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Abstract 

Identifying genetically diverse and high-yielding wheat genotypes is crucial for increasing productivity and 

addressing food security concerns in Bangladesh. The objective of this study was to assess the genetic 

diversity and agricultural potential of 49 wheat genotypes in Bangladesh using multivariate analyses. 

Genotypes were analyzed for 31 morpho-physiological, phenological, and yield-related parameters. Cluster 

analysis divided the genotypes into seven distinct clusters, which exhibited significant intercluster variation. 

Clusters V and VI are the most promising regarding higher grain yield, earlier physiological maturity, and 

efficient biomass accumulation. On the other hand, productivity rates were low in Clusters II and IV. Principal 

component analysis (PCA) explained 86.46% of the total variation through nine principal components, of 

which PC1 accounted for 24.29% of the variability, which was mainly related to grain yield and absorbed 

photosynthetically active radiation (PAR) and SPAD values. Discriminant Function Analysis (DFA) identified 

grain fresh weight and grain yield as the most discriminative traits, effectively separating high- and low-

yielding genotypes. Mahalanobis D² analysis confirmed significant genetic divergence between clusters, 

especially between clusters IV and VII, indicating potential for hybridization. The classification accuracy from 

DFA was 96.4%, which verifies the robustness of the clustering results. Representative genotypes were 

identified for each cluster to guide future breeding strategies. Overall, this study shows that multivariate 

methods are effective tools for characterizing wheat germplasm and identifying elite genotypes for breeding 

development. These results provide a strong foundation for future breeding programs aimed at contributing 

to national food security in Bangladesh under changing climate conditions. 
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Introduction 

Wheat (Triticum aestivum L.) contributes to 

approximately 50% of global grain trade and around 

30% of total grain production worldwide (Shavanov, 

2021). As climate change intensifies, the importance 

of wheat as a staple food continues to grow. To meet 

the future global food demands, wheat production 

must rise from 642 million tons to 840 million tons 

by 2050 (Sharma et al., 2015). In Bangladesh, wheat 

is the second most important food crop after rice, 

meeting the population's nutritional requirements 

(Nawaz et al., 2019). Presently, the country produces 

1.17 million metric tons of wheat, with an average 

yield of 3.7 t ha¹ over a 316,832 ha area (BBS, 2023). 

However, this yield remains significantly lower 

compared to other major wheat-producing countries. 

Several factors contribute to this yield gap, including 

biotic and abiotic stresses, suboptimal management 

practices, limited availability of high-yielding 

varieties, improper use of fertilizers and seed rates, 

inadequate water management, and untimely sowing 

(Timsina et al., 2018). 

 

Despite the steady expansion of wheat acreage in 

recent years, concerns remain that wheat yields have 

reached either a plateau level or are declining 

(Martínez-Moreno et al., 2022). In Bangladesh, 

although the climatic and edaphic conditions are 

generally favorable for wheat cultivation, the crop 

occupies only about 11% of the total area and a mere 

4% of the country's total cropped land (Barma et al., 

2019). It also contributes just 7% to the nation's 

overall cereal production. One of the primary reasons 

for this limited acreage and low productivity is the 

scarcity of high-yielding wheat varieties (Rashid and 

Hossain, 2016). 

 

An effort was undertaken from November 2014 to 

March 2015 at the Department of Agronomy, Gazipur 

Agricultural University (GAU), to identify superior 

wheat genotypes. The study evaluated 170 wheat 

accessions obtained from Advanced Chemical 

Industries (ACI), Bangladesh (Mustakim, 2016). It 

laid the groundwork for varietal characterization by 

applying various multivariate analytical techniques. 

However, there is a critical need for follow-up 

research to validate and further refine the selection of 

promising high-yielding lines. Such efforts are 

essential for advancing varietal improvement, 

narrowing the national wheat yield gap, and ensuring 

food security in Bangladesh in the face of increasing 

climatic uncertainties. 

 

Recently, multivariate statistical techniques have 

emerged as powerful tools for screening large sets of 

genotypes and identifying key traits of interest. 

Among these, principal component analysis (PCA), 

discriminant function analysis (DFA), and cluster 

analysis are widely used for classifying and 

differentiating genotypes based on complex trait 

interactions, yielding more precise and meaningful 

results (Adilova et al., 2020; Hussain et al., 2024). 

These methods assist plant breeders in uncovering 

trait variability, elucidating genetic linkages, and 

prioritizing traits that significantly influence yield 

and adaptability (Rufati and Manasievska, 2022; 

Khalid et al., 2023). 

