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ABSTRACT 
 

Diabetes mellitus (DM) represents a complicated metabolic disorder with an increasing global incidence, 

necessitating the identification of effective therapeutic agents. Out of the various approaches, heterocyclic 

pyrazoline derivatives have surfaced as promising candidates because of their extensive pharmacological 

properties, encompassing anti-diabetic, anti-inflammatory, and antioxidant characteristics. This review offers a 

thorough analysis of pyrazoline derivatives, emphasizing their mechanisms of action, including the inhibition of 

vital metabolic enzymes, enhancement of insulin sensitivity, and decrease in oxidative stress. Structure-activity 

relationship (SAR) investigations have illustrated the potential for specific modifications on the pyrazoline 

nucleus to enhance biological effectiveness. Additionally, recent progress in molecular docking and in vivo 

investigations underscores their therapeutic promise. In spite of its promise, more pharmacokinetic, 

pharmacodynamic, and clinical studies are essential to validate these compounds as effective anti-diabetic 

agents. This study integrates existing knowledge on pyrazolines and pinpoints future research directions, aiming 

to encourage novel diabetes treatment strategies. 
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INTRODUCTION 

Diabetes mellitus is a long-lasting, multifactorial 

metabolic disorder characterized by ongoing 

hyperglycemia resulting from reduced insulin 

production, insulin action, or both (Baynes, 2022).  

 

It represents a significant public health issue globally, 

with concerning rises in prevalence leading to 

considerable morbidity, mortality, and financial 

burden. Present diabetic interventions, including 

insulin therapy and oral hypoglycemic agents like 

sulfonylureas, biguanides, and DPP-4 inhibitors, have 

proven effective in managing blood glucose levels 

(Mohajan and Mohajan, 2024; Bailey and Krentz, 

2024; Weinberg Sibony et al., 2023). Nevertheless, 

these medications are often associated with 

considerable drawbacks, such as limited effectiveness 

in advanced disease stages, adverse effects, and an 

absence of preventive strategies for long-term 

complications like cardiovascular disease, 

nephropathy, neuropathy, and retinopathy. 

 

Pyrazolines, which are a category of five-membered 

heterocyclic compounds containing two adjacent 

nitrogen atoms in their composition (HM and Dubey, 

2024), have garnered significant interest in medicinal 

chemistry due to their diverse pharmacological effects, 

encompassing anti-inflammatory (Yan et al., 2022; 

Elgohary et al., 2023; Mantzanidou et al., 2021), 

antimicrobial (Jain and Singhal, 2020; Aksöz et al., 

2020; TN et al., 2023), anticancer (Haider et al., 2022; 

Matiadis and Sagnou, 2020; Nasab et al., 2023; Rana et 

al., 2021), and analgesic characteristics. A recent 

investigation has highlighted the promise of 

pyrazolines as anti-diabetic agents (Ibraheem et al., 

2020; Kumar et al., 2021; Uğraş et al., 2024). The 

therapeutic efficacy of pyrazolines in diabetes stems 

from their ability to influence key biological targets 

that play a role in glucose metabolism and insulin 

sensitivity (Thilagavathi et al., 2022).  

 

These mechanisms include the inhibition of α-

glucosidase and α-amylase enzymes, stimulation of 

insulin secretion, enhancement of glucose uptake in 

peripheral tissues, and mitigation of oxidative stress 

and inflammation, all of which are linked to the 

development of diabetes and its related complications 

(Shahwan et al., 2022; Singh et al., 2022; Choudhury 

et al., 2018; Kumar et al., 2011). 

 

Pyrazolines exhibit a broad spectrum of biological 

activities aside from their anti-diabetic effects, 

rendering them versatile candidates for drug 

development. They possess strong anti-inflammatory 

properties as they inhibit pro-inflammatory cytokines 

and enzymes such as cyclooxygenase (COX), which 

play a crucial role in chronic inflammatory diseases 

(Subramanian et al., 2008).  

 

Their antimicrobial efficacy encompasses a variety of 

bacterial and fungal species, underscoring their 

importance in combating infectious diseases. 

Pyrazolines have also demonstrated promise as 

anticancer agents by triggering apoptosis, halting the 

cell cycle, and obstructing angiogenesis (Ikram et al., 

2018). In addition, their antioxidant properties allow 

them to mitigate oxidative stress, a common factor in 

numerous chronic conditions. These varied biological 

activities emphasize the therapeutic potential of 

pyrazolines and establish a foundation for their future 

advancement as multifunctional pharmaceutical 

agents (Ali et al., 2014). 

 

The molecular structure of pyrazolines enables 

extensive structural modifications, facilitating the 

creation of a variety of derivatives with particular 

biological properties (Park et al., 2021).  

