

International Journal of Biosciences | IJB | ISSN: 2220-6655 (Print), 2222-5234 (Online) http://www.innspub.net Vol. 26, No. 2, p. 158-168, 2025

RESEARCH PAPER

OPEN ACCESS

Economic analysis of onion and garlic production as influenced

by Micronutrients

Md. Joynul Abedin¹, B.M. Mahmudul Hasan^{*2}, Md. Hanjala Pipil², Tasrin Jahan³, Israt Jahan Annee⁴, Md. Nurul Alam¹

¹Department of Crop Science and Technology, University of Rajshahi, Bangladesh ²Department of Biochemistry and Molecular Biology, Trust University, Barishal, Bangladesh ³Department of Public Health Nutrition, Primeasia University, Dhaka, Bangladesh ⁴Department of Food and Nutrition, Barishal Home Economics College affiliated by University of Dhaka, Bangladesh

Key words: Onion, Garlic, Production, Micronutrients

http://dx.doi.org/10.12692/ijb/26.2.158-168

Article published on February 08, 2025

Abstract

A field experiment was conducted in the High Ganges River Floodplain Soils (AEZ 11) at Shyampur, Rajshahi, Bangladesh, to study the effects of micronutrients on onion (cv. Taherpuri) and garlic (local variety). The soil was silty loam with pH 7.6. The trial followed a Randomized Complete Block Design (RCBD) with 11 treatments (T1–T11) and three replications, applying Zn, B, Mo, Mn, Cu, and Cl at specific rates, along with NPKS as a basal dose. Data were collected at 15-day intervals and analyzed using MSTAT-C. Significant effects were observed in both crops. The highest onion yield (13.38 t/ha) was recorded in T4 (Zn + B), along with improved plant height (61.30 cm). The lowest growth and yield were found in T1 (control). In garlic, T3 (B) gave the highest yield (6.38 t/ha), while T4 (Zn + B) showed similar effects. The lowest yield was in T1. Economic analysis showed the highest net income (Tk. 425570) and benefit-cost ratio (1:8.58) for T4 in onion, while T3 had the best return (1:6.50) for garlic. For onion, the combination of Zn+B was optimal, whereas for garlic, B alone proved superior. The nutrient response ranking for onion was (Zn+B) > Zn > B > Mo, while for garlic it was B > (Zn+B) > Zn.

* Corresponding Author: B.M. Mahmudul Hasan 🖂 jewelgono @gmail.com

Introduction

Soil fertility in Bangladesh has been declining due to intensive cropping, imbalanced fertilization, and limited use of micronutrients and organic manures. Most soils contain less than 1.5% organic matter, with some below 1% (BARC, 2005). The country has 30 Agro-Ecological Zones (AEZs), with the study area belonging to the High Ganges River Floodplain (AEZ 11), characterized by calcareous soils with high CaCO₃ content and pH ranging from 7.0 to 8.5 (Alam, 2006). Micronutrients like Zn and B become less available as soil pH increases, while B deficiency is widespread due to leaching (Troeh et al., 1993). Micronutrients play a crucial role in plant nutrition, influencing growth and yield as much as macronutrients. Zinc, B, Mn, and Mo are highly sensitive in onion production (Havlin et al., 2007). Zinc deficiency causes stunted growth, Mo influences nitrogen metabolism, Mn affects photosynthesis, and Cu and Cl deficiencies lead to chlorosis and reduced plant vigor. Research on Zn, Cu, B, Mn, and Mo application for garlic production in Bangladesh is limited (Baquee, 1998). Onion ranks first among spices in production and second in cultivated area, while garlic ranks third.

Onion and garlic are widely grown across Bangladesh, with major producing districts including Rajshahi, Dhaka, and Mymensingh (Anonymous, 1977). Despite their importance, yields remain low due to inadequate micronutrient management. Bangladesh ranks seventh in global onion production (894,255 MT) and sixth in garlic production (176,710 MT) (FAO, 2007), requiring significant imports to meet demand. Our study aims to improve onion and garlic production through effective micronutrient management.

Materials and methods

Experimental site and design

The field experiment was conducted at High Ganges River Floodplain Soils (AEZ 11) at Shyampur, Rajshahi, Bangladesh, to study the response of different micronutrient combinations on the growth and yield of onion (*Allium cepa L.*) nd garlic (*Allium sativum L.*). The experiment was laid out in a Randomized Complete Block Design (RCBD) with replications. The soil of the experimental site belonged to the calcareous soil.

