) (d) 

Fig. 8. The binding interactions Bovine albumin serum (4F5S) with ligands: (a) oxytetracycline, (b) enrofloxacin, 

(c) penicillin, and (d) albendazole 
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(a) (b) 

  
(c) (d) 

Fig. 9. The binding interactions between bovine lactoperoxidase (3GC1), with(a) oxytetracycline, (b) 

enrofloxacin, (c) penicillin, and (d) albendazole 

 

  
(a) (b) 

Fig. 10. Illustrates the binding interactions β-casein (ZABC) with (a) oxytetracycline, (b) enrofloxacin 

 

The enrofloxacin and oxytetracycline exhibits 

exceptional binding affinities with bovine 

lactoperoxidase (3GC1) of -8.4, and -8.3 kcal/mol 

(Fig. 9b). Enrofloxacin demonstrates a remarkable 

binding energy of -8.4 kcal/mol, establishing 

hydrogen bonds with key amino acids such as 

Arg440, Arg348, Ala114, and Arg255. It also engages 

in significant van der Waals interactions with His109, 

Pro236, Phe254, and Glu116. Moreover, it showcases 

unique interactions, including π-alkyl interaction 

with Pro424 and π-π interaction with Phe113, 

contributing to its high binding affinity (Fig. 9b). 

Oxytetracycline exhibits a robust binding energy of -

8.3 kcal/mol, forming hydrogen bonds with Gln294, 

Ser19, and Glu290. It also engages in substantial van 

der Waals interactions with Arg204, Tyr293, Arg22, 

Asp16, and Thr25, as well as alkyl and π-alkyl 

interactions with Ile24, Pro197, and Ala200 (Fig. 9a). 

Conversely, albendazole shows a comparatively lower 

binding energy of -6.0 kcal/mol, indicating a weaker 

interaction profile with bovine lactoperoxidase. While 

it forms hydrogen bonds and van der Waals 

interactions, the interaction profile reveals significant 

Van der Waals interactions with amino acids Lys291, 

Glu295, Tyr21, Phe528, Asn18, Arg527, Asn532, 

Pro533, Gl534, and Phe528. These interactions 

contribute to the stabilization of the complex formed 

between the protein and ligands. Additionally, a 

notable hydrogen bond is formed with Lys298, 

further enhancing the binding affinity (Fig. 9d). 

However, the absence of additional strong 

interactions like π-π interactions may contribute to its 
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reduced binding affinity compared to enrofloxacin 

and oxytetracycline. 

 

Enrofloxacin form specific interactions with the 

amino acid residues within the binding site of bovine 

lactoperoxidase that result in stronger binding 

compared to oxytetracycline. These interactions 

include hydrogen bonding, van der Waals forces, and 

electrostatic interactions, which contribute to the 

stability of the drug-protein complex (Fig. 9a-b). The 

chemical structure of enrofloxacin possess specific 

functional groups such as quinolone core, fluoro 

group, carboxylic acid group, piperazinyl ring and 

substituted amino groups or motifs that enhance its 

ability to bind to the protein with higher affinity. 

Enrofloxacin may have better access to the binding 

site of bovine lactoperoxidase to penetrate deeper into 

the binding pocket, allowing for stronger interactions 

with Arg440, Arg348, Ala114, and Arg255 residues. 

This increased accessibility could contribute to its 

higher binding affinity compared to oxytetracycline. 

Enrofloxacin exhibit greater conformational 

flexibility, allowing it to adopt optimal orientations 

within the binding site of bovine lactoperoxidase and 

establish stronger interactions with key residues. This 

flexibility enables enrofloxacin to adapt to the 

structural features of the protein, enhancing its 

binding affinity (Kalin et al., 2022). 

 

The oxytetracycline and amino acid residues of β-

casein involves a diverse array of interaction with 

molecular forces influencing their respective binding 

energies. These forces encompass π-alkyl 

interactions, hydrogen bonding, van der Waals forces, 

and π-anion interactions (Fig.  10a-b). The disparities 

in binding energies among these antibiotics may arise 

from the involvement of specific amino acid residues, 

geometric intricacies in the interactions, or the 

distinctive chemical characteristics inherent to each 

antibiotic. Considering their interaction with 

Enrofloxacin -7.5 kcal/mol exhibit a robust binding 

energy, these variations are likely attributed to the 

unique nature of interactions and the three-

dimensional configuration of enrofloxacin within the 

β-casein binding site. The favorable alignment of 

hydrogen bonding, π-alkyl interactions, van der 

Waals forces, and π-anion interactions in the 

penicillin-beta-casein complex could contribute to the 

higher observed binding energy (Dantas et al., 2020). 