 

Investigations into structure-activity relationships (SAR) 

have identified vital functional groups and substitution 

patterns that influence the anti-diabetic effectiveness of 

pyrazolines (Chen et al., 2001) (Table 1). For instance, 

incorporating electron-donating or withdrawing groups 

at designated positions on the aromatic ring of 

pyrazolines can significantly enhance their effectiveness 

and specificity for diabetic targets (García-Mediavilla et 

al., 2007). In addition, hybrid compounds that comprise 

the pyrazoline core along with other pharmacophores 

have shown synergistic effects, broadening the 

therapeutic potential of this drug family. 
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Table 1. Important marketed drugs for diabetes treatment 

Sl Name of drug Chemical structure Reference 

1. Teneligliptin 

 

(Patil et al., 
2013; Kadan et 

al., 2016) 

2. Vildagliptin 

 

(Kumbhare et 
al., 2012; 

Kostyuk et al., 
2011) 

3. Evogliptin 

 

(La Casa et al., 
2000) 

4. Imeglimin 

 

(Mamun-Or-
Rashid et al., 
2014; Sharma 
and Nazareth, 

2021) 

5. Cycloset 

 

(Patil and 
Maheshwari, 

2013) 
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6. Miglitol 

 

(Niture et al., 
2014; Selvaraj 

et al., 2013) 

7. Acarbose 

 

(Kazmi et al., 
2012; Devi et 

al., 2011; 
Janbaz et al., 

2014) 
 

8. Empagliflozin O

O

OH

OH

OH

HO

O

HO

Cl

 

(Zhao et al., 
2012; 

Ahangarpour 
et al., 2014) 

9. Dapagliflozin 

 

(Saeed et al., 
2012) 

10. Canagliflozin 

 

(Dkhil et al., 
2015) 

11. Ertugliflozin 

 

(Prabu and 
Shagirtha, 

2012) 
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12. Sitagliptin 

 

(Sultana et al., 
2020) 

13. Saxagliptin 

 

(Jain et al., 
2024; 

Elmalahany et 
al., 2023) 

14. Linagliptin 

 

(Hossain et al., 
2020) 

15. Alogliptin 

 

(Mohanty et 
al., 2022) 

16. Repaglinide 

 

(Foroumadi et 
al., 2022; 

Haddad et al., 
2024) 

17. Nateglinide 

 

(Haque, 2024; 
Kale et al., 

2024) 
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18. Pioglitazone 

 

(Tamimi et al., 
2023; Afzal et 

al., 2021) 

19. Rosiglitazone 

 

(Xu et al., 
2022; Lee et 

al., 2023) 

20. Tolazamide 

 

(Araújo et al., 
2023; Khan, 

2024) 

21. Chlorpropamide 

 

(Das et al., 
2024; Majid et 

al., 2023) 

22. Tolbutamide 

 

(SS et al., 
2024; Saha, 

2020) 

23. Glimepiride 

 

(Li et al., 
2024; Razzaq 
et al., 2021; 

Abdallah et al., 
2023) 

24. Glipizide 

 

(Khan et al., 
2024; 

Nagulancha 
and 

Vandavasi, 
2023) 

25. Glyburide 

 

(Vázquez et 
al., 2024; 

Saeedan et al., 
2021; 

Mukherjee et 
al., 2020) 

 

Despite their considerable potential, the clinical 

advancement of pyrazolines as anti-diabetic medications 

remains at a preliminary stage (Boudjou et al., 2013). 

Preclinical investigations have produced encouraging 

outcomes regarding glucose-lowering effectiveness and 

low toxicity; however, thorough assessments of 

pharmacokinetics, pharmacodynamics, and long-term 

safety must be conducted before these medications can 

proceed to clinical trials. In addition, employing 

computational methods like molecular docking and 
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QSAR modeling can significantly accelerate the drug 

development process by predicting pyrazoline 

interactions with essential diabetic targets and guiding 

rational drug development (Rani et al., 2016). 

 

Pyrazoline derivatives exhibiting anti-diabetic 

activity 

In 2018, Bhutani et al. examined new benzothiazoles 

combined with oxadiazole-Mannich bases on OGTT 

and STZ-induced diabetes in healthy rats. Compound 

1 reduced glucose levels in the STZ model by 161. 39 ± 

4. 38 mg/dL, which is like glibenclamide therapy 

(140. 29 ± 1. 24 mg/dL). The other medications 

evaluated demonstrated antihyperglycemic efficacy 

that varied from modest to outstanding (Fig. 1). 

 

 

Fig. 1. Synthesized pyrazoline derivatives by Bhutani 

et al. (2018) 

 

In 2018, Kazmi et al. described the one-pot 

multicomponent approach for designing and 

synthesizing three series of diamine-bridged bis-

coumarinyl oxadiazole conjugates. The generated 

conjugates were assessed for their capacity to impede 

glucosidases. Compound 2, which contains the 4,4′-

oxydianiline linker, inhibits alpha-glucosidase 

enzymes with an IC50 value of merely 0. 07 ± 0. 001 

μM (acarbose: 38. 2 ± 0. 12 μM), establishing it as the 

primary and selective inhibitor. It exhibited 

approximately 545 times greater inhibitory activity 

than reference medications. Compound 2 

substantially inhibited intestinal maltase-

glucoamylase (IC50 = 0. 04 ± 0. 02 μM) in 

comparison to acarbose (IC50 = 0. 06 ± 0. 01 μM). 