 

PCA and DFA, in particular, offer deeper insights into 

the characteristics that distinguish high-performing 

genotypes under specific agro-ecological conditions. 

In this context, the present study was conducted to 

evaluate the agronomic performance of 49 wheat 

genotypes, including the standard Czech variety, 

using a comprehensive set of morphological, 

physiological, and yield-related traits. The objective 

was to identify genetically diverse, high-yielding 

genotypes possessing desirable characteristics and to 

classify those effectively using advanced multivariate 

analytical techniques. The findings of this research 

are expected to support the development of improved 

wheat varieties well-suited for widespread cultivation 

across Bangladesh. 

 

Materials and methods 

Experimental site 

The experiment was conducted from November 2015 

to March 2016 at the research field of the Department 

of Agronomy, Gazipur Agricultural University (GAU), 

located in Gazipur, Bangladesh. The site lies within 
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the Madhupur Tract, which falls under Agro-

Ecological Zone (AEZ) 28. The experimental area is 

situated at an elevation of 8.4 meters above sea level, 

with geographic coordinates of 24°05′ North latitude 

and 90°16′ East longitude. The study was carried out 

on upland and clay loam soil, typical of the region. 

 

Planting materials 

A total of 49 wheat accessions of the variety BARI 

Gom 26, developed by Advanced Chemical Industries 

(ACI), were used in this experiment. Additionally, 

three check varieties i.e. BARI Gom 25, BARI Gom 

28, and BARI Gom 30 released by the Bangladesh 

Agricultural Research Institute (BARI) were included 

as controls. A list of genotypes with their identifiers 

and sources is given in Table 1. The accessions were 

selected based on their promising yield potential and 

desirable morphological characteristics, as reported 

in a previous study by Mustakim (2016). All wheat 

accessions were obtained from ACI, Bangladesh, and 

were chosen for their suitability in terms of yield 

performance, phenological traits, and adaptability to 

local agro-ecological conditions. 

 

Table 1. Accession numbers and sources of the 49 

wheat genotypes evaluated in this study 

Genotype no. 
(G) 

Accession identifier Source 

1 BARI Gom 25 BARI 
2 2037-1 ACI, Bangladesh 

3 456-6 ACI, Bangladesh 
4 2220 ACI, Bangladesh 

5 431-6 ACI, Bangladesh 
6 1138-11 ACI, Bangladesh 

7 1107-8 ACI, Bangladesh 
8 2580-7 ACI, Bangladesh 

9 28-11 ACI, Bangladesh 
10 1258-1 ACI, Bangladesh 

11 BARI Gom 28 BARI 
12 315-2 ACI, Bangladesh 

13 1073-23 ACI, Bangladesh 
14 28-14 ACI, Bangladesh 
15 1770-13 ACI, Bangladesh 

16 1932-4 ACI, Bangladesh 
17 2182-3 ACI, Bangladesh 

18 65-3 ACI, Bangladesh 
19 418-3 ACI, Bangladesh 

20 429-2 ACI, Bangladesh 
21 2462-2 ACI, Bangladesh 

22 BARI Gom 30 BARI 
23 64-8 ACI, Bangladesh 

24 431-1 ACI, Bangladesh 
25 2199-8 ACI, Bangladesh 

26 432-2 ACI, Bangladesh 
27 1271-1 ACI, Bangladesh 
28 481-2 ACI, Bangladesh 

29 582-34 ACI, Bangladesh 
30 28-15 ACI, Bangladesh 

31 582-26 ACI, Bangladesh 
32 1838-9 ACI, Bangladesh 

33 484-1 ACI, Bangladesh 
34 1119-11 ACI, Bangladesh 

35 1533-2 ACI, Bangladesh 
36 2657-1 ACI, Bangladesh 

37 627-3 ACI, Bangladesh 
38 2019-4 ACI, Bangladesh 

39 204-1 ACI, Bangladesh 
40 2657-3 ACI, Bangladesh 

41 261-1 ACI, Bangladesh 
42 2043-11 ACI, Bangladesh 
43 28-61 ACI, Bangladesh 

44 444-7 ACI, Bangladesh 
45 1833-5 ACI, Bangladesh 

46 2121-1 ACI, Bangladesh 
47 885-3 ACI, Bangladesh 

48 1846-4 ACI, Bangladesh 
49 432-2 ACI, Bangladesh 

 

Experimental design 

The experiment was conducted in a Randomized 

Complete Block Design (RCBD) with three 

replications to ensure robust statistical analysis. Each 

plot was 16.6 meters long and 14.7 meters wide, with 

a spacing of 20 cm between two lines of the same 

accession. There was a 40 cm gap between different 

accessions and a 60 cm drainage gap between 

replications. This design ensured proper spacing for 

growth and minimized interference between plots 

during the experimental period. 