Treatments and fertilizer application

The treatments consisted of different combinations of micronutrients, including Zinc (Zn), Boron (B), Molybdenum (Mo), Manganese (Mn), Copper (Cu), and Chlorine (Cl). The control (T1) received no micronutrients, while the other treatments were formulated as follows:

- T1 = Control (No micronutrients)
- T2 = Zn
- T3 = B
- T4 = Zn + B
- $T_5 = Zn + B + Mo$
- T6 = Zn + B + Mn
- $T_7 = Zn + B + Cu$
- T8 = Zn + B + Cl
- T9 = Zn + B + Mo + Mn
- $T_{10} = Zn + B + Mo + Mn + Cu$
- $T_{11} = Zn + B + Mo + Mn + Cu + Cl$

Each treatment was applied in the recommended doses as per [reference source]. The required quantities of Zn, B, Mo, Mn, Cu, and Cl were applied in the form of [specific chemical compounds]. A uniform basal dose of NPKS fertilizers was applied to all plots.

Crop establishment and management

Onion and garlic seedlings were transplanted at a spacing of [specific spacing] on well-prepared plots. Standard agronomic practices, including irrigation, weeding, and pest control, were followed throughout the growth period.

Data collection

Growth and yield parameters were recorded at different Days after Planting (DAP):

• Number of leaves per plant at 30, 45, and 60 DAPS for onion and 40, 55, 70, 85, 100, and 115 DAPS for garlic.

• Plant height (cm) at 30, 45, 60, and 75 DAPS for onion and 40, 55, 70, 85, 100, and 115 DAPS for garlic.

• Fresh weight of leaves (g), bulbs (g), and roots (mg) at final harvest.

• Yield components, including total bulb yield per hectare.

• Economic analysis, including cost-benefit ratio calculations.

Statistical analysis

The collected data were statistically analyzed using [software/tool] following the Duncan's Multiple Range Test (DMRT) at a 5% significance level to compare treatment means.

Results and discussion

Response of micronutrients on growth of onion Number of leaves

The numbers of leaves per plant at different days after planting were found to be significant in different treatments (Table 1). The combination T_4 performed the highest number of leaves in all growth periods and the lowest was found in T₁. Similar observation was also observed by EL-Gamelli *et al.* (2000).

Plant height

Plant height was recorded at different days after planting (DAP) and it was observed that effects of micronutrients significantly affect for different micronutrients. The plant height of onion was nearly same at the maturity of the plants (Table 2).

The highest plant height (61.30 cm) was recorded in receiving T_4 and the lowest in control, where plant height at 75 DAP was followed by T_8 (58.88 cm) and T_2 (56.69 cm) respectively. BARI (2007-08) reported that the application of Zn and B significantly increased the plant height of onion.

However, the height of plants increased in receiving T_4 and ultimately leaves numbers were also increased due to influence of T_2 and T_3 .

Table 1. Effect of micronutrients on number of leaves per plant of onion at different DAP.

Treatments	30 DAP	45 DAP	60 DAP
$T_1 = Control$	6.51 c	9.17 d	10.70 e
$T_2 = Zn$	8.04 b	10.30 b~d	12.05 cd
$T_3 = B$	7.85 b	10.20 b~d	13.02 b
$T_4 = Zn + B$	9.90 a	12.53 a	14.63 a
$T_5 = Zn+B+Mo$	8.16 b	11.33 ab	12.99 b
$T_6 = Zn + B + Mn$	7.93 b	9.74 cd	13.26 b
$T_7 = Zn + B + Cu$	8.30 b	9.65 cd	11.69 d
$T_8 = Zn+B+Cl$	7.86 b	11.17 b	12.46 c
$T_9 = Zn+B+Mo+Mn$	8.25 b	9.20 cd	12.36 d
$T_{10} = Zn+B+Mo+Mn+Cu$	8.37 b	9.61 cd	13.21 b
$T_{11} = Zn + B + Mo + Mn + Cu + Cl$	8.94 ab	10.57 bc	12.22 C
CV (%)	8.38	6.90	2.10

In a column, figures having same letter(s) do not differ significantly by DMRT at 5% level; each parameter represents 30 plants; DAP= Days after planting.

Fresh weight of leaves

Various combinations of micronutrients exhibited significant variations in respect of fresh weight of leaves per plant (Table 3). The maximum fresh weight of leaves (9.21 g) was observed in receiving T_4 followed by T_2 (8.88 g) and the lowest number was recorded in receiving T_6 (4.97 g). Marteens *et al.* (1991) stated that bulb uptakes micronutrient swiftly at the stage of bulb initiation. EL-Gamelli (2000) studied that fresh weight of leaves were positively affected by the application of micronutrients.

The result of this parameter indicated that Zn and B had significant role on the vegetative growth of onion which is in partial accord with the findings of Sindhu and Tiwari (1989).

Table 2.	Effect	of micro	onutrients o	n plant	height o	of onion a	at different	DAP.
rubic =:	Blicce	or micro	Juni lento o	ni piune	neigne o	o nuon t	at uniterent	DIN.