This compound has an IC50 value of 0. 08 ± 0. 002 

μM and serves as the main inhibitor of the β-

glucosidase enzyme. The inhibition mechanism was 

investigated through Michaelis-Menten kinetic 

experiments. All synthesized compounds were docked 

against the glucosidase enzyme. The results revealed 

multiple coordinated interactions with catalytic 

residues, potentially stabilizing inhibitors at the active 

site. Furthermore, β-glucosidase inhibitors were 

effectively identified using compounds that exhibited 

strong binding interactions with amino acid residues 

(Kazmi et al., 2018) (Fig. 2, Table 2). 
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Fig. 2. Synthesized pyrazoline derivatives by Kazmi et 

al. (2018) 

 

Table 2. IC50 values of the synthesized derivative 2 

Compound IC50 (μM) 

2 0.07 ± 0.001 (alpha-glucosidase) 
0.04 ± 0.02 (intestinal maltase-

glucoamylase) 
0.08 ± 0.002 (beta-glucosidase) 

 

Taha et al. (2021) recognized hybrid analogues of 

oxindole-derived oxadiazoles as potential α-

glucosidase inhibitors. In comparison to acarbose 

(IC50 = 895. 09 ± 2. 04 µM), all compounds 

demonstrated significant inhibition of this enzyme, 

exhibiting IC50 values between 1. 25 ± 0. 05 and 268. 

36 ± 4. 22 µM. This research highlights a novel 

category of effective α-glucosidase inhibitors that 

require additional investigation (Fig. 3). 

 

 

Fig. 3. Synthesized pyrazoline derivatives by Taha et 

al. (2021) 

 

In 2018, Yousuf et al. produced, analyzed, and 

evaluated a range of 2-aryl and 4-arylidene 

substituted pyrazolones against α-amylase through in 

silico studies. Compound 4 demonstrates the most 

significant inhibitory impact against α-amylase, 

showing an IC50 of 1. 61 ± 0. 16 μM. Kinetic studies 
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were performed on the strongest compounds in the 

series, with compound 47 displaying a mixed type of 

inhibition. SAR studies indicated that the addition of 

an electron-donating hydroxy group at the ortho 

position and an electron-withdrawing dichloro group 

at the meta position, as seen in compound 4, led to 

considerable inhibitory effects. Molecular docking 

studies revealed that compound 4 engages with the 

Asp300 and His201 residues. The acidic Asp300 

donates hydrogen to the hydroxyl group, while 

His201 accepts hydrogen from the oxygen atom of the 

pyrazolone ring (Dey et al., 2019) (Fig. 4). 

 

 

Fig. 4. Synthesized pyrazoline derivatives by Yousuf 

et al. (20218) 

 

In 2018, Nazir et al. investigated the sequential 

transformation of indolyl butanoic acid into 1,3,4-

oxadiazole-2-thiols and performed multiple 

chemical transformations. Various amine derivatives 

were reacted with 2-bromoacetyl bromide to act as 

an electrophile, producing 2-bromo-N-

phenyl/arylacetamides through a series of parallel 

reactions. A nucleophilic 1,3,4-oxadiazole-2-thiol 

analogue was subsequently utilized on the 

electrophilic compounds, resulting in several N-

substituted derivatives (compounds 5a and 5b). This 

research explored the anti-diabetic potential of all 

synthesized compounds by inhibiting the α-

glucosidase enzyme and analyzing them in silico. 

Additionally, their hemolytic activity was used to 

determine their cytotoxicity profile, and all of the 

compounds exhibited low cytotoxicity. The most 

potent compounds (5a and 5b) exhibited IC50 values 

of 9. 46 ± 0. 03 µM and 9. 37 ± 0. 03 µM, 

respectively. Future studies might utilize these 

compounds to develop more effective anti-diabetic 

therapies owing to their moderate to good inhibitory 

capacity (IC50 = 12. 68 ± 0. 04 to 37. 82 ± 0. 07 µM) 

(Fig. 5). 
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Fig. 5. Synthesized pyrazoline derivatives by Nazir et 

al. (2018) 

 

In 2018, Bhutani et al. created hybrid compounds 

comprising benzothiazole-1,3,4-oxadiazole-4-

thiazolidinone. The OGTT in non-diabetic rats and 

streptozotocin-induced diabetic rat models were 

employed to evaluate the seven compounds that 

exhibited the highest docking scores. All of the examined 

substances significantly reduced blood glucose levels, 

with outcomes that varied from good to moderate. The 

anti-diabetic properties of three compounds (6a, 6b, and 

6c) were more effective than those of the standard 

medication pioglitazone, which showed a glucose 

concentration of 178. 32 ± 1. 88 mg/dL, compared to the 

lower glucose concentrations of 157. 15 ± 1. 79 mg/dL, 

154. 39 ± 1. 71 mg/dL, and 167. 36 ± 2. 45 mg/dL 

reported for 6a-c. Acarbose (IC50 = 18. 5 ± 0. 20 µM) was 

noted as the most effective alpha-glucosidase inhibitor 

among the seven derivatives evaluated. Three of its 

derivatives, compounds 6a, 6d, and 6e, displayed lower 

IC50 values (0. 21 ± 0. 01 µM, 9. 03 ± 0. 12 µM, and 11. 

96 ± 0. 40 µM, respectively), suggesting they were less 

potent than the original acarbose. This means that these 

distinct hybrids could act as a basis for the creation of 

new agents (Fig. 6, Table 3). 

 

 

Fig. 6. Synthesized pyrazoline derivatives by Bhutani 

et al. (2018) 
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Table 3. IC50 values of the synthesized derivatives 6a-e 

Sl Structure Compound name IC50 value (µM) 
1. 