 

Conclusion 

Through molecular docking study, oxytetracycline 

and enrofloxacin demonstrating strong binding 

affinity to milk proteins, alongside the 

characterization of their binding modes and the key 

amino acid residues such as alkyl (Ala200, Ile24, 

Pro197), hydrogen bond (Gln294, Ser19, Glu290), 

Van Der Waals (Arg204, Tyr293, and Thr25) and 

hydrogen bond (Arg348, Arg440, Ala114), Van der 

Waals (Phe254, Glu116), π-π T-Shaped (Phe113) And 

Π-Alkyl (Pro424) involved in these interactions 

respectively. This investigation further assessed how 

such drug-protein interactions could potentially 

impact the structure and function of milk proteins. 

Understanding these interactions becomes 

paramount not only for ensuring the efficacy of drug 

therapies in dairy animals but also for minimizing any 

adverse effects on milk composition and properties. 

Consequently, there is need for additional research 

efforts and regulatory measures aimed at evaluating 

the risks associated with drug residues in milk. 

Researchers who are dealing with studying on how 

antibiotics engage with biological systems to design 

more targeted and effective antibiotics, minimizing 

potential side effects and optimizing therapeutic 

outcomes. This ongoing exploration contributes to the 

continuous improvement of antibiotic therapies, 

enhancing their precision and safety in medical 

applications. 

 

Recommendation(s) 

Rigorous testing of milk for antibiotic residues is 

standard practice before it is brought to market. 

Farmers are advised to observe appropriate 

withdrawal periods and adhere to good agricultural 

practices to ensure that milk remains free from 

antibiotic residues. Further research to be conducted 

in vitro and in vivo studies to validate the predicted 

interactions and assess their impact on drug 

distribution, absorption, bioavailability and efficacy.  
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In molecular docking, the goal is to investigate on 

interaction and binding mode and affinity of milk 

proteins with drugs, which can have various 

applications in various fields such as structural 

biology, biochemistry, biomedical research, and the 

development of food products. 

 

Acknowledgements  

Authors are grateful to the African Centre of 

Excellence in Research, Agricultural Advancement, 

Teaching Excellence and Sustainability in Food and 

Nutrition Security (CREATES-FNS) hosted at the 

Nelson Mandela African Institution of Science and 

Technology (NM-AIST) and Tanzania Agricultural 

Catalytic Trust (TACT) from Ministry of Livestock in 

Tanzania for their financial support. 

 

Conflict of interests 

Authors declare no conflict of interests. 

 

References 

Attique SA, Hassan M, Usman M, Atif RM, 

Mahboob S, Al-Ghanim KA, Nawaz MZ. 2019. A 

molecular docking approach to evaluate the 

pharmacological properties of natural and synthetic 

treatment candidates for use against hypertension. 

International Journal of Environmental Research and 

Public Health 16(6), 923. 

 

Azabo R, Mshana S, Matee M, Kimera SI. 2022. 

Antimicrobial usage in cattle and poultry production 

in Dar es Salaam, Tanzania: pattern and quantity. 

BMC Veterinary Research 18(1), 1–12. 

https://doi.org/10.1186/s12917-021-03056-9 

 

Balivo A, d’Errico G, Genovese A. 2024. Sensory 

properties of foods functionalised with milk proteins. 

Food Hydrocolloids 147, 109301. 

https://doi.org/10.1016/j.foodhyd.2023.109301 

 

Bandyopadhyay S, Joshi L. 2022. Understanding 

Implications of Dairy Sector Development to 

Sustainable Development Goals (SDGs) 139, 

20220380539. New Delhi, India: National Council of 

Applied Economic Research. 

Bianchetti L, Thompson JD, Lecompte O, 

Plewniak F, Poch O. 2005. vALId: Validation of 

protein sequence quality based on multiple alignment 

data. Journal of Bioinformatics and Computational 

Biology 3(4), 929–947. 

https://doi.org/10.1142/S0219720005001326 

 

Bourassa P, Bariyanga J, Tajmir-Riahi HA. 