 

Data collection  

A comprehensive dataset was collected encompassing 

a range of morpho-physiological traits, including leaf 

length, leaf breadth, leaf dry weight, stem dry weight, 

panicle dry weight, intercepted photosynthetically 

active radiation (IPAR), leaf temperature, and flag 

leaf SPAD values at various growth stages. 

Phenological observations such as days to 

germination, booting, heading, anthesis, grain filling, 

and physiological maturity were also recorded. Post-

harvest evaluations included yield and its 

contributing components, such as plant height, 

number of fertile tillers per square meter, number of 

grains per spike, grain fresh weight, and thousand-

grain weight. 
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Statistical analysis 

Genetic variation among the 49 wheat genotypes was 

analyzed using SPSS version 24. Initial Pearson’s 

correlation coefficients were calculated to explore 

relationships among 31 morpho-physiological, 

phenological, and yield-related traits. To classify the 

genotypes according to their agronomic performance, 

non-hierarchical K-means cluster analysis was 

performed, enabling grouping based on similarities 

across multiple traits. Principal Component Analysis 

(PCA) was subsequently applied to reduce data 

dimensionality and identify the most influential traits 

contributing to genetic variability, with components 

having eigenvalues greater than one retained for 

further interpretation. Discriminant Function 

Analysis (DFA), including stepwise DFA, was 

conducted to validate the clustering results and 

determine which traits most effectively discriminated 

among genotype groups. The significance and 

reliability of the DFA models were confirmed using 

Wilks’ lambda, Chi-square tests, and assessments of 

group mean equality. Additionally, Mahalanobis D² 

distances were calculated to quantify genetic 

divergence between clusters, aiding in the 

identification of genetically distant groups suitable for 

hybridization. Classification accuracy of genotype 

assignment to clusters was evaluated to ensure the 

robustness of the multivariate approach. 

 

Results and discussion 

Cluster-based multivariate analysis of wheat 

genotypes 

A multivariate approach, specifically k-means 

clustering, was employed to classify 49 wheat 

genotypes based on 23 morpho-physiological, 

phenological, and yield-related traits (Table 2). Such 

analytical techniques are instrumental in capturing 

the complex interactions among plant traits, 

facilitating the identification of genetic variability and 

enhancing the efficiency of genotype selection in 

breeding programs (Awan et al., 2015; Ali et al., 2021; 

Farokhzadeh et al., 2022). 

 

Table 2. Comparison profile of the 7 groups of wheat genotypes classified by k-means clustering 

Plant characters Cluster 
I II III IV V VI VII 

Number of genotypes 7 9 14 6 1 4 8 

Morpho-physiological        

Leaf length(cm) 23.06 24.41 25.10 24.99 22.55 23.15 23.75 

Leaf breadth(cm) 1.62 1.59 1.66 1.71 1.70 1.55 1.62 

Plant components DW (g/plant)       