S

N

O

N

N

N

S
O

OH

N

 

6a 0.21 ± 0.01 

2. 

 

6b N/A 

3. 

 

6c 20.36 ± 2.41 

4. 

 

6d 9.03 ± 0.12 

5. 

 

6e 11.96 ± 0.4 

 

In 2019, Bakri et al. developed new condensed 1,2,4-

triazoles and examined their biological activity and 

molecular modeling. The α-amylase inhibition test 

showed that compound 7 exhibited the strongest 

inhibitory potency, with an IC50 of 109. 43 ± 6. 12 μM, 

in contrast to the standard drug acarbose (IC50 = 618. 

87 ± 0. 76 μM) (Pandit et al., 2021) (Fig. 7, Table 4). 

 

Table 4. IC50 value of the synthesized derivative 7 

Sl Compound name IC50 value (μM) 
1. 7 109.43 ± 6.12 
2. Acarbose 618.87 ± 0.76 

 

Fig. 7. Synthesized pyrazoline derivative by Bakri et 

al. (2019) 

 

In 2019, Singh et al. produced, characterized, and 

evaluated rhodanine derivatives as well as rhodanine-
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pyrazole conjugates for their ability to inhibit α-

glucosidase and α-amylase. The para-hydroxy-

substituted pyrazole-rhodanine derivative (compound 8) 

exhibited the strongest inhibitory activity against α-

amylase (IC50 = 6. 377 × 10-5 mol/l), which is 1. 5 times 

greater than the standard drug acarbose (IC50 = 1. 038 × 

10-4 mol/l) (Fig. 8, Table 5). 

 

 

Fig. 8. Synthesized pyrazoline derivatives by Singh et 

al. (2019) 

 

Table 5. IC50 values of the synthesized derivative 8 

Sl Compound name IC50 value (mol/l) 
1. 8 6.377 × 10-5 
2. Acarbose 1.038 × 10-4 
 

In 2019, Reddy et al. created and evaluated new 

amide-containing fused pyrazolo-pyrimidine 

derivatives to assess their antidiabetic capabilities. 

In an in vitro α-amylase inhibitory assay, 

compound 9a, which featured o- and m-substituted 

phenyl rings, was identified as the most effective 

inhibitor (IC50 = 1. 60 ± 0. 48 μM). The next most 

effective molecule was 9b, exhibiting an IC50 of 1. 

64 ± 0. 03 μM and containing a p-nitro substituent 

on the phenyl ring (Fig. 9, Table 6).  

 

 

Fig. 9. Synthesized pyrazoline derivatives by Reddy 

et al. (20219) 

 

Table 6. IC50 values of the synthesized derivatives 9a-c 

Sl Structure Compound name IC50 value (μM) 
1. 

 

9a 1.60 ± 0.48 

2. 

 

9b 1.64 ± 0.03 
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3. 

 

9c 1.77 ± 2.84 

 

The third strongest compound, 9c, displayed an IC50 

of 1. 77 ± 2. 84 μM. In vivo studies on compounds 9b 

and 9c showed a dose-dependent decline in blood 

glucose levels. Compound 9c recorded a docking 

score of 59. 46, resulting in 11 hydrophobic 

interactions and one H-bond interaction. Compound 

9b had a docking score of 48. 12 (Lee et al., 2023). 

 

 

Fig. 10. Synthesized pyrazoline derivatives by 

Iftikhar et al. (2019) 

 

In 2019, Iftikhar et al. synthesized N-aryl/aralkyl 

derivatives of 2-methyl-2-{5-(4-chlorophenyl)-1,3,4-

oxadiazole-2-ylthiol}acetamides and evaluated their 

α-glucosidase inhibitory activity. Compounds 10a-f 

markedly inhibited α-glucosidase activity (IC50 values 

of 81. 72 ± 1. 18, 52. 73 ± 1. 16, 62. 62 ± 1. 15, 56. 34 ± 

1. 17, 86. 35 ± 1. 17, and 52. 63 ± 1. 16 µM, 

respectively). These results were corroborated by 

molecular modeling and ADME predictions. It was 

therefore feasible to establish a library of compounds 

from shared fundamental components, which could 

potentially result in the identification of new 

therapies (Smith et al., 2024) (Fig. 10, Table 7). 

In 2019, Eldebss et al. created and tested innovative 

pyrazolone derivatives containing a sulfone unit to 

inhibit the enzymes α-amylase and α-glucosidase. The 

IC50 values for compounds 11a and 11b against α-

amylase and α-glucosidase were 63. 66, 74. 65, 14. 67, 

and 16. 76 μM, respectively. In silico studies 

confirmed the drug-like properties of compound 11a. 

Molecular docking studies supported the in vitro 

findings and verified the binding mechanism of 

compounds 11a and 11b to the target protein (Zhang 

et al., 2023) (Fig. 11, Table 8). 

 

In 2019, Bansal et al. created pyrazole-linked 

thiazolidine-2,4-dione conjugates and examined their 

biological activities related to antioxidant, 

antidiabetic, and anti-inflammatory effects. 14 

derivatives of pyrazole-based 2,4-thiazolidinedione 

were synthesized and evaluated. Compound 12d 

demonstrated the most potent inhibitory effect (IC50 

= 4. 08 μg/ml) on α-amylase in an in vitro setting. 