2013. Binding sites of resveratrol, genistein, and 

curcumin with milk α- and β-caseins. Journal of 

Physical Chemistry B 117(5), 1287–1295. 

https://doi.org/10.1021/jp3114557 

 

Burley SK, Bhikadiya C, Bi C, Bittrich S, Chao 

H, Chen L, Craig PA, Crichlow GV, Dalenberg 

K, Duarte JM, Dutta S, Fayazi M, Feng Z, Flatt 

JW, Ganesan S, Ghosh S, Goodsell DS, Green 

RK, Guranovic V, Zardecki C. 2023. RCSB 

Protein Data Bank (RCSB.org): delivery of 

experimentally-determined PDB structures alongside 

one million computed structure models of proteins 

from artificial intelligence/machine learning. Nucleic 

Acids Research 51(1 D), D488–D508. 

https://doi.org/10.1093/nar/gkac1077 

 

Caneschi A, Bardhi A, Barbarossa A, Zaghini 

A. 2023. The use of antibiotics and antimicrobial 

resistance in veterinary medicine, a complex 

phenomenon: a narrative review. Antibiotics 12(3). 

https://doi.org/10.3390/antibiotics12030487 

 

Chi Z, Liu R, Teng Y, Fang X, Gao C. 2010. 

Binding of oxytetracycline to bovine serum albumin: 

spectroscopic and molecular modeling investigations. 

Journal of Agricultural and Food Chemistry 58(18), 

10262–10269. 

https://doi.org/10.1021/jf101417w 

 

Dantas MD. de A, Silva M. de M, Silva ON, 

Franco OL, Fensterseifer ICM, Tenório H. de 

A, Pereira HJV, Figueiredo IM, Santos JCC. 

2020. Interactions of tetracyclines with milk 

allergenic protein (casein): a molecular and biological 

approach. Journal of Biomolecular Structure and 

Dynamics 38(18), 5389–5400. 

https://doi.org/10.1080/07391102.2019.1702587 

 



 

135 Janes et al.  
 

Int. J. Biosci. 2024 

Dastmalchi S, Hamzeh-Mivehroud M, Sokouti 

B. 2016. Methods and algorithms for molecular 

docking-based drug design and discovery. IGI Global 

456, 47-60. 

 

Davoodi SH, Shahbazi R, Esmaeili S, 

Sohrabvandi S, Mortazavian AM, Jazayeri S, 

Taslimi A. 2016. Health-related aspects of milk 

proteins. Iranian Journal of Pharmaceutical Research 

15(3), 573–591. 

 

De Wit JN. 1998. Nutritional and functional 

characteristics of whey proteins in food products. 

Journal of Dairy Science 81(3), 597–608. 

https://doi.org/10.3168/jds.S0022-0302(98)75613-9 

 

FAO, GDP, ICFN. 2018. Dairy Development’s 

Impact on Poverty Reduction. 

https://ifcndairy.org/wp-

content/uploads/2018/10/IFCN 

 

Fiser A. 2010. Template-Based Protein Structure 

Modeling. Methods in Molecular Biology (Clifton, 

N.J.) 673, 73–94. 

https://doi.org/10.1007/978-1-60761-842-3_6 

 

Fox PF. 2003. Milk Proteins: General and 

Historical Aspects. Advanced Dairy Chemistry—1 

Proteins 1, 1–48. 

https://doi.org/10.1007/978-1-4419-8602-3_1 

 

Gasteiger J, Marsili M. 1978. A new model for 

calculating atomic charges in molecules. Tetrahedron 

Letters 19(34), 3181–3184. 

https://doi.org/10.1016/S0040-4039(01)94977-9 

 

Gellrich K, Meyer HHD, Wiedemann S. 2014. 

Composition of major proteins in cow milk differing in 

mean protein concentration during the first 155 days of 

lactation and the influence of season as well as short-

term restricted feeding in early and mid-lactation. 

Czech Journal of Animal Science 59(3), 97–106.  

https://doi.org/10.17221/7289-cjas 

 

Genheden S, Reymer A, Saenz-Méndez P, 

Eriksson LA. 2017. Computational Chemistry and 

Molecular Modelling Basics. In Computational Tools 

for Chemical Biology. 

https://doi.org/10.1039/9781788010139-00001 

 

Gohlke H, Hendlich M, Klebe G. 2000. 

