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Abstract 

In materials science, green synthesis has gained extensive attention as a reliable, sustainable, and eco-friendly 

protocol for synthesizing a variety of materials and nanomaterials, such as metal/metal oxide nanoparticles, 

hybrid materials, and bioinspired materials. As such, green synthesis is regarded as an important tool to 

reduce the destructive effects associated with the traditional methods of synthesis for nanoparticles commonly 

utilized in laboratory and industry. They are environmentally friendly because the toxic chemicals produced 

during the biosynthesis of the nanoparticles can be degraded with the help of enzymes present in the microbes. 

In this study, we compiled the basic procedures and workings of green synthesis methods, particularly as they 

relate to the bimetallic synthesis of Ag and Cu nanoparticles utilizing natural extracts. FT-IR, XRD, PSA, FL, 

and TGA were used to characterize the synthesized Ag-Cu nanoparticles. In addition, silver nanoparticles were 

used as a potential photocatalyst for the effective degradation of Rhodamine dye under UV light illumination, 

achieving an efficiency of roughly 84 % after 180 minutes. The antibacterial activity was tested on B. subtilis, E. 

coli, Staphylococcus, Enterobacter and Pseudomonas. Physicochemical properties increased the antibacterial 

activity of Cu/Ag NPs by causing a homogenous distribution and reducing oxidation and agglomeration. The 

work's findings demonstrate the advantages of employing a geometrical substrate to increase the antibacterial 

activity of bimetallic nanoparticles (NPs). This could potentially lower the need for pure Cu/Ag salts in NP-

based antibacterial applications. 
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Introduction 

The multidisciplinary field of nanoscience includes 

materials science, chemistry, physics, and medicine. 

As nanotechnology develops, it will significantly 

influence nearly every aspect of business and society, 

gaining it the nickname "general-purpose technology" 

(Singh et al., 2019). "Nanotechnology" was coined by 

Norio Taniguchi of Tokyo University of Science. 

According to Sharma et al. (2009 & 2019), the Greek 

word "dwarf," from which the prefix "Nano" is 

derived, refers to objects that are one-billionth the 

size of an actual object. Nanotechnology, as defined 

by Mortazavi et al. (2017), is the study of molecules 

and structures in the 1-100 nm nanometer range. 

Nanotechnology is one type of technology that is 

employed in practical applications like electronics. 

NPs are divided into a wide range of groupings based 

on their morphological, chemical, and physical 

characteristics. These include metal NPs, carbon NPs, 

lipid-based NPs, ceramic NPs, polymeric NPs, and 

semiconductor NPs. Different features distinguish 

metal nanoparticles (NPs) from their bulk 

counterparts. These factors, which improve molecule 

interaction, include a high surface-to-volume ratio 

and a degraded density of energy state (Maghsoodi et 

al., 2019). Biological resources such as plant extract 

and microorganisms such as bacteria, algae, fungus, 

viruses, and yeast are used as reducing agents in the 

green synthesis process. Microorganisms utilized in 

biosynthesis require aseptic conditions and culture 

media to develop (Kalishwaralal et al., 2010). Plant 

extract is considered to be more advantageous than 

microorganisms since it is easily produced and widely 

available (Riaz et al., 2020). Plants are extremely 

predisposed to create them since they are renewable, 

biodegradable, easy to handle, and rapidly provide 

natural stabilizing agent to nanoparticles (NPs) 

(Shankar et al., 2004). Alkaloids, flavonoids, 

proteins, polyphenols, amino acids, reducing sugars, 

enzymes, and a variety of other bioactive compounds 

found in plant extracts may be involved in the bio-

reduction of metal ions to metal NPs as well as the 

stabilization or capping of metallic NPs. The green 

synthesis of nanoparticles (NPs), which have a wide 

range of applications in fields like powder metallurgy, 

magnetic devices, photocatalysis, microelectronic 

devices, anticorrosive coatings, and biomedical fields, 

is affected by the parts of the plant, the extraction 

solvent, the pH of the solution, the concentration of 

salt, and the reaction temperature (Salem and Fouda, 

2021). Ag-Cu nanoparticles were becoming a more 

significant substance in this new era because of their 

wide range of biological, dental, and electronic device 

uses. Because of their exceptional electrical and 

thermal properties, which have led to a high demand 

for them in the market, Ag and Cu nanoparticles offer 

significant promise in a wide range of applications. 