The in vivo antidiabetic effect was tested using the 

C57BL/6J mouse model, where compound 12d 

exhibited a significant reduction in blood glucose 

levels. Additionally, molecular docking studies were 

performed on the active sites of PPAR-γ and α-

amylase. The docking analysis against PPAR-γ 

indicated that compounds 12a (-15. 13 kcal/mol), 12b 

(-16. 79 kcal/mol), and 12d (-17. 44 kcal/mol) 

demonstrated superior binding compared to 

pioglitazone (the standard drug). Compounds 12b, 

12c, and 12d exhibited high binding affinities toward 

α-amylase, with docking scores of -16. 63 kcal/mol, -

17. 59 kcal/mol, and -17. 98 kcal/mol, respectively 

(Patel et al., 2023) (Fig. 12). 
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Table 7. IC50 values of the synthesized derivatives 10a-f 

Sl Structure Compound name IC50 value (µM) 
1. 

 

10a 81.72 ± 1.18 

2. 

 

10b 52.73 ± 1.16 

3. 

 

10c 62.62 ± 1.15 

4. 

 

10d 56.34 ± 1.17 

5. 

 

10e 86.35 ± 1.17 

6. 

 

10f 52.63 ± 1.16 
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Table 8. IC50 values of the synthesized derivatives 11a-b 

Sl Structure Compound name IC50 value (μM) 
1. 

 

11a 63.66 (α-amylase) 
74.65 (α-glucosidase) 

2. 

 

11b 14.67 (α-amylase) 
16.76 (α-glucosidase) 

 

 

Fig. 11. Synthesized pyrazoline derivatives by Eldebss 

et al. (2019) 

 

In 2020, Hamdani et al. created three 1,3,4-

oxadiazole derivatives (compounds 13a, 13b, and 

13c). They utilized X-ray diffraction, density 

functional theory (DFT), and other methods to 

determine their ability to inhibit α-amylase. X-ray 

diffraction along with other spectro-analytical 

techniques were applied to confirm the structures 

of the synthesized compounds, which were 

obtained in high yields (70-83%). Besides 

validating X-ray data, DFT analyses explored 

charge distribution and reactivity through frontier 

molecular orbitals and molecular electrostatic 

potential (MEP) techniques. Tests for α-amylase 

inhibition were performed to evaluate the 

enzymatic inhibitory effectiveness of the 

synthesized compounds (13a-c). Compound 13b 

demonstrates a low IC50 of 86. 83 ± 0. 23 μg/mL, 

highlighting its significant capability to inhibit α-

amylase (Ahmed et al., 2022) (Fig. 13) . 

 

 

Fig. 12. Synthesized pyrazoline derivatives by Bansal 

et al. (20219) 
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Fig. 13. Synthesized pyrazoline derivatives by 

Hamdani et al. (2020) 

 

In 2020, Peerzade et al. created, analyzed through 

computation, and evaluated N-carbamoyl-substituted 

pyrazoline derivatives. Each synthesized compound 

was assessed for its ability to inhibit α-amylase. 

Compounds 14a and 14b exhibited the most 

significant antidiabetic effectiveness, with inhibition 

percentages of 67. 01 and 64. 94%, respectively. All 

pyrazoline derivatives displayed good to excellent 

activity in antioxidant measures (Ramachandran et 

al., 2023) (Fig. 14). 

 

 

Fig. 14. Synthesized pyrazoline derivatives by 

Peerzade et al. (2020) 

 

In 2020, Ningaiah et al. created and evaluated 

carboxylic acid derivatives of pyrazole and thiazole-

based analogs for their antidiabetic effects. All the 

synthesized compounds were assessed in vitro for 

their ability to inhibit α-amylase and α-

glucosidase. Among the series, compound 15 

exhibited the greatest inhibitory effects on α-

amylase and α-glucosidase, showing the highest 

potency (IC50 = 10 μg/ml). SAR studies indicated 

that the notable inhibitory potency of compound 15 

resulted from the substitution of an electron-donor 

moiety (OH group) on each of the phenyl rings 

(Chatterjee et al., 2023) (Fig. 15). 

 

 

Fig. 15. Synthesized pyrazoline derivatives by 

Ningaiah et al. (2020) 

 

In 2020, Rafique et al. created, evaluated, and 

examined indazole-based compounds for their 

capacity to block both α-glucosidase and α-

amylase. We synthesized and assessed N-

arylhydrazinecarbothioamide-modified indazoles 

in vitro. Compounds 16a and 16b exhibited the 

highest inhibitory effect on α-amylase, with IC50 

values of 1. 52 ± 0. 07 and 1. 42 ± 0. 04 μM, 

respectively. Compounds 16a and 16b caused 

significant inhibition of α-glucosidase, with IC50 

values of 1. 67 ± 0. 14 and 1. 54 ± 0. 02 μM, 

respectively. Compounds 16a and 16b inhibit α-

amylase via noncompetitive mechanisms, as 

indicated by kinetic studies. SAR analyses 

demonstrated that a p-methoxy group effectively 

inhibited α-amylase in comparison to o-methoxy, 

m-nitro, and m-trifluoromethyl substituents (Singh 

et al., 2024) (Fig. 16, Table 9). 