Leaf 0.41 0.42 0.44 0.38 0.44 0.43 0.44 

Stem 0.88 0.73 0.81 0.59 0.95 0.83 0.84 

Panicle 2.33 2.31 2.27 2.00 2.73 2.37 2.35 

Total 3.62 3.46 3.52 2.97 4.12 3.63 3.63 

IPAR (%) 79.64 65.45 69.17 56.16 82.80 81.18 76.22 

Leaf temperature at        

Booting 15.58 15.01 15.09 15.47 17.07 14.97 15.31 

Heading 16.20 15.64 15.76 16.04 17.76 15.63 15.97 

Anthesis 16.84 16.35 16.38 16.76 18.42 16.36 16.68 

Flag leaf SPAD value at        

Booting 48.49 45.90 48.51 44.16 49.13 48.10 47.83 

Heading 49.70 47.78 50.19 45.61 50.83 50.06 49.41 

Anthesis 49.60 47.52 50.33 45.46 50.45 50.09 49.39 

1 week after anthesis 44.01 41.82 43.81 40.32 44.62 44.01 44.20 

2 weeks after anthesis 39.22 37.15 39.16 35.01 40.08 39.48 38.56 

3 weeks after anthesis 29.36 28.50 29.25 27.08 29.50 29.96 29.07 

4 weeks after anthesis 20.07 20.57 20.91 19.11 19.45 19.84 23.21 

Phenological characters        

Days to germination 6.19 6.67 6.02 6.89 4.00 6.42 5.04 

Days to booting 53.38 54.26 54.19 53.50 49.00 55.75 54.13 

Days to heading 62.48 63.74 64.00 64.50 59.17 64.58 64.48 

Grain filling duration 33.17 32.63 32.90 32.28 32.17 32.33 31.75 

Days to physiol. maturity 95.64 96.37 96.90 96.78 91.33 96.92 96.23 
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Yield and yield attributes        
Plant height (cm) 85.29 77.98 79.82 73.36 86.40 88.66 83.28 
Fertile tillers/m2 (no.) 750.60 416.90 501.10 191.10 882.50 847.90 634.30 

Spike length (cm) 11.47 12.28 12.01 11.36 11.36 12.31 12.09 
Spikelets per spike (no.) 20.50 20.29 20.67 19.21 20.20 20.39 20.21 

Grains per spike (no.) 54.57 49.22 53.48 49.06 55.16 48.92 51.52 
Grain fresh weight (g m-2) 1091.30 539.30 684.80 273.30 1426.6 1269.6 888.30 

Initial seed moisture (%) 13.76 14.29 14.56 13.26 13.35 13.02 13.88 
1000-grain weight (g) 40.63 41.19 39.65 37.57 42.55 37.93 40.72 

Grain yield (g m-2) 1069.70 525.56 664.85 269.23 1404.8 1254.8 869.3 

 

Clustering analysis revealed significant intercluster 

variability, indicating extensive genetic diversity 

among genotypes. Cluster I contained seven 

genotypes that were characterized by tall plant height, 

high grain yield, and the highest number of fertile 

tillers, although leaf dry weight was low. Cluster II 

included nine genotypes, which were composed of 

shorter plants with relatively low yield potential, yet 

these genotypes exhibited long spikes, indicating a 

closed exchange between yield components. Cluster 

III contained 14 genotypes that were highest in terms 

of leaf length and dry weight, indicating vigorous 

plant growth, but were limited by low 1,000-grain 

weight and less fertile tillers, which could 

compromise grain yield. Cluster IV included six 

genotypes with the worst overall performance, 

including the lowest plant height, biomass 

accumulation, and grain yield. In contrast, cluster V 

(single genotype) emerged as the most promising, 

exhibiting superior performance in multiple traits 

including highest total dry weight, highest grain yield, 

and early physiological maturity – highly desirable 

traits in resource-limited and stress-prone 

environments. Four genotypes in cluster VI also 

performed well, including the tall genotype with high 

yield and biomass, although its spikes had lighter 

grains and fewer grains, which may affect grain 

quality. Cluster VII included eight genotypes with 

early grain-filling that have average yield 

performance but favorable dry matter partitioning, 

making them potentially suitable for environments 

with short growing seasons or terminal stress. 

 

Overall, Clusters V and VI represent genotypes with 

high agronomic potential and are valuable candidates 

for inclusion in wheat improvement programs. In 

contrast, Clusters II and IV demonstrated limited 

productivity and may be less suitable for breeding 

objectives. These results underscore the significance 

of integrated trait-based selection, particularly plant 

height, spike morphology, dry matter allocation, and 

yield components, in enhancing wheat productivity 

and guiding future breeding strategies (Beral et al., 

2020; Kaleri et al., 2023). 

 

Principal component analysis (PCA) 

Principal Component Analysis (PCA) is an effective 

multivariate statistical technique used to reduce 

dimensionality and identify the most influential traits 

contributing to genetic variation among genotypes 

(Gewers et al., 2021). It reveals patterns of 

association among traits, thereby facilitating the 

selection of superior genotypes for breeding programs 

(Nayana et al., 2022; Weraikat et al., 2024). In the 

present study, PCA was conducted on 49 wheat 

genotypes across 31 morpho-physiological, 

phenological, and yield-related traits. The analysis 

generated 31 principal components (PCs) through 

linear transformation, each associated with an 

eigenvalue that indicates the proportion of total 

variance it explains, and a latent vector representing 

the contribution of each original variable (Table 3). Of 

these, the first nine PCs had eigenvalues greater than 

1 and collectively accounted for approximately 

86.46% of the total genetic variation. The individual 

contributions of these PCs were: PC1 (24.29%), PC2 

(17.88%), PC3 (12.74%), PC4 (8.81%), PC5 (5.35%), 

PC6 (4.92%), PC7 (4.41%), PC8 (4.20%), and PC9 

(3.86%). 