While silver nanoparticles have proven to be the most 

effective due to their good antimicrobial agent against 

bacteria, viruses, and other eukaryotic 

microorganisms, Ag nanoparticles have drawn a lot of 

attention due to their excellent broad-spectrum 

antimicrobial activity (Rai et al., 2009; Tran et al., 

2013; Hikmah et al., 2016). Carroll et al. (2011) 

reported that antibacterial activity of metal 

nanoparticles like Ag and Cu was discovered. Because 

of their small size and high surface to volume ratio, 

which enable them to interact closely with microbial 

membranes, metal nanoparticles have been shown to 

have bactericidal effects. This effect is not limited to 

the release of metal ions in solutions. The metal 

nanoparticles' antibacterial qualities find use in a 

variety of industries, including water treatment, food 

processing, medical equipment, and gadgets (Rai et 

al., 2009; Hikmah et al., 2016). According to Yoon et 

al. (2007) heavy metal removal and microbe 

inactivation are two of the features of silver and 

copper nanoparticles. By applying the nano 

antimicrobial metals to the surfaces of medical 

equipment and water treatment filters that need to 

have antimicrobial properties, they can be employed 

efficiently (Yoon et al., 2007; Hikmah et al., 2016). 

Numerous plant extracts, including Azadirachta 

indica (neem), Aloe vera, Emblica Ofcinalis (amla), 

and Cinnamomum camphora, have already been 

shown to form silver nanoparticles (Canizal et al., 

2001; Shankar et al., 2004; Ankamwar et al., 2005; 

Krishnaraj et al., 2005; Chandran et al., 2006; Alok 

KumarGiri et al., 2022). Unfortunately, there is no 

information available regarding the synthesis of silver 
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nanoparticles from the plant Eugenia roxburghii, nor 

about any of their biological applications. Therefore, 

an attempt was undertaken to create silver 

nanoparticles from the leaf extract and investigate 

their antimicrobial properties in this work. The 

primary goal of this research project is to use the 

extract from Lantana camara leaves to create 

bimetallic copper-silver nanoparticles. XRD, SEM, 

EDX, and particle size analyzer analyses were used to 

evaluate the produced bimetallic nanoparticles. The 

antibacterial properties of the nanoparticles against 

Gram-positive and Gram-negative bacterial strains 

were confirmed, as was their catalytic activity in the 

breakdown of Rhodamine dye from aqueous solution. 

 

Materials and methods 

Chemicals and plant material collection 

All the reagents purchased were of analytical grade 

and used without any further purification. Silver 

nitrate (AgNO3) and Copper nitrate (CuNO3) was 

purchased from Sigma-Aldrich with ≥ 99.5% purity. 

Fresh leaves of Lantana camara were collected from 

the local area land, Idaikal, India. Distilled water was 

used for preparing aqueous solutions all over the 

experiments. 

 

Preparation of leaf extract  

Aqueous leaves extracts were prepared by the 

following procedure: 

Fresh leaves of Lantana camara were collected and 

washed with tap water at first, and then the surface 

was washed under running water with distilled water 

until no impurities remained. Then, the fresh leaves 

were cut and weighed about 10g and dissolved in 100 

mL of distilled water. The mixture was heated for 20 

minutes at 60°C while stirring occasionally and then 

allowed to cool at room temperature. The mixture was 

filtered using the Whatman no: 1 filter paper. The 

extract was stored in the refrigerator for further use to 

synthesize Ag-Cu nanoparticles from the CuNO3, 

AgNO3 precursor solution. 

 

Green synthesis of Ag-Cu bimetallic nanoparticles 

AgNO3 powder was dissolved in distilled water to 

prepare a 200 mL stock solution in a flask and 

maintained in magnetic stirrer for 20 minutes. 

CuNO3 powder was dissolved in distilled water to 

prepare a 200 mL stock solution in a flask and 

maintained in magnetic stirrer for 20 minutes. Both 

the metal salt solutions were mixed and heated for 10 

min at 95 °C. 40 mL of the plant extract was added to 

the salt solution. The mixture was maintained at 

room temperature for 24 h followed by 

centrifugation, and dried at Hot air over at 60°C for 

24 h. 