 

 

Fig. 16. Synthesized pyrazoline derivatives by Rafique 

et al. (2020) 
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Table 9. IC50 values of the synthesized derivatives 16a-b 

Sl Structure Compound name IC50 value (μM) 
1. 

 

16a 1.52 ± 0.07 (α-amylase) 
1.67 ± 0.14 (α-glucosidase) 

2. 

 

16b 1.42 ± 0.04 (α-amylase) 
1.54 ± 0.02 (α-glucosidase) 

 

In 2020, Lokesh Kumar and colleagues reported 

the successful identification of pyrazoline 

derivatives 17a–d. Moreover, α-glucosidase 

inhibition assays were utilized to evaluate the anti-

diabetic effects of all synthesized compounds. All 

compounds effectively inhibited α-glucosidase. The 

compounds 17a (84. 90 ± 0. 060 µM), 17b (94. 00 

± 0. 061 µM), 17c (101. 67 ± 0. 123 µM), and 17d 

(106. 71 ± 0. 246 µM) all demonstrated inhibition 

of enzyme activity (IC50 values) (Lee et al., 2023) 

(Fig. 17, Table 10). 

 

 

Fig. 17. Synthesized pyrazoline derivatives by Lokesh 

Kumar et al. (2020) 

 

Table 10. IC50 values of the synthesized derivatives 

17a-d 

Sl Compound name IC50 value (µM) 
1. 17a 84.90 ± 0.060 
2. 17b 94.00 ± 0.061 
3. 17c 101.67 ± 0.123 
4. 17d 106.71 ± 0.246 

In 2020, Kumar et al. created pyrazole-appended 

thiazolidin-4-one derivatives as possible antidiabetic 

medications and analyzed their nonlinear optical 

traits. The produced pyrazol-thiazolidine-4-one 

hybrids were structurally characterized and evaluated 

in vitro for their α-amylase and α-glucosidase 

inhibition properties. Biological investigations 

revealed that compound 18a displayed the highest 

inhibitory effect against α-amylase (IC50 = 9. 90 μM), 

while compound 18b showed the greatest inhibitory 

effect against α-glucosidase (IC50 = 4. 48 μM) when 

compared with the reference medication, acarbose. 

All synthesized compounds demonstrated significant 

NLO properties. The introduction of an electron-

donating group on one end and an electron-

withdrawing group on the opposite end led to 

improved second-order NLO properties. Molecular 

docking analysis suggested that compound 18a 

inhibited α-amylase (Aspergillus oryzae) by 

exhibiting hydrogen bonding, electrostatic, 

hydrophobic, and π-sulfur interactions within its 

binding site. Compound 15a inhibited α-amylase by 

binding to the Glu230 and Asp206 residues in the 

binding site, which play a role in the hydrolytic 

activities (Johnson et al., 2023) (Fig. 18). 

 

In 2020, Farhat Ibraheem and colleagues introduced 

new 2-((3,5-diaryl-4,5-dihydro-1H-pyrazol-1-

yl)methyl)-1H-benzo[d]imidazole compounds (19a-i). 
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To create chalcones, the first step was to connect 

acetophenones and benzaldehydes under alkaline 

conditions. The chalcones underwent cyclization with 

hydrazine hydrate. They were then mixed with 2-

chloromethyl-1H-benzimidazole to produce 

innovative hybrid molecules. The compounds were 

tested for their ability to inhibit glucosidase (19a: 27. 

26%, 19b: 39. 513%, 19c: 85. 056%, 19d: 81. 947%, 

19e: 17. 05%, 19f: 66. 44%, 19g: 27. 08%, 19h: 89. 

48%, and 19i: 98. 4%) to assess their anti-diabetic 

efficacy. Comparing the IC50 value of compound 19d 

with that of the reference drug (acarbose), which has 

an IC50 of 58. 8 µM, suggests that it acts as an 

effective inhibitor (Kapoor et al., 2024) (Fig. 19). 

 

 

Fig. 18. Synthesized pyrazoline derivatives by Kumar 

et al. (2020) 

 

 

Fig. 19. Synthesized pyrazoline derivatives by 

Ibraheem et al. (2020) 

 

In 2021, Gani et al. synthesized new 5-(2,2,2-

trifluoroethoxy)phenyl-1,3,4-oxadiazol-2-thiol 

derivatives and evaluated for biological activity both 

in vitro and in vivo. In comparison to acarbose (IC50 = 

34. 71 μg/mL), these compounds inhibited α-amylase 

at IC50 values between 40. 00-80. 00 μg/mL. 

Compounds 20a and 20b exhibited the most 

significant levels of activity in vitro relative to the other 

synthetic compounds. Compounds 20a, 20b, and 20c 

were observed to lower glucose levels in Drosophila, 

although with a capacity 17-30% less than that of 

acarbose. Chemicals 20a and 20b exhibited the highest 

activity among the synthesized chemicals. Compounds 

20a, 20b, and 20c were identified as promising 

candidates for further advancement as anti-diabetes 

medications (Patel et al., 2023) (Fig. 20, Table 11). 
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Fig. 20. Synthesized pyrazoline derivatives by Gani 

(2021) 

 

In 2021, Karrouchi et al. examined the crystal 

structure, DFT analysis, synthesis, molecular 

docking, and biological assessment of a pyrazole-

carbohydrazide derivative. A single-crystal x-ray 

diffraction technique was employed to validate the 

(E)-configuration of the azomethine (N=CH) group 

in compound 21. The compound crystallizes in the 

monoclinic system, space group P21/c, with a = 15. 