 

The latent vectors corresponding to the first three 

principal components (PCs) are presented in Table 

4. PC1 explained the largest proportion of 

variability (24.29%) and was predominantly 

associated with yield-contributing traits such as 

grain yield, grain fresh weight, fertile tillers per 
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square meter, intercepted photosynthetically active 

radiation (IPAR), and SPAD values at various 

reproductive stages. Other positively associated 

traits included spikelets per spike, spike length, 

plant height, and total dry biomass. In contrast, 

traits such as leaf length, leaf breadth, panicle dry 

weight, and leaf temperatures at booting, heading, 

and anthesis contributed negatively, along with 

days to germination, heading, and physiological 

maturity. This indicates that PC1 captures variation 

related to photosynthetic efficiency and yield 

potential. PC2, accounting for 17.88% of the 

variation, was largely influenced by phenological 

traits such as days to booting, heading, and 

physiological maturity, as well as leaf size (length 

and breadth). Positive associations were also 

observed with SPAD values during early 

reproductive stages. However, traits like high leaf 

temperatures at booting and heading stages and 

SPAD values during later grain filling stages had 

negative loadings, suggesting PC2 captures 

variation related to maturity and leaf physiology. 

PC3, which explained 12.74% of the total variation, 

was driven by biomass-related traits such as stem 

dry weight, panicle dry weight, total dry weight, 

plant height, grain fresh weight, and grain yield. 

Conversely, early-stage traits including SPAD 

values at booting, heading, and anthesis, as well as 

days to heading and leaf dimensions, had negative 

contributions, indicating that PC3 represents 

variation associated with post-anthesis biomass 

accumulation and grain development. 

 

Table 3. Initial and extracted Eigenvalues and % of variation in respect of 23 plant characters of 49 wheat 

genotypes 

Principal 
component 

Initial Eigen values Extraction sums of squared loadings 
Total % of variation Cumulative % Total % of variation Cumulative % 

1 7.53 24.29 24.29 7.53 24.29 24.29 
2 5.54 17.88 42.17 5.54 17.88 42.17 

3 3.95 12.74 54.91 3.94 12.74 54.91 
4 2.73 8.81 63.72    

5 1.66 5.35 69.07    
6 1.53 4.92 73.99    

7 1.37 4.41 78.40    
8 1.30 4.20 82.61    

9 1.19 3.86 86.46    

 

Table 4. Latent vectors associated with the first two principal components 

Pant character Principal components 
1st 2nd 3rd 

Leaf length (cm) -0.165 0.457 -0.084 
Leaf breadth (cm) -0.150 0.440 0.043 

Leaf dry weight (g plant-1) 0.143 0.219 0.656 
Stem dry weight (g plant-1) 0.227 -0.075 0.863 

Panicle dry weight (g plant-1) -0.060 -0.145 0.823 
Total dry weight (g plant-1) 0.049 -0.092 0.919 

IPAR (%) 0.657 -0.409 0.435 
Leaf temperature at booting (0C) -0.194 -0.817 0.192 

Leaf temperature at heading (0C) -0.160 -0.824 0.214 
Leaf temperature at anthesis (0C) -0.160 -0.816 0.233 

SPAD value at booting 0.847 -0.002 -0.156 
SPAD value at heading 0.894 0.049 -0.077 
SPAD value at anthesis 0.907 0.022 -0.090 

SPAD value at 1 week after anthesis 0.918 -0.006 0.007 
SPAD value at 2 weeks after anthesis 0.922 -0.096 0.055 

SPAD value at 3 weeks after anthesis 0.807 -0.093 0.098 
SPAD value at 4 weeks after anthesis 0.170 -0.481 0.012 

Days to germination -0.323 0.336 -0.305 
Days to booting 0.156 0.775 0.129 

Days to heading -0.096 0.783 -0.040 
Days to grain filling period 0.922 -0.096 0.055 
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Days to physiological maturity -0.183 0.804 0.081 
Plant height (cm) 0.188 -0.173 0.775 
Fertile tillers m-2 (no.) 0.677 -0.418 0.484 

Spike length (cm) 0.209 0.045 0.128 
Spikelets per spike (no.) 0.334 -0.159 0.234 

Grains per spike (no.) 0.285 -0.274 0.089 
Grain fresh weight (g m-2) 0.618 -0.395 0.557 

Initial seed moisture (%) 0.161 -0.016 0.104 
Thousand-grain weight (g) 0.053 -0.015 0.468 

Grain yield (g m-2) 0.612 -0.395 0.555 

 

Overall, the PCA results effectively identified key 

traits contributing to genetic variability among wheat 

genotypes. The first three principal components, 

explaining more than 54% of the total variance, 

revealed strong associations between yield and 

physiological attributes, including SPAD values, 

radiation interception, and biomass production. 