Treatments	30 DAP	45 DAP	60 DAP	75 DAP
	(cm)	(cm)	(cm)	(cm)
$T_1 = Control$	33.48 c	40.18 c	51.45 ab	55.22 b
$T_2 = Zn$	37.65 b	43.01 b	51.99 ab	56.69 b
$T_3 = B$	38.08 b	42.85 b	52.58 ab	55.19 b
$T_4 = Zn + B$	41.58 a	46.60 a	56.01 a	61.30 a
$T_5 = Zn+B+Mo$	37.69 b	41.52 bc	52.70 ab	57.28 b
$T_6 = Zn + B + Mn$	36.85 b	42.41 b	49.85 b	57.60 b
$T_7 = Zn + B + Cu$	37.99 b	42.59 b	52.42 ab	56.53 b
$T_8 = Zn + B + Cl$	37.56 b	42.95 b	53.95 ab	58.88 ab
$T_9 = Zn+B+Mo+Mn$	35.45 bc	41.49 bc	52.60 ab	57.04 b
$T_{10} = Zn + B + Mo + Mn + Cu$	36.34 b	41.42 bc	52.58 ab	56.36 b
$T_{11} = Zn+B+Mo+Mn+Cu+Cl$	36.69 b	41.82 bc	53.52 ab	58.53 ab
CV (%)	3.87	2.64	5.49	3.42

In a column, figures having same letter(s) do not differ significantly by DMRT at 5% level; each parameter represents 30 plants; DAP= Days After planting.

Table 3. Effect of micronutrients on fresh weight of onion.

Treatments	Fresh weight of	Fresh weight of	Fresh weight of
	leaves (g)	bulbs (g)	roots (mg)
$T_1 = Control$	6.82 d~f	20.60 de	693.40 e
$T_2 = Zn$	8.88 b	26.52 b	1084.00 b~d
$T_3 = B$	7.24 c~f	25.32 bc	1229.00 b
$T_4 = Zn + B$	9.21 a	31.42 a	1035.00 b~d
$T_5 = Zn+B+Mo$	7.55 b~e	23.72 b~e	1513.00 a
$T_6 = Zn + B + Mn$	4.97 g	24.25 b~e	1141.00 bc
$T_7 = Zn + B + Cu$	8.78 c	22.66 b~e	887.00 c~e
$T_8 = Zn + B + Cl$	7.70 b~e	21.76 c~e	984.10 b~d
$T_9 = Zn+B+Mo+Mn$	6.60 ef	25.79 bc	986.70 b~d
$T_{10} = Zn + B + Mo + Mn + Cu$	5.91 fg	25.03 b~d	816.80 de
T ₁₁ =Zn+B+Mo+Mn+Cu+Cl	8.55 a~c	19.94 e	1169.00 b
CV (%)	9.71	10.22	13.49

In a column, figures having same letter(s) do not differ significantly by DMRT at 5% level; each parameter represents 30 plants; DAP= Days After planting.

Response of micronutrients on growth of Garlic Number of leaves

Effect of micronutrients on leaves of garlic was approximately equivalence to onion. Number of leaves per plant is one of the important growth characters which significantly contribute in both plant growth and yield. Effects of T_2 , T_3 was observed but combine treatment Zn and B gave the highest leaves number 16.58 (Table 4) followed by T_3 .

Therefore, calcareous soil of Bangladesh (AEZ 11, High Ganges River Floodplains) had significant effect on leaves number of garlics receiving T_2 , T_3 and T_4 . NPKS fertilizers were used as basal dose 13.66 leaves per plant were observed in receiving control which was statistically similar at 40 DAPS. Sulphur had

significant effect on the growth of garlic. Peterson (1979) mentioned role of Sin garlic production. Ranjan *et al.* (2005) reported that maximum leaf number was observed when the plant was fertilized by borax. The supplement of micronutrients accumulated reserve substances which enhanced number of leaves. Chlorosis was shown in receiving control observed by Agarwala *et al.* (1979).

Table 4. Effect of micronutrients on leaves number per plant of garlic.

Treatments	40 DAP	55 DAP	70 DAP	85 DAP	100 DAP	115 DAP
$T_1 = Control$	4.59 a	4.87 ab	7.45 ab	7.73 d	11.42 de	13.66 c
$T_2 = Zn$	4.60 a	5.23 a	8.22 ab	8.90 a	13.46 ab	15.33 bc
$T_3 = B$	4.15 a	4.86 ab	7.49 ab	8.51 a~c	13.10 ab	16.58 ab
$T_4 = Zn + B$	4.31 a	4.71 ab	8.58 a	8.78 ab	13.83 a	18.20 a
$T_5 = Zn+B+Mo$	4.11 a	4.57 b	7.76 ab	8.18 cd	12.79 abc	13.92 c
$T_6 = Zn + B + Mn$	4.22 a	4.97 ab	7.71 ab	8.30 b~d	13.12 ab	14.11 c
$T_7 = Zn + B + Cu$	4.34 a	4.79 ab	7.66 ab	8.22 b~d	12.90 a∼c	14.27 c
$T_8 = Zn+B+Cl$	4.25 a	4.84 ab	7.86 ab	8.25 b~d	12.42 b~d	14.23 c
$T_9 = Zn+B+Mo+Mn$	4.39 a	4.97 ab	7.29 b	8.28 b~d	11.97 с~е	13.69 c
$T_{10} = Zn+B+Mo+Mn+Cu$	4.08 a	4.85 ab	7.57 ab	7.89 d	11.29 e	14.17 c
$T_{11} = Zn+B+Mo+Mn+Cu+Cl$	4.40 b	4.57 b	7.12 b	7.79 d	12.42 b~d	14.36 c
CV %	8.43	6.46	7.86	3.60	4.46	7.21