629 (9) Å, b = 7. 152 (4) Å, c = 14. 707 (9), Z = 4, β 

= 111. 061 (15), and V = 1534. 1 (6) Å3. DFT 

calculations were performed to optimize the 

molecular structure and electronic characteristics 

of the B3LYP/6-31 + G(d,p) solvent using the 

integral equation formalism and polarizable 

continuum model. Hirshfeld surface analysis of 

pyrazole carbahydrazide derivative 21 in its solid 
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form uncovered intermolecular interactions such 

as H-H, C-H, and Cl-H interactions. In vitro 

antidiabetic assessments demonstrated more 

potent inhibition of the α-glucosidase and α-

amylase enzymes, exhibiting IC50 values of 60. 45 ± 

1. 23 and 32. 13 ± 1. 05 μM, respectively. Molecular 

docking evaluations verified that compound 21 

exhibits strong binding to α-amylase (binding 

energy: -6. 72 kcal/mol), corroborating the results 

of in vitro experiments (Roy et al., 2023) (Fig. 21). 

 

Table 11. IC50 values of the synthesized derivatives 20a-c 

Sl Structure Compound name IC50 value (μg/mL) 
1. 

 

20a 44 
(α-amylase) 

51.70 
(α-glucosidase) 

2. 

 

20b 52.15 
(α-amylase) 

51.03 
(α-glucosidase) 

3. 

 

20c 52.11 
(α-amylase) 

59.45 
(α-glucosidase) 

 

 

Fig. 21. Synthesized pyrazoline derivatives by 

Karrouchi et al. (2021) 

 

In 2021, Kumar et al. created derivatives of quinolone 

and 2-pyrazoline (22a-j) through an alpha-

glucosidase inhibition assay and explored their anti-

diabetic effects in vitro. In relation to the standard 

drug acarbose, most of the compounds demonstrated 

notable anti-diabetic effectiveness. The compounds 

22a (17. 47 µg/ml), 22b (29. 10 µg/ml), 22c (148. 75 

µg/ml), 22d (144. 79 µg/ml), 22e (26. 94 µg/ml), 22f 

(180. 53 µg/ml), 22g (31. 12 µg/ml), 22h (126. 36 

µg/ml), 22i (32. 56 µg/ml), and 22j (31. 18 µg/ml) 

were evaluated. The compounds 22a, 22d, 22e, 22h, 

and 22i show significant anti-diabetic properties in 

contrast to conventional acarbose (Choudhary et al., 

2024) (Fig. 22). 

 

Fig. 22. Synthesized pyrazoline derivatives by Kumar 

et al. (2021) 
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Fig. 23. Synthesized pyrazoline derivatives by Kale et 

al. (2021) 

 

In 2021, Kale and colleagues investigated the 

biological activity of heterocycles that include 

thiophene and pyrazole groups. Chalcone 

derivatives were synthesized and transformed into 

pyrazole derivatives with diverse substitution 

designs. The synthesized compounds underwent 

testing for anti-diabetic and antibacterial effects. 

The in-vitro testing showed that compounds 23a 

and 23b inhibited α-amylase activity the most (34% 

and 31%, respectively, at 1 mg/ml). Compound 23a 

exhibited significant antibacterial effects against 

Staphylococcus aureus (Verma et al., 2023). 

 

In 2021, Duhan et al. created and evaluated several 

thiazole combined pyrazole hybrids for their 

capability to inhibit α-amylase. Compounds 24a 

and 24b showed the highest inhibition of α-

amylase (89. 15 and 88. 42%, respectively) at a 

concentration of 50 μg/ml. A quantitative SAR 

model was established to assess the % inhibition. 

Docking studies suggest that the lead compounds 

(24a and 24b) bind effectively to the α-amylase 

binding site in Aspergillus oryzae, with 

interactions resembling those of the classical 

inhibitor acarbose (Fig. 24). 

 

Fig. 24. Synthesized pyrazoline derivatives by Duhan 

et al. (2021) 

 

In 2022, Harit et al. created, assessed, and 

investigated pyrazole-tetrazole hybrids as possible α-

amylase inhibitors. The scientists developed N-

alkylated pyrazole-tetrazole derivatives and assessed 

them for α-amylase inhibitory properties. 

Compounds 25a and 25b inhibited α-amylase 

effectively, with IC50 values of 3. 0 × 10-4 ± 2. 0 × 10-

4 and 3. 45 × 10-5 ± 1. 27 × 10-5 mg/ml, respectively. 

Structure-activity relationship tests indicated that 

alkylation with a donor group at the N-1 position of 

the tetrazole structure enhanced inhibitory 

effectiveness and lowered logP value. Docking 

experiments demonstrated that all synthesized 

derivatives bind effectively to porcine pancreatic α-

amylase. N-1-substituted derivatives exhibited greater 

binding energy compared to N-2-substituted 

derivatives. The hydrogen bonding energies of 

compounds 25a and 25b with Asp197, Glu233, and 

Asp300 residues were -100. 8 and -107. 493 kcal/mol, 

respectively (Fig. 25, Table 12). 
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Fig. 25. Synthesized pyrazoline derivatives by Harit 

et al. (2022) 
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Table 12. Structural modifications to 25 by Harit et al. (2022) 

Sl Structure Compound name Structure modification (R) 
1. 