These findings provide valuable insights for selecting 

high-performing genotypes and align with earlier 

studies by Poudel et al. (2017) and Zewdu et al. 

(2024), who demonstrated the utility of PCA in 

understanding genetic diversity in wheat. 

 

Discriminant function analysis (DFA) 

Discriminant Function Analysis (DFA) is a powerful 

multivariate technique used to identify the traits that 

most effectively differentiate among predefined groups 

(Abdolshahi et al., 2015). In plant breeding, DFA aids in 

grouping genetically similar genotypes based on shared 

trait expressions, thereby enhancing the precision and 

efficiency of selection processes (Mustakim, 2016). In 

the present study, a stepwise DFA was conducted to 

evaluate the discriminatory power of 23 morpho-

physiological, phenological, and yield-related traits in 

separating 49 wheat genotypes previously classified into 

seven clusters via k-means clustering. The objective was 

not only to assess the traits' ability to distinguish among 

clusters but also to provide a visual representation of the 

relationships among genotypes in multivariate space. 

 

The analysis identified two significant discriminant 

functions that collectively accounted for 100% of the 

total variance among clusters (Table 5). The first 

function alone explained 98.1% of the total variation, 

while the second function accounted for the 

remaining 1.9%. Both functions were statistically 

significant at p < 0.001, as confirmed by Wilks' 

lambda and chi-square tests, indicating their robust 

capacity to discriminate among the genotype clusters. 

These results demonstrate that a small number of 

trait combinations can effectively capture the 

underlying genetic variability, offering a valuable tool 

for genotype selection and classification in wheat 

breeding programs. 

 

Table 5. Discriminant functions that differentiate between clusters of 49 wheat genotypes 

Function 
 

Latent root Variance % r² coefficient Walk’s λ χ² df p 

Function Cumulative 

1 32.717a 98.1 98.1 0.985 0.018 174.741 12 .000 
2 0.647a 1.9 100.0 0.627 0.607 21.707 5 .001 
a First two canonical discriminant functions were used in the analysis. 

 

Table 6. Standardized canonical discriminant function coefficients of the plant characters that mostly 

contributed in the grouping of 49 genotypes of wheat 

Discriminating variables Discriminant function 

1 2 

Grain yield (g m-2) -0.445 10.385 

Grain fresh weight (g m-2) 1.442 -10.294 
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Table 6 presents the variables that most significantly 

influenced the discriminant functions along with their 

respective coefficients. The analysis reveals that, 

among the 49 genotypes evaluated, grain yield (g 

m⁻²) and grain fresh weight (g m⁻²) were the primary 

contributing traits. Together, these two traits 

accounted for nearly 100% of the total variance 

explained by Functions 1 and 2. Grain fresh weight 

showed a higher coefficient (1.442) in Function 1, 

indicating that it was the dominant contributor, 

explaining 98.1% of the variance in this function. In 

contrast, grain yield had a greater influence in 

Function 2, with a coefficient of 10.385 g m⁻², 

accounting for the remaining 1.9% of the variance. 

 

Table 7. The structure matrix represents the correlation between 31 discriminating variables and the 

standardized canonical discriminant functions of 49 genotypes of wheat 

Discriminating variables Discriminant function 
1 2 

Grain fresh weight 0.999* 0.043 
Grain yield 0.990* 0.139 

Fertile tiller 0.523* 0.239 
IPAR(%) 0.435* 0.243 

Plant height 0.364* -0.081 
Days to heading -0.272* -0.026 

Leaf temperature at booting 0.238* 0.077 
Days to germination -0.237* -0.009 

Days to physiological maturity -0.232* 0.105 
Days to booting -0.223* 0.128 

Leaf temp. at heading 0.223* 0.076 
Flag leaf SPAD value 4 weeks after anthesis 0.220* 0.074 

Leaf temp. at anthesis 0.204* 0.046 
Flag leaf SPAD value 3 weeks after anthesis 0.122* -0.093 
Total dry weight 0.101* -0.037 