 

Photocatalytic activity 

We synthesized 20 ppm Rhodamine dye in 100 mL 

deionized water to test the photocatalytic activity of 

biogenic Ag-Cu NPs. The original concentration (5 

mL) was removed from the solution, and 100 mg (0.1 

g) of Ag-Cu NPs catalyst was added to 100 mL of dye 

solution; the solution was kept in the dark for 20 

minutes to maintain the adsorption desorption 

equilibrium, then exposed to UV light, and samples 

were taken at various time intervals. To remove the 

catalyst from the samples, centrifugation at 5000 rpm 

for 15 minutes was used; the degradation of dye was 

measured using a UV visible spectrophotometer. The 

following formula was used to compute the % 

degradation of the deteriorated dye: 

 

Degradation efficiency (%) = CI-CF/CI×100             (1) 

Where CI = initial Rhodamine dye concentration 

(g/L), and CF = concentration of the Rhodamine dye 

solution after the degradation time. 

 

Antibacterial activity 

The antibacterial activity of the fabricated Ag-Cu NPs 

was tested against five bacterial species, including 

Escherichia coli, Staphylococcus aureus, Bacillus 

subtilis, Enterobacter, and Pseudomonas fluorescens, 

using the well-diffusion method. The bacterial strains 

were cultured in nutrient broth for around 24 hours 

at 37 ℃. 100 mL of muller hinton agar was poured 

into Petridishes and incubated. 20 mL of muller 

hinton agar was put into the Petridishes and allowed 

to cool. All of the bacteria suspensions were switched 

over the medium and the wells were filled at four 

different concentrations of nanoparticle solution: 25, 
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50, 75, and 100 μL. The plates were incubated for 24 

hours at 37 ℃. Three different orientations were used 

to measure the inhibition zone that formed around 

each well. The zones of inhibition of the examined 

microorganisms by the compounds were measured on 

a millimeter scale. 

 

Results and discussion 

UV visible spectroscopy analysis 

Ag-Cu NPs' optical characteristics were assessed by 

measuring their UV–vis spectra (Fig.1). Ag-Cu NPs' 

absorption spectra shows a characteristic Ag surface 

plasmon resonance (SPR) band, which peaks at 

approximately 310 nm and spans 200 to 380 nm. The 

brown color of the solution indicates that the 

biomolecule-covered synthetic silver and copper 

nanoparticles are evenly distributed throughout the 

solutions and are reasonably stable for up to three 

months. These findings unambiguously show that, in 

the case of copper nanoparticles, a mixture of CuO 

and Cu2O nanoparticles formed, as previously 

documented in the literature (Rickerby et al., 2007; 

Saada et al., 2021). 

 

Fig. 1. UV spectrum of Ag-Cu NPs 

 

Fourier transform infrared spectroscopy analysis 

The wave number range for FTIR analysis is 450/cm 

to 4000/cm. Prior to FTIR analysis, the material was 

combined with KBr, well mixed, and pelletized by 

crushing it under enough pressure. Ag-Cu NPs are 

examined using an FTIR spectrophotometer and 

displayed in Fig. 2. The peak was measured at 3441 

cm-1 for phenols, O-H stretch, and H-bonded alcohols 

(Table 1). 

Fig. 2. FT-IR spectra of Ag-CuNPs 

 

Table 1.Peak table of Ag-Cu NPs 

S.No Peak  
(cm-1) 

Functional group 

1 3441 O–H stretch, H–bonded alcohols, phenols 
2 2923 C–H stretch alkanes 
3 1643 C=C stretch (conjugated) alkenes 
4 1384 C-F stretch alkyl halides 
5 1036 C-N Amines 
6 537 C–Br stretch alkyl halides 

 

C–H stretch alkanes are linked to the peaks at 2923 

cm-1 (Therese Marie and Drexel, 2016; Hikmah et al., 

2016). The peak at 2025 cm-1 is connected to the C=N 

stretch of nitrile. Alkenes that were conjugated with a 

C=C stretch were linked to the peak at 1643 cm-1. C-N 

Amines are linked to the peaks at 1036 cm-1. For C–Br 

stretch alkyl halides, 1384 cm–1 was the peak obtained. 