 

25a 2-(3-bromopropyl) 
25b 1-(3-bromopropyl) 

 

Mor and Khatri (2022) examined the synthesis, 

molecular docking, and antibacterial characteristics of 

thiazole combined pyrazole derivatives. In vitro studies 

demonstrated that compounds 26a and 26b inhibited α-

amylase with IC50 values of 0. 79 and 0. 46 μM, 

respectively, in comparison to the reference drug 

acarbose (IC50 = 0. 11 μM). Docking assays indicated that 

compounds 26a and 26b exhibit strong interactions with 

the α-amylase binding site, showing affinities of -8. 7 

and -9. 0 kcal/mol, respectively (Fig. 26, Table 13). 
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Fig. 26. Synthesized pyrazoline derivatives by Mor 

and Khatri (2022) 

 

Table 13. IC50 value of the synthesized derivatives 

26a-b 

Sl Compound name IC50 value (μM) 
1. 26a 0.79 
2. 26b 0.46 
3. Acarbose 0.11 
 

In 2022, Islam et al. created and examined a range of 

chalcone-substituted pyrazoles. We synthesized 

pyrazole derivatives that were attached to chalcone 

with benzothiophene and indole substituents to 

assess their effects on biological activity. The majority 

of the synthesized compounds effectively inhibited α-

amylase. The pyrazole derivatives 27a (IC50 = 20 ± 1. 

15 μg/ml), 27b (IC50 = 30 ± 0. 60 μg/ml), 27c (IC50 = 

40 ± 0. 72 μg/ml), 27d (IC50 = 40 ± 0. 50 μg/ml), and 

27e (IC50 = 60 ± 2. 19 μg/ml) demonstrated the most 

significant α-amylase inhibitory activity. The authors 

analyzed the inhibitory effects of compounds on 

acetylcholinesterase and α-glucosidase and employed 

docking studies to clarify the outcomes of in vitro 

assays. Compound 27f inhibited α-amylase via both 

direct and indirect interactions with its binding site 

(Fig. 27). 

 

 

Fig. 27. Synthesized pyrazoline derivatives by Islam 

et al. (2022) 

 

In 2022, Oulous et al. created and evaluated new 

pyrazole-tetrazole hybrids aimed at inhibiting 

nonenzymatic glycation and α-amylase activity. Eight 

compounds were produced using solution-phase 

chemistry and assessed for their capability to inhibit 

α-amylase and hemoglobin antiglycation effects. 

Compounds 28a and 28b emerged as the most potent 

inhibitors of α-amylase, exhibiting IC50 values of 4. 82 

× 10-3 ± 0. 51 × 10-3 and 1. 13 × 10-4 ± 0. 17 × 10-4 
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mg/ml, respectively. Structure-activity relationship 

(SAR) analysis indicated that the site of alkylation on 

the pyrazole ring, the nature of the substituent 

attached to the carbon atom of the tetrazolic ring, and 

the substituent at the nitrogen atom of the pyrazole 

ring all significantly influenced the α-amylase 

inhibitory function (Fig. 28). 

 

 

Fig. 28. Synthesized pyrazoline derivatives by Oulous 

et al. (2022) 

 

In 2022, Ganavi et al. created, examined, and 

investigated thiazolidinone-appended pyrazoles for 

their antioxidant and α-amylase inhibitor 

characteristics. The scientists produced fluorinated 

thiazolidinone-pyrazole hybrids utilizing substituted 

pyrazole carbaldehydes and fluoro-substituted 

thiazolidin-4-ones. In vitro studies showed that 

compound 29, featuring a 2,4-dimethoxyphenyl ring 

on the pyrazole framework, exhibited the strongest 

inhibitory effect (IC50 = 0. 76 ± 0. 81 μM) against α-

amylase. The most effective molecule (29) was 

utilized in kinetic assays, which indicated a reversible 

competitive mode of inhibition (Fig. 29). 

  

 

Fig. 29. Synthesized pyrazoline derivatives by Ganavi 

et al. (2022) 

 

Compound 29 was docked in the α-amylase binding 

pocket and displayed a binding affinity of -7. 2 

kcal/mol, in contrast to acarbose (-8. 0 kcal/mol). 

Docking studies demonstrated that compound 29 

interacts with the protein via hydrogen bonds, π-π 

interactions, and π-alkyl interactions. 

 

In 2023, Hassan et al. created, synthesized, and 

examined pyrazolo-pyrimidine derivatives (Fig. 30). 

  

 

Fig. 30. Synthesized pyrazoline derivatives by 

Hassan et al. (2023) 

 

Two fused pyrazole compounds (30a and 30b) 

featuring various positions of aromatic 

substituents were generated and evaluated against 

α-amylase to assess their inhibitory effect.  

 

Compound 30a showed greater inhibition of α-

amylase compared to acarbose (67. 92 ± 0. 09%). 

Compound 30b exhibited noteworthy α-