Knowledge-based scoring function to predict protein-

ligand interactions. Journal of Molecular Biology 

295(2), 337–356. 

https://doi.org/10.1006/jmbi.1999.3371 

 

Guntero VA, Gutierrez L, Kneeteman MN, 

Ferretti CA. 2021. In Silico Study of the Interaction 

between Casein with Tocopherols: Preliminary 

Evaluation of Lipophilic Substrate Inclusion on 

Proteic Matrix. 49. 

https://doi.org/10.3390/ecsoc-24-08345 

 

Habibian-Dehkordi S, Farhadian S, Ghasemi 

M, Evini M. 2022. Insight into the binding behavior, 

structure, and thermal stability properties of β-

lactoglobulin/Amoxicillin complex in a neutral 

environment. Food Hydrocolloids 133, 107830. 

https://doi.org/10.1016/j.foodhyd.2022.107830 

 

Herrero M, Grace D, Njuki J, Johnson N, 

Enahoro D, Silvestri S, Rufino MC. 2013. The 

roles of livestock in developing countries. Animal 

7(s1), 3–18. 

https://doi.org/10.1017/S1751731112001954 

 

Huey R, Morris G. 2008. Using AutoDock 4 with 

AutoDocktools: a tutorial. The Scripps Research 

Institute, USA 8, 54-6. 

https://dasher.wustl.edu/chem478/software/autodoc

k-tutorial.pdf 

 

Jagadeesh T, Parthiban M, Raja P, 

Sarathchandra G, Vairamuthu S. 2023. in Silico 

and in Vitro Evaluation of Enrofloxacin on Aflatoxin 

B1-Induced Cytotoxicity. Exploratory Animal and 

Medical Research 13(2), 243–251. 

https://doi.org/10.52635/eamr/13.2.243-251 

 



 

136 Janes et al.  
 

Int. J. Biosci. 2024 

Jalily Hasani H, Barakat K. 2017. Homology 

modeling: An overview of fundamentals and tools. 

International Review on Modelling and Simulations 

10(2), 129–145. 

https://doi.org/10.15866/iremos.v10i2.11412 

 

Kalin R, Köksal Z, Bayrak S, Gerni S, Ozyürek 

IN, Usanmaz H, Karaman M, Atasever A, 

Özdemir H, Gülçin İ. 2022. Molecular docking and 

inhibition profiles of some antibiotics on 

lactoperoxidase enzyme purified from bovine milk. 

Journal of Biomolecular Structure and Dynamics 

40(1), 401–410.  

https://doi.org/10.1080/07391102.2020.1814416 

 

Kong F, Tian J, Yang M, Zheng Y, Cao X, Yue 

X. 2020. Characteristics of the interaction 

mechanisms of xylitol with β-lactoglobulin and β-

casein: A multi-spectral method and docking study. 

Spectrochimica Acta - Part A: Molecular and 

Biomolecular Spectroscopy 243, 118824. 

https://doi.org/10.1016/j.saa.2020.118824 

 

Kosgey A, Shitandi A, Marion JW. 2018. 

Antibiotic residues in milk from three popular 

Kenyan milk vending machines. American Journal of 

Tropical Medicine and Hygiene 98(5), 1520–1522. 

https://doi.org/10.4269/ajtmh.17-0409 

 

Kumar A, Panda AK, Sharma N. 2022. 

Determination of antibiotic residues in bovine milk by 

HPLC-DAD and assessment of human health risks in 

Northwestern Himalayan region, India. Journal of 

Food Science and Technology 59(1), 95–104. 

https://doi.org/10.1007/s13197-021-04988-8 

 

Kumar A, Sharma A, Kaur H, Punera S, 

Tanwar P, Kumar P. 2021. Interaction of Protein-

Ligand: Molecular Docking, A Novel Computational 

Biology Tool. Annals of the Romanian Society for Cell 

Biology 25(6), 20763–20775. 

https://www.researchgate.net/publication/356033779 

Kurjogi M, Mohammad YHI, Alghamdi S, 

Abdelrahman M, Satapute P, Jogaiah S. 

2019. Detection and determination of stability of 

the antibiotic residues in cow’s milk. PLoS ONE 

14(10), 1–14.  

https://doi.org/10.1371/journal.pone.0223475 

 

Lemma DH, Mengistu A, Kuma T, Kuma B. 

2018. Improving milk safety at farm-level in an 

intensive dairy production system: Relevance to 

smallholder dairy producers. Food Quality and Safety 

2(3), 135–143. 

https://doi.org/10.1093/fqsafe/fyy009 

 

Liang G, Zhao J, Gao Y, Xie T, Zhen J, Pan L, 

Gong W. 2024. Application and evaluation of 

molecular docking for aptamer and small molecular 

interaction - A case study with tetracycline 

antibiotics. Talanta 266, 124942. 

https://doi.org/10.1016/j.talanta.2023.124942 

 

Makwana KM, Mahalakshmi R. 2015. 