The peaks showed that the Lantana camara aqueous 

extract included several functional groups that were 

responsible for the production of stable Ag-CuNPs 

(Wang et al., 2021; Sujitha and Kannan, 2013). 

 

Fig. 3. XRD pattern of Ag-CuNPs 
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X-ray diffraction analysis 

XRD analysis is used to study the phase and crystal 

structure of the produced nanoparticles. Fig. 3 displays 

the Ag-Cu nanoparticles XRD patterns. According to 

Khot et al. (2001), the principal distinctive diffraction 

peaks for silver are detected at 27.6, 46.06, 54.65, 

67.30, and 77.19. These peaks correspond to the 

crystallographic planes of (110), (111), (211), (222), and 

(311), respectively. Three significant distinctive 

diffraction peaks for copper have been observed: 32.0 

and 74.29, which match the crystallographic planes of 

(220) and (111). The findings align with those of 

Jayaseelana et al. (2012), wherein all eight distinctive 

diffraction peaks of copper and silver were observed 

(Nidhi and Agrawal, 2021). 

 

The face centered cubic (fcc) phases of crystalline Ag 

(JCPDS card no. 4-783) and crystalline Cu (JCPDS 

card no. 4-836) are well indexed to all of the peaks. 

The bimetallic NP peaks lie between the Ag and Cu 

peaks, suggesting that the newly produced phases are 

homogenous Ag-Cu alloy phases rather than Ag and 

Cu phases that are totally separated. As per Bosetti et 

al. (2002) and Benassai et al. (2021), the creation of 

alloy nanoparticles is also indicated by the variation 

in lattice parameter. In all known highly reactive 

samples, the silver nanoparticles have a high atomic 

density facet of (111) (Hikmah et al., 2016). Ag-Cu 

bimetallic nanoparticles have an average 

crystallographic size of 24 nm. 

 

Dynamic light scattering analysis 

After being ultrasonically sonicated, the produced Ag-

Cu NPs were suspended in the ethanol solution. Using 

a particle size analyzer, the diameters of the 

agglomerated colloids in the suspensions were 

calculated. 

 

According to the analysis, the particle size is 60 nm, 

which is twice the Ag-Cu NPs crystallite size and in 

good agreement with the crystallite size (Araya Castro 

et al., 2020). 

 

Fig. 4 displays the Ag-CuNPs particle size distribution 

and average particle size data. However, since the 

bimetallic nanoparticles differ in many ways—

including dispersion color, surface plasmon 

resonance (UV), shape or morphology (SEM), among 

others—the development of a physical combination in 

either sample can be ruled out. It is known that the 

synthetic method utilized to generate bimetallic 

nanoparticles affects the distribution and 

arrangement of each metal within a particle (Allan et 

al., 2015). When using DLS, light is directed toward a 

suspension of particles from a coherent source and 

dispersed there (Ajitha et al., 2015; Ahmed et al., 

2016). The scattering varies throughout time as a 

result of the scatterers ever-changing distances from 

one another, which is caused by the particles' 

unpredictable Brownian motion. Therefore, when 

palladium is taken into account, the size of the ionic 

liquid and plant extract mediated nanoparticles, as 

assessed by DLS, may look smaller than the plant 

mediated nanoparticle without ionic liquid. In the 

majority of investigations, plant-mediated 

nanoparticles quickly aggregate. In this work, DLS is 

recorded after aging for four hours. Previously, the 

size distribution profile of nanoparticles in 

suspension was established using DLS. 

 

Fig. 4. DLS image of Ag-CuNPs 

 

Scanning electron microscopy (SEM) and EDAX 

Fig.5 displays the Ag-Cu NPs' SEM pictures. The 

structural and morphological behavior of the 

bimetallic nanoparticles is supported by the SEM 

pictures. It is evident that when plant extract was 

employed as a capping and reducing agent, Ag-Cu 

NPs of various forms were produced. Ag-Cu NPs 
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produced nanostructures with roughly spherical 

agglomerated and indefinable forms, respectively. 

This could be because the various nanoparticles 

contain varying amounts and types of capping agents. 

The FTIR analysis's findings about the shifts and 

differences in areas of the peaks corroborate this 

(Devatha et al., 2018a; 2018b). SEM and EDS 

examination In addition to studying the Ag-Cu core-

shell nanoparticles' surface morphology, the SEM 

micrographs are used to corroborate the XRD result. 