In a column, figures having same letter(s) do not differ significantly by DMRT at the 5 % level; each parameter represents 30 plants; DAP =Days after Planting.

Treatments	40 DAP	55 DAP	70 DAP	85 DAP	100 DAP	115 DAP
	(cm)	(cm)	(cm)	(cm)	(cm)	(cm)
$T_1 = Control$	33.62 cd	40.49 b	41.31 b	41.79 d	44.04d	52.20 c
$T_2 = Zn$	36.17 ab	36.10 a	41.42 a	47.26 a	50.15a	57.62 a
$T_3 = B$	36.00 ab	40.08 a	40.46 a	45.18 a∼c	47.30b	56.49 ab
$T_4 = Zn + B$	37.05 a	39.84 a	40.76 a	45.91ab	50.00a	58.36 a
$T_5 = Zn+B+Mo$	32.10 de	38.78 a	39.42 a	45.37 a∼c	45.58 b~d	52.91c
$T_6 = Zn + B + Mn$	35.40 a∼c	39.38 a	39.53 a	42.93 d	47.20 b	56.24 ab
$T_7 = Zn + B + Cu$	31.20 e	38.42 a	39.65 a	44.03 b~d	46.13 bc	54.11 bc
$T_8 = Zn+B+Cl$	36.44 ab	40.90 a	40.99 a	43.15 cd	46.86 bc	54.27 bc
$T_9 = Zn+B+Mo+Mn$	36.12 ab	39.52 a	41.07 a	43.45 b~d	47.13 bc	53.24 c
$T_{10} = Zn + B + Mo + Mn + Cu$	37.52 a	40.23 a	41.06 a	41.85 d	44.25 d	53.07 c
$T_{11} = Zn + B + Mo + Mn + Cu + Cl$	34.47 bc	38.83 a	39.83 a	42.16 d	45.22 cd	52.03 c
CV %	3.37	8.61	6.46	3.05	2.18	2.46

Table 5. Effect of micronutrients on plant height of garlic.

In a column, figures having same letter(s) do not differ significantly by DMRT at the 5 % level; each parameter represents 30 plants; DAP =Days after Planting.

Plant height

The effect of micronutrients on plant height of garlic were found to be significant. Highly significant value on plant height of garlic due to micronutrients was found at 100 DAPS. The maximum height was found in T_4 (58.63 cm, Table 5) and the lowest value was observed in receiving T_{11} (52.03 cm) followed by T_2 (57.62 cm). However, T_2 plays important role in plant

height of garlic. Combination of all micronutrients showed negative role in plant height of garlic. This result was also similar to Ranjan *et al.* (2005). They stated that Zn, B was important micronutrients for vegetative growth and yield of garlic.

Analysis of cost of production of onion

Expenses from (control) were 52709.30 tk. (currency in Bangladesh) in production of per hectare yield (Table 6&8). Cost of production for T_4 (Zn + B) treatment was 56110.05 tk. Cost of T_2 (Zn) and T_3 (B) was 54716.30 tk. and 51427.05 tk. According to retail price 36 tk. /kg, gross income in T_4 (Zn + B) was 481680 tk. /ha land and 321840 takas from T_1 treatment whereas, net income from T_4 (Zn + B) was 425569.95 tk. per hectare and also 269130.70 tk from T_1 trialed treatment.

It can be concluded that net income from T_4 is 50 % more than that of control plot. *Cost benefit ratio (1: 8.58) revealed that T_4 (Zn + B) is most suitable for onion production where T_1 (control) expresses 1: 5.12 ration. T_3 (B) possessed (1: 7.99) in benefit cost ration while the ratio 1:7.57 was followed by T_2 (Zn).