Panicle dry weight 0.088* 0.043 
Number of grains per spike 0.079* -0.037 

Thousand-grain weight 0.071* -0.065 
Initial seed moisture -0.064 -0.849* 

Spikelets per spike -0.235 -0.287* 
Days to grain filling period 0.065 0.241* 

Leaf length -0.067 0.232* 
Leaf dry weight 0.125 -0.228* 

Spike length -0.196 -0.207* 
Leaf breadth -0.094 0.203* 

Flag leaf SPAD value 2 weeks after anthesis 0.072 -0.166* 
Stem dry weight 0.073 -0.121* 

Flag leaf SPAD value 1 week after anthesis 0.064 -0.113* 
Flag leaf SPAD value at booting -0.031 -0.111* 

Flag leaf SPAD value at heading 0.054 -0.111* 
Flag leaf SPAD value at anthesis 0.011 -0.089* 

Pooled within-groups correlations between discriminating variables and standardized canonical discriminant 

functions. Variables ordered by absolute size of correlation within function. 

* Largest absolute correlation between each variable and any discriminant function. 

 

Table 7 presents the correlation coefficients between the 

two discriminant functions and thirty-one 

discriminating traits. The results indicate that grain 

fresh weight (g m⁻²) had the strongest association with 

Function 1, exhibiting a correlation coefficient of 0.99, 

making it the most influential variable in distinguishing 

among the 49 genotypes. Stepwise Discriminant 

Function Analysis (DFA) further confirmed that grain 

fresh weight was the most significant factor in explaining 

the variation across genotypes. 

 

According to the X-axis (Function 1) in Fig. 1, 

genotypes located on the left produced the lowest 

grain yield per square meter, while those on the right 
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yielded the highest. Thus, Function 1 effectively 

separated clusters V and VI (high-yielding genotypes) 

from clusters II and IV (low-yielding genotypes) 

based on grain yield. On the other hand, the Y-axis 

(Function 2) revealed that genotypes positioned in 

the upper part of the diagram exhibited delayed 

germination, whereas those in the lower part 

germinated earlier. Consequently, Function 2 clearly 

differentiated clusters II, IV, and VI from clusters I, 

III, V, and VII based on days to germination. The 

latter group showed earlier germination compared to 

the former. Additional traits such as number of fertile 

tillers, intercepted photosynthetically active radiation 

(IPAR %), plant height, and SPAD readings also 

contributed to genotype differentiation. 

 

 

Fig. 1. Graphical presentation of the discriminant 

function analysis of seven groups of 49 wheat 

genotypes. The encircled accessions show the groups 

(clusters) obtained through cluster analysis 

 

Overall, the DFA validated the cluster groupings and 

identified grain fresh weight and grain yield as the 

most critical traits for distinguishing among wheat 

genotypes. These findings provide valuable insights 

for enhancing wheat breeding and selection strategies 

(Tshikunde et al., 2019; Chachar et al., 2024). 

 

Mahalanobis distance 

The Mahalanobis D² analysis revealed highly 

significant differences (p < 0.001) among the seven 

clusters, confirming the presence of substantial 

genetic diversity (Table 8). The greatest genetic 

divergence was observed between Cluster VII and 

Cluster IV (D² = 967.13), followed by Cluster VI and 

Cluster III (D² = 900.35), and Cluster II and Cluster I 

(D² = 844.12). These large distances indicate distinct 

genetic backgrounds among these clusters, making 

them promising candidates for parental selection in 

wheat breeding programs. Selecting genotypes from 

genetically distant clusters may enhance the potential 

for developing high-yielding hybrid wheat varieties 

(Adilova et al., 2020; Mohammadi et al., 2023). 

 

Table 8. Pairwise Mahalanobis distance (D²) between seven clusters of wheat genotypes 

Cluster I II III IV V VI VII 
I 0.00       

II 844.12a 0.00      
III 625.78a 218.48a 0.00     

IV 127.30a 433.05a 649.77a 0.00    
V 492.14a 133.33a 111.50a 176.03a 0.00   

VI 274.93a 111.90a 900.35a 154.80a 220.34a 0.00  
VII 308.10a 536.17a 317.93a 967.13a 798.92a 582.82a 0.00 
a Distances differing from zero at a 99% confidence interval. 

 

Classification accuracy 

The classification results from Discriminant Function 

Analysis (Table 9) demonstrated a high level of 

precision. More than 75% of the genotypes were 

correctly assigned to their respective clusters, with an 

overall classification accuracy of 96.4%. Clusters I, II, 

III, IV, V, and VII showed perfect classification 

accuracy (100%), while Cluster VI had 75% accuracy, 

with one genotype misclassified into Cluster V. This 

level of accuracy is considered highly reliable in 

biological research. 