Implications of aromatic-aromatic interactions: From 

protein structures to peptide models. Protein Science 

24(12), 1920–1933. 

https://doi.org/10.1002/pro.2814 

 

Maleko D, Msalya G, Mwilawa A, Pasape L, 

Mtei K. 2018. Smallholder dairy cattle feeding 

technologies and practices in Tanzania: failures, 

successes, challenges and prospects for sustainability. 

International Journal of Agricultural Sustainability 

16(2), 201–213. 

https://doi.org/10.1080/14735903.2018.1440474 

 

Mdegela RH, Mwakapeje ER, Rubegwa B, 

Gebeyehu DT, Niyigena S, Msambichaka V, 

Nonga HE, Antoine-Moussiaux N, Fasina FO. 

2021. Antimicrobial use, residues, resistance and 

governance in the food and agriculture sectors, 

Tanzania. Antibiotics 10(4), 1–23. 

https://doi.org/10.3390/antibiotics10040454 



 

137 Janes et al.  
 

Int. J. Biosci. 2024 

Merwan A, Nezif A, Metekia T. 2018. Review on 

milk and milk product safety, quality assurance and 

control. International Journal of Livestock 

Production 9(4), 67–78. 

https://doi.org/10.5897/ijlp2017.0403 

 

Mizumachi K, Kurisaki JI. 2005. Milk proteins. 

Nutraceutical Proteins and Peptides in Health and 

Disease 5(2), 431–444. 

https://doi.org/10.1016/s0021-9258(18)91668-6 

 

Pan F, Li J, Zhao L, Tuersuntuoheti T, 

Mehmood A, Zhou N, Hao S, Wang C, Guo Y, 

Lin W. 2021. A molecular docking and molecular 

dynamics simulation study on the interaction 

between cyanidin-3-O-glucoside and major 

proteins in cow’s milk. Journal of Food 

Biochemistry 45(1), 1–10.  

https://doi.org/10.1111/jfbc.13570 

 

Torres PHM, Sodero ACR, Jofily P, Silva-Jr 

FP. 2019. Key topics in molecular docking for drug 

design. International Journal of Molecular Sciences 

20(18), 1–29.  

https://doi.org/10.3390/ijms20184574 

 

Trott O, Olson AJ. 2010. AutoDock Vina: 

Improving the speed and accuracy of docking with a 

new scoring function, efficient optimization, and 

multithreading. Journal of Computational Chemistry 

31(2), 455–461. 

https://doi.org/10.1002/jcc.21334 

Van Boeckel TP, Brower C, Gilbert M, Grenfell 

BT, Levin SA, Robinson TP, Teillant A, 

Laxminarayan R. 2015. Global trends in 

antimicrobial use in food animals. Proceedings of the 

National Academy of Sciences of the United States of 

America 112(18), 5649–5654.  

https://doi.org/10.1073/pnas.1503141112 

 

Vincent D, Elkins A, Condina MR, Ezernieks 

V, Rochfort S. 2016. Quantitation and identification 

of intact major milk proteins for high-throughput LC-

ESI-Q-TOF MS analyses. PLoS ONE 11(10), 1–21. 

https://doi.org/10.1371/journal.pone.0163471 

 

Whitney RM. 1988. Proteins of milk. In Fundamentals 

of dairy chemistry (pp. 81-169). Boston, MA: Springer 

US. https://doi.org/10.1007/978-1-4615-7050-9_3 

 

Yao Q, Xing Y, Ma J, Wang C, Zang J, Zhao G. 

2021. Binding of Chloroquine to Whey Protein Relieves 

Its Cytotoxicity while Enhancing Its Uptake by Cells. 

Journal of Agricultural and Food Chemistry 69(36), 

10669–10677. https://doi.org/10.1021/acs.jafc.1c04140 

 

Zhang Y. 2008. I-TASSER server for protein 3D 

structure prediction. BMC Bioinformatics 9, 1–8. 

https://doi.org/10.1186/1471-2105-9-40 

 

Zhou M, Xia Y, Cao F, Li N, Hemar Y, Tang S, 

Sun Y. 2019. A theoretical and experimental 

investigation of the effect of sodium dodecyl sulfate on 

the structural and conformational properties of bovine 

β-casein. Soft Matter 15(7), 1551–1561.  

https://doi.org/10.1039/c8sm01967c  

 