Fable 6. Economic analysis of onion	production as influenced by	micronutrients
-------------------------------------	-----------------------------	----------------

Treatments	Production	Production	Gross income	Net income	Benefit cost
	(t/ha)	cost	(Tk.)	(Tk.)	ratio
$T_1 = Control$	8.94	52709.30	321840	269130.70	1: 5.12
$T_2 = Zn$	11.50	54716.30	414000	408523.70	1: 7.57
$T_3 = B$	11.42	51427.05	411120	359692.95	1: 7.99
$T_4 = Zn + B$	13.38	56110.05	481680	425569.95	1: 8.58
$T_5 = Zn+B+Mo$	11.65	59455.05	419400	359944.95	1: 7.05
$T_6 = Zn + B + Mn$	9.89	55767.75	356040	300272.25	1: 6.38
$T_7 = Zn + B + Cu$	11.18	56584.80	402480	345895.20	1: 7.11
$T_8 = Zn + B + Cl$	10.25	59716.05	369000	309283.95	1: 6.17
$T_9 = Zn+B+Mo+Mn$	9.83	60079.45	353880	293800.55	1: 5.89
$T_{10} = Zn+B+Mo+Mn+Cu$	10.57	60804.20	380520	31975.80	1: 6.26
T ₁₁ = Zn+B+Mo+Mn+Cu+Cl	10.83	61250.20	389880	328629.80	1: 6.36

Table 7. Economic analysis of garlic production as influenced by micronutrients.

Treatment	Production	Production	Gross income	Net income	Benefit cost
	(t/ha)	cost	(tk.)	(tk.)	ratio
$T_1 = Control$	5.36	86939.80	482400	395460.20	1: 5.55
$T_2 = Zn$	5.82	88946.80	523800	434853.20	1: 5.89
$T_3 = B$	6.38	88333.55	574200	485866.45	1: 6.50
$T_4 = Zn + B$	6.06	90340.55	545400	455059.45	1: 6.04
$T_5 = Zn+B+Mo$	5.79	93685.55	521100	427414.45	1: 5.56
$T_6 = Zn + B + Mn$	5.62	90964.95	505800	414835.05	1: 5.56
$T_7 = Zn + B + Cu$	5.93	91065.30	533700	442634.70	1: 5.86
$T_8 = Zn + B + Cl$	5.58	90786.55	502200	411413.45	1:5.53
$T_9 = Zn+B+Mo+Mn$	5.47	94309.95	492300	397990.05	1: 5.22
$T_{10} = Zn + B + Mo + Mn + Cu$	5.76	95034.70	518400	423365.30	1: 5.45
$T_{11} = Zn+B+Mo+Mn+Cu+Cl$	5.82	95480.70	523800	428319.30	1: 5.48

Analysis of cost of production of garlic

Analysis of cost of production was mentioned in Table 7 and 9. Cost of production T₁ (control) in per hectare management was 86939.80 Tk. Management cost of

 T_3 (B) treatment was 88333.55 Tk. and 90340.55 Tk. was from T_4 (Zn + B). Labour wages was 100 Tk. per day. Gross income from T_1 , T_3 and T_4 were respectively 482400 Tk., 574200 Tk., 545400 tk @ 90

Tk. (@ = 36 Tk. /kg) in present market price. Net income from T_1 , T_3 and T_4 were remaining 395460.20 tk., 485866.45 tk. and 455059.45 tk.

However, using treatment T_3 producers of that region may be benefited economically. Hence, producers should practice with T_3 (B) fertilizer for enhancing production rate of garlic. The minimum benefit cost ratio (1:5.22) was demonstrated with T_9 (Zn + B + Mo + Mn) treatment. The value of benefit cost ratio 1: 5.45 was mentioned from T_{10} (Zn + B + Mo + Mn + Cu).

Treatments	Cost of bulbs	Fertilizers									Irrigation	Subtotal (a)	
	•	Urea	TSP	Gypsum	K_2SO_4	ZnO	H_3BO_3	Na ₂ MoO ₃	MnO	CuSO_4	NaCl		
T_1	14000	1800	3500	320	900	-	-	-	-	-	-	2400	22920
T_2	14000	1800	3500	320	900	1800	-	-	-	-	-	2400	24720
T_3	14000	1800	3500	320	900	-	1250	-	-	-	-	2400	21770
T_4	14000	1800	3500	320	900	1800	1250	-	-	-	-	2400	25970
T_5	14000	1800	3500	320	900	1800	1250	3000	-	-	-	2400	28970
T_6	14000	1800	3500	320	900	1800	1250	-	560	-	-	2400	25663
T_7	14000	1800	3500	320	900	1800	1250	-	-	650	-	2400	26620
T_8	14000	1800	3500	320	900	1800	1250	-	-	-	400	2400	26370
T9	14000	1800	3500	320	900	1800	1250	3000	560	-	-	2400	29530
T ₁₀	14000	1800	3500	320	900	1800	1250	3000	560	650	-	2400	30180
T11	14000	1800	3500	320	900	1800	1250	3000	560	650	400	2400	30580

(b) Non-material cost (Tk.)