The enhanced SEM micrograph of Ag-Cu 

nanoparticles at various molarities is displayed in Fig. 

5. Fig. 5 illustrates how comparable the surface 

morphology and roughness are for the two samples. 

The particles have a narrow size distribution and are 

uniformly distributed in nanoscale size. The majority 

of particles have a spherical form (El-Adawy et al., 

2020; Elango and Roopan, 2015). Fig. 5 illustrates 

how the surface agglomerates and is rough. It is 

extremely challenging to distinguish between the 

different particles. It results from an incomplete 

reduction process between the reactants, which 

produces Cu particles. As previously mentioned, the 

reduction reaction became incomplete due to the high 

concentration of Cu in solutions. The results show 

good agreement with the XRD findings. 

 

 

Fig. 5. SEM image of Ag-Cu NPs 

 

Fig. 6. EDAX spectrum of Ag-Cu NPs 

 

To comprehend the semi-quantitative elemental 

composition of Ag-Cu NPs, EDX analysis was 

performed. Particles of copper and silver were visible 

in the peaks (Fig. 6). In order to support the purity of 

metallic nanoparticles, the total metal content was 

rather high (Gao et al., 2018). 

Fluorescence spectroscopy analysis 

Ag-CuNPs' room temperature fluorescence spectra were 

captured using a fluorescence spectrophotometer, as 

depicted in Fig.7. 400–900 nm was the wavelength range 

over which measurements were taken. The trials yielded 

maximum wavelength emission intensities, as illustrated 

in Fig. 7. The emission data were then plotted as 

wavelength (nm) vs. intensity (A.U.). As was previously 

said, the degree of aggregation and particle size are 

significantly influenced by the spinning electrode's 

rotation speed, with smaller nanoparticle formation being 

more advantageous at higher rotational speeds. 

 

Additionally, we noticed that the size of the generated 

Ag-Cu NPs decreased in tandem with an increase in 

the rotating electrode's rotation speed (Guo et al., 

2021). Ag-Cu NPs have three distinct peaks, as seen in 

Fig. 7. 
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A greater emission peak was recorded with an 

excitation wavelength of 804 nm, which may have 

been caused by surface imperfections. The lower 

emission peak was assigned at 441 nm, signifying the 

Ag-CuNPs production. The best method for 

examining energy levels was to use fluorescence 

spectra. There was a noticeable rise in fluorescence 

intensity when Ag-Cu NP size increased. 

 

Fig.7. Fluorescence spectrum of Ag-Cu NPs 

 

 

Fig. 8. Zone of inhibition of Ag-Cu NPs against 

various bacterial strains 

 

Antibacterial activity 

Using the agar well diffusion method, the 

antibacterial activity of integrated Ag-Cu NPs was 

tested against Staphylococcus aureus, Bacillus 

subtilis, Enterobacter sp., Pseudomonas auroginosa, 

and E. coli (Fig. 8). Using sterilized cotton swabs, a 

24-hour culture of pathogenic bacteria strains was 

evenly swabbed onto each person's plates containing 

Muller hinton agar. Pathogenic bacteria are cultivated 

in nutritional broth. Five or so wells were created, and 

each well on all plates received varying weights of 

pure Ag-Cu NPs—25, 50, 75, and 100 µl. In an 

incubator, the plates were incubated for twenty-four 

hours at 37°C. Following incubation, measurements 

were made of the various zones that formed around 

the well (Gopinath et al., 2014). Additionally, 

compared to Ag nanoparticles, Cu nanoparticles' zone 

of inhibition is slightly larger. The zone of inhibition 

in bimetallic systems rises as Cu concentrations do, so 

bolstering the effectiveness of Cu nanoparticles once 

more. Even at concentrations as low as 0.3 mg/L, the 

metallic nanoparticles had good antibacterial efficacy 

against bacteria, according to the data. Therefore, 

given the stable dispersion at the molecular level in 

the solution, it is possible to conclude that copper and 

silver ions may be released through aqueous starch 

solutions. The antibacterial activity is caused by the 

gradual migration of metal ions from the stabilizing 

medium. One could reasonably assume that the 

combination of metallic nanoparticles with 

biopolymers will prolong the Ag particle's release 

period and maintain its prolonged antibacterial 

activity (Jabir et al., 2021; Kargara et al., 2015). 