 

Representative genotypes 

Fig. 1 illustrates the spatial distribution of 

genotypes across the seven clusters based on their 

cumulative responses to Functions 1 and 2. Each 
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cluster’s group centroid represents the average 

position of its genotypes, reflecting their collective 

response to the discriminating traits. Genotypes 

closest to their cluster centroid can be considered 

the most representative of that group, though not 

necessarily the highest performing. Accordingly, 

the following genotypes may be regarded as the 

most indicative representatives of their respective 

clusters (as listed in Table 10): Group I: G1 (BARI 

Gom 25), Group II: G35 (1533-2), Group III: G23 

(64-8), Group IV: G32 (1838-9), Group V: G11 

(BARI Gom 28), Group VI: G37 (627-3), Group VII: 

G41 (261-1). These representative genotypes reflect 

the typical trait profiles of their groups and can 

serve as benchmarks for future selection and 

breeding efforts. 

 

Table 9. Classification matrix (at the precision level) for seven clusters of wheat genotypes 

Group % correct I II III IV V VI VII Total no. observed 
I 100 7 0 0 0 0 0 0 7 

II 100 0 9 0 0 0 0 0 9 
III 100 0 0 14 0 0 0 0 14 

IV 100 0 0 0 6 0 0 0 6 
V 100 0 0 0 0 1 0 0 1 

VI 75 0 0 0 0 1 3 0 4 
VII 100 0 0 0 0 0 0 8 8 

Total no. predicted 96.4 7 9 14 6 2 3 8 49 

Rows represent the actual observed categories, and columns correspond to the predicted categories. 

 

Table 10. Major characteristics of seven wheat genotypes that mostly represent their respective groups 

Cluster Genotypes Acc. no. Grain yield 
(g m-²) 

No. of fertile 
tillers m-² 

Plant height 
(cm) 

1000-grain 
weight (g) 

Days to 
physiological 

maturity 

Days to grain 
filling period 

I G1 BARI Gom 25 1123.35 819.2 85.86 44.26 91.5 32.2 
II G35 1533-2 489.61 355.0 76.23 42.93 96.3 32.0 

III G23 64-8 613.10 463.0 71.70 41.40 97.0 34.0 
IV G32 1838-9 192.88 126.7 81.23 42.57 97.3 32.6 
V G11 BARI Gom 28 1404.76 882.5 86.40 42.55 91.3 32.2 

VI G37 627-3 1317.04 875.0 84.73 41.67 96.0 33.0 
VII G41 261-1 782.61 561.7 85.13 48.77 96.3 30.7 

 

Conclusion 

This study identified significant genetic variability 

among 49 wheat genotypes using multivariate analytical 

techniques including cluster analysis, principal 

component analysis (PCA), and discriminant function 

analysis (DFA). Genotypes grouped in clusters V and VI 

exhibited superior agronomic traits such as high grain 

yield, favorable dry matter partitioning, early 

physiological maturity, and robust biomass 

accumulation. PCA revealed that traits like grain yield, 

fertile tillers, intercepted PAR, and SPAD values were 

the most influential in determining genotype 

performance. DFA validated the clustering pattern, 

identifying grain fresh weight and grain yield as key 

discriminative traits. The observed genetic divergence, 

especially between Clusters IV and VII, highlights the 

potential for selecting diverse parental lines in breeding 

programs. These results provide a broad basis for future 

wheat development strategies in Bangladesh that aim to 

reduce the national yield gap and increase resilience to 

climate stress conditions. 

 

Recommendations 

Based on the results of this study, genotypes in clusters 

V and VI should be prioritized as parental lines in 

breeding programs due to their superior performance in 

many agronomic traits. Breeders should use a trait-

based selection approach that prioritizes key yield-

affecting traits such as grain fresh weight, grain yield, 

intercepted photosynthetically active radiation (PAR), 

and SPAD values. High Mahalanobis D² values were 

noted among genetically distant clusters, particularly 

clusters IV and VII, suggesting the potential for 

developing heterotic hybrids through deliberate 
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crossbreeding. Multi-location experiments across 

different agro-ecological regions are needed to establish 

the adaptation and performance of these genotypes. 

Furthermore, the elite genotypes identified through 

multivariate analysis should be integrated into national 

variety release pipeline to assist in ongoing efforts to 

increase wheat yields and ensure food security. 
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