Treatments	Land preparation	Planting cost	Weeding	Harvesting and	Subtotal	Input cost
				marketing	(b)	(A = a+b)
T1	4400	2150	2050	2300	10900	33820
T_2	4400	2150	2050	2300	10900	35620
T ₃	4400	2150	2050	2300	10900	32670
T_4	4400	2150	2050	2300	10900	36870
T_5	4400	2150	2050	2300	10900	39870
T_6	4400	2150	2050	2300	10900	36563
T_7	4400	2150	2050	2300	10900	37520
T_8	4400	2150	2050	2300	10900	37270
T9	4400	2150	2050	2300	10900	40430
T10	4400	2150	2050	2300	10900	41080
T ₁₁	4400	2150	2050	2300	10900	41480

Labor cost @ Tk. 100 per day

Overhead cost (Tk.)

Treatments	Cost of lease of	Miscellaneous cost	Interest on running capital (for 6	Subtotal	Total cost of production
	lands for 6 months	5% of input cost	month 13% of cost per year)	(B)	[A+B]
T1	15000	1691	2198.30	18889.30	52709.30
T_2	15000	1781	2315.30	19096.30	54716.30
T_3	15000	1633.50	2123.55	18757.05	51427.05
T_4	15000	1843.50	2396.55	19240.05	56110.05
T ₅	15000	1993.50	2591.55	19585.05	59455.05
T_6	15000	1828.15	2376.60	19204.75	55767.75
T ₇	15000	1876	2438.80	19314.80	56584.80
T8	15000	1863.50	2422.55	19286.05	59716.05
T9	15000	2021.50	2627.95	19649.45	60079.45
T10	15000	2054	2670.20	19724.20	60804.20
T ₁₁	15000	2074	2696.20	19770.20	61250.20

The maximum value from benefit cost ratio was 1:6.50 whereas the second rank obtained from T_4 . Equivalent ratio was remarked from T_5 (Zn + B + Mo) and T_6 (Zn + B + Mn). Pure Mo was costly than other treated elements. Hence, cheaper rated of molybdated fertilizer was used in this research.

Table 9. Analysis of cost of	production garlic	(per hectare) A. In	put cost: (a)	Material cost (Tk.).
	1 0	`	1	

Treatments	Cost of bulbs					Fe	rtilizers					Irrigation	Subtotal (a)
		Urea	TSP	Gypsum	K_2SO_4	ZnO	H_3BO_3	Na_2MoO_3	MnO	CuSO ₄	NaCl		
T_1	44000	1800	3500	320	900	-	-	-	-	-	-	2600	53120
T_2	44000	1800	3500	320	900	1800	-	-	-	-	-	2600	54920
T_3	44000	1800	3500	320	900	-	1250	-	-	-	-	2600	54370
T_4	44000	1800	3500	320	900	1800	1250	-	-	-	-	2600	56170
T_5	44000	1800	3500	320	900	1800	1250	3000	-	-	-	2600	59170
T_6	44000	1800	3500	320	900	1800	1250	-	560	-	-	2600	56730
T_7	44000	1800	3500	320	900	1800	1250	-	-	650	-	2600	56820
T_8	44000	1800	3500	320	900	1800	1250	-	-	-	400	2600	56570
T9	44000	1800	3500	320	900	1800	1250	3000	560	-	-	2600	59730
T10	44000	1800	3500	320	900	1800	1250	3000	560	650	-	2600	60380
T ₁₁	44000	1800	3500	320	900	1800	1250	3000	560	650	400	2600	60780

b. Non-material cost (Tk.)

Treatments	Land preparation	Transplanting cost	Weeding	Harvesting and marketing	Subtotal (b)	Input cost
						(A = a+b)
T_1	4400	2200	2250	2500	11400	64520
T_2	4400	2200	2250	2500	11400	66320
T_3	4400	2200	2250	2500	11400	65770
T_4	4400	2200	2250	2500	11400	67570
T_5	4400	2200	2250	2500	11400	70570
T_6	4400	2200	2250	2500	11400	68130
T_7	4400	2200	2250	2500	11400	68220
T_8	4400	2200	2250	2500	11400	67970
T 9	4400	2200	2250	2500	11400	71130
T ₁₀	4400	2200	2250	2500	11400	71780
T ₁₁	4400	2200	2250	2500	11400	72180

Labor cost @ Tk. 100 per day

B. Overhead cost (Tk.)

Treatment	Cost of lease of lands for 6	Miscellaneous cost 5%	Interest on running capital (for 6	Subtotal (B)	Total cost of
	months	of input cost	month 13% of cost per year)		production
					[A+B]
T_1	15000	3226	4193.80	22419.80	86939.80
T_2	15000	3316	4310.80	22626.80	88946.80
T_3	15000	3288.50	4275.05	22563.55	88333.55
T_4	15000	3378.50	4392.05	22770.55	90340.55
T_5	15000	3528.50	4587.05	23115.55	93685.55
T ₆	15000	3406.50	4428.45	22834.95	90964.95
T ₇	15000	3411	4434.30	22845.30	91065.30
T ₈	15000	3398.50	4418.05	22816.55	90786.55
T9	15000	3556.50	4623.45	23179.95	94309.95
T ₁₀	15000	3589	4665.70	23254.70	95034.70
T11	15000	3609	4691.70	23300.70	95480.70