 

Table 2. Zone of inhibition of Ag-Cu bimetallic NPs against selected bacterial strains 

Zone of inhibition (mm in diameter) 
Concentration Bacillus sp. E. coli Enterobacter sp. Staphylococu us aureus Pseudomo nas sp. 

25 µl 1.2 1.2 1.6 1.5 1.1 
50 µl 1.2 1.4 1.7 1.7 1.2 
75 µl 1.4 1.7 2.0 1.9 1.4 
100 µl 1.6 1.9 2.1 2.0 1.6 
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Additionally, Table 2 data show that the nanoparticles 

work better against E. coli than S. aureus. According 

to (Kilkarni and Muddapur, 2014; Kumar Panda et 

al., 2021), Gram-negative and Gram-positive 

microbes differ in their cell wall structure, which 

accounts for the higher biocidal effectiveness of silver 

nanoparticles against E. coli. Contrary to previous 

reports (Ma et al., 2021; Mehwish et al., 2021), which 

attributed the decreased activity of copper 

nanoparticles to the oxide layer present on the 

surface, copper was shown to be more efficient than 

silver among the two metals (Naseer et al., 2021). 

 

Fig. 9. UV−visible spectra of Rhodamine dye 

degradation with Ag-Cu NPs 

 

 

Fig. 10. Reaction Mechanism for the Degradation of 

Rhodamine 

 

Photocatalytic activities of Ag-Cu NPs for the 

degradation of rhodamine dye 

Effect of irradiation time 

Fig. 9 illustrates how the degradation of dye grew 

with increasing UV light irradiation during the first 

20 minutes, peaking at 88% after 180 minutes. As the 

time interval rose, so did the dye's degradation (Singh 

et al., 2018).  

Mechanism of photocatalytic catalytic degradation 

of the dye 

We've already examined the connection between 

deterioration and time; the next step is to determine 

how this degradation takes place. Researchers 

examined how time affected the deteriorating process 

in order to determine the mechanism (Dhandapani et 

al., 2012). Fig. 10 illustrates how the breakdown of 

rhodamine dye is a light-dependent process. 

 

In order to enable valence electrons to move from the 

valence band to the conduction band, the dye must 

first be adsorbed on the surface of the catalyst, in this 

case Ag-Cu NPs. During this process, a positive hole, 

h+, is lifted inside the valence band. Adsorbed water 

molecules on the surface of the photocatalyst will 

combine with the positive holes and free electrons to 

form •OH radicals, while the free electrons will 

change the dissolved oxygen into superoxide anion 

O2
• radicals. These light-generated radicals break 

down the dye molecules into simpler molecules like 

CO2 and H2O. 

 

Ag-Cu NPs + hν → e− + h + 

H2O + h+ → OH・+ H + 

O2 + e−→ O2・−  

OH + dye → degradable product  

O2 – + dye → degradable product 

 

Conclusion 

The green production of bimetallic Ag-Cu NPs using 

leaf extract from Lantana camara is highlighted in 

this work. The use of Lantana camara leaf extract as 

a capping reagent to lower the average bimetallic 

particle size to 80 nm was innovative to this work. 

Numerous structural and morphological analyses of 

the nanoparticles as they were created using UV, 

FTIR, particle size analyzer, SEM, EDX, and XRD 

revealed that copper–silver nanoparticles were fully 

synthesized with very little of their respective oxides. 

Application investigations for the as-prepared 

bimetallic nanoparticles demonstrated their strong 

antibacterial activity, demonstrating that the zones of 

inhibition for Gram-positive and Gram-negative 

bacteria were almost identical. Under UV light, Ag-Cu 
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nanoparticles demonstrated noticeable photocatalytic 

activity against Rhodamine dye, with an estimated 

92% destruction efficiency in 240 minutes. Thus, a 

low-cost, non-toxic, environmentally friendly method 

for creating superior copper-silver bimetallic 

nanoparticle system is reported. As a potential 

extension of the current work, a thorough 

investigation into the industrial and commercial use 

of the produced bimetallic nanoparticles may be 

conducted. 
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