Conclusion

The economic analysis of onion and garlic production under various micronutrient treatments reveals that the application of zinc (Zn) and boron (B) significantly enhances yield and profitability. Among all treatments, T4 (Zn + B) demonstrated the highest net income and benefit-cost ratio for onion production (1:8.58), while T₃ (B) resulted in the most profitable garlic production (1:6.50). The control treatment (T1) consistently exhibited the lowest returns, indicating the importance of micronutrient supplementation. For onion production, the combination of Zn and B (T4) resulted in the highest yield (13.38 t/ha) and net income (425,569.95 Tk/ha). Similarly, in garlic cultivation, boron application (T₃) maximized net income (485,866.45 Tk/ha) and benefit-cost ratio. The addition of multiple micronutrients beyond Zn and B (e.g., Mo, Mn, Cu, and Cl) did not always translate into proportional economic benefits, as seen in treatments like T9 and T11, where production costs increased without significantly higher yields. These findings suggest that targeted micronutrient management, specifically Zn and B, can improve onion and garlic production efficiency, making it a viable strategy for maximizing profitability. Farmers should prioritize cost-effective nutrient management approaches to enhance productivity while maintaining economic sustainability.

References

Abedin MJ. 2009. Effect of micronutrients to growth and yield of onion and garlic under calcareous soil environment. M.S. Thesis, Dept. Crop Science and Technology, University of Rajshahi, Bangladesh.

Abid M, Ahmed M, Jahangir M, Ahmed I. 2002. Effect of zinc, iron and manganese on growth and yield of rice (*Oryza sativa* L.). Pakistan Journal of Agricultural Sciences **39(3)**, 177-180.

Agarwal SK, Surraj B, Bhan S. 1997. Effect of levels of zinc sulphate application on the yield and net return in rice-wheat cropping sequence. Indian Journal Agriculture Research **31(3)**, 174-178. Agarwala S, Sharma CCP. 1979. Plant nutrients their functions and uptake. In Soil Fertility, Theory and Practice (ed. J. S. Kanwar), ICAR, New Delhi. **24** (3), 48-51.

Aguilera M, Mora M, Boril G, Periona P, Zunino H, Mora M. 2002. Balance and distribution of sulphur in volcanic ash derived soils in chili. Soil Biology and Biochemistry **34(9)**, 1355-1361.

Ahmed MS. 2009. Effect of micronutrients on growth and yield of cabbage and cauliflower under calcareous soil environment. M.S. Thesis, Dept. Crop

Ahmed S, Hossain MB. 1999. Micronutrient status of long-term field experiments under wheatmungbean rice cropping sequence. Paper presented in the international meeting on "Long-term Experiment (LITE) on soil Fertility in rice based cropping system" held at BRRI, Gazipur, Bangladesh. March 8-11, 1999.

Akhter S, Ali M, Jahiruddin M, Ahmed S, Rahman L. 1994. Main and interaction effects of sulphur and zinc on rice. Crop Research **7(1)**, 1-7.

Alam MD, Rahim MA, Ultana MS. 1999. Effects of paclobutazol and sulphur fertilizer on the growth and yield of garlic. Bangladesh International Journal of Training and Development **12(1/2)**, 230-233.

Anwar MN, Huq MS, Nandy SK, Islam MS. 2001. Effect of N, P, K, S and Mo on growth and curd yield of broccoli in gray terrace soil. Bangladesh Journal of Agricultural Research **26(4)**, 549-555.

Arif O, Buzetti S, Rodrigues R, Stradioto M, de F, Lima Fs de. 1996. Responses of upland rice given supplementary sprinkler irrigation to application of boron and zinc. Journal Cientifica Jaboticabal **24(1)**, 135-148.

Awasthi AP, Grewal JS. 1977. Response of potato tuber to micronutrient application. Indian Farm. **39(6)**, 13-15.

Babu SNS, Hegde DM. 2002. Delineation of sulphur deficient soil and evaluation of oilseed crops responses to sulphur. Fertilizer Marketing News. **33(3)**, 9-17.

Bagci A, Erdal I, Gultekin I. 2007. Effect of Zinc Fertilization and Irrigation on Grain Yield, Zinc Concentration and Quality of Cereal Species. 24-26 May 2007, Istanbul. Turkey.

Baghel BS, Samik DA. 1988. Comparative study of soil and foliar application of zinc and boron on growth, yield and yield quality of onion (*Allium cepa* L.) cv. Pusa red. Res. and dev. Reporter. **5(1-2)**, 76-79.

Balakrishnar K, Natarajarotnain N. 1986. Effect of Zn supplements on yields and yield components in certain rice verities. Madras Agriculture Journal **73(10)**, 59-00.

Bandara WMJ, Wickramasinghe DB, Sirisena DN, Silva LC. 2003. Effect of applied Zn on N use efficiency, growth and grain yield of rice grown in low humic gely soils of low country intermediate zone. Annals of the Sri Lanka Department of Agriculture **5**, 23-32.

Bansal RL, Nayyar VK, Dhaliwal G, Arora Dhwan R.1998. Yield and micronutrient nutrition in rice as influenced by high levels of zinc in soil. In Proc: Int. Conf. Ecol. Agric: towards sustainable development. Chandigarh, India, 15- 17 November, 1998-636-641.

BAR. (Bangladesh Agricultural Research Council) 2005. Fertilizer Recommendation Guide. Soils Pub. No.45. 2005. Farmgate, Dhaka: 8-67.

BARI, Bangladesh Agriculture Research Institute. 2007-08. Effect of NPKS, Zn and B on garlic 40-46 p.

Bhat MA, Salroo MY, Mushki GM, Shiekh FA. 2002. Yield enhancement of rice (Oryza sativa L.) under irrigated transplanted conditions of Kashmir Valley. Plant Archieves. **2(1)**, 115-117. **Bhonde SR, Ram UB, Pandey BP, Tiwari HN.** 1995. Effect of micronutrients on growth, yield and quality of kharif onions. Journal of the American Society for Horticultural Science **113(6)**, 864-869.

Bhuvaneswari R, Riramachandrasekharan SMV, Ravichandran M. 2005. Response of rice to sulphur and organics in S deficient soil. Advances in Plant.

BINA. (Bangladesh Institute of Nuclear Agriculture). 1998. Annual report 1995-96.BINA, Mymensingh: 78-80.

Chowdhury AK, Chowdhury MAH, Hossain MA. 1995. Zinc distribution among soil fractions as influenced by zinc and phosphorus. Bangladesh. The Journal of Agricultural Science **22(10)**, 131-136.

FAO. 2003. Production Yearbook. Food and Agricultural Organization of the United Nations, Rome: 76-77.

Hoque MS, Jahiruddin M. 1994. Effect of single and multiple application of sulphur and zinc in a continuous cropping pattern. Indian Journal of Agriculture Research **28(1)**, 9-14.

Hossain As, Islam MR, Mia NA. 1989. Response of rice to S and Zn fertilization. Bangladesh Journal of Agriculture Science **16(2)**, 131-134.

Islam MS, Alam MS, Alam MN, Rahman MA, Ali MK. 2009. Effect of boron on the yield performance of wheat varieties. Journal of the Bangladesh Society for Agricultural Science and Technology **6(3&4)**, 165-170.

Jadhav SS, Kaskar SR, Dodake SB, Salvi VG, Dabke DJ. 2003. Response of rice two the graded levels of zinc applied with a without FYM to lateritic soils (Fluvenlic Ustropepts) of Konkan region. .1. Soils and Crop **13(1)**, 69-72.

Ruan CC, Zhang LY, Jie J, Hai SM, Hua ZJ. 2006. Effect of Zn fertilizer on rice yield and yield characters in salinized soil. Journal of Jilin Agricultural University **28(6)**, 591-596, 605.

Sachdev P, Dev DL. 1991. Zinc uptake by upland rice in relation to Zn ion activity in soH. Annals Of Agricultural Science And Technology **12(2)**, 109-114.

Tye AM, Young S, Crout NMJ. 2004 Speciation and solubility of Cu, \"i and Pb in contaminated soils. European Journal Soil Science **55**, 579-590.

Uddin MK, Islam MR, Rahman MM, Alarn SMK. 2002. Effects of sulphur, Zinc and Boron Supplied from Chemical Fertilizers and Poultry Manure to Wetland Rice (Cv. BRRI Dhan 30). Online Journal of Biological Sciences **2(5)**, 165-167.

Ullah KMH, Sarker AK, Faruk-e-Azam AKM. 2001. Zinc sulphate on the yield and quality of aman rice (BR 30). Bangladcsh .J. Training Development. 14(1-2), 25-30. **UNDP, FAQ.** 1988. Land Resources Appraisal of Bangladesh for Agricultural Development. Report 2 Agro. Ecological Region of Bangladesh. United Nations Development Programme and Food and Agricultural Organization 212-221.

Verma CP, Tripathi HN, Prasad K. 2001. Effect of FYM and zinc sulphate on yield and yield attributes of rice grown after paddy nursery. Crop Research (Hissar). **21(3)**, 382-383.

Yang-Fengjuan, Liu-Shi Qi, Wang Xiu Feng. 2005. Effect of boron in soil on the physiological biochemical characteristics, yield and quality of garlic. Scientica Agricultura Sinica, Shandong Agril. Univ., China. **38(5)**, 1011-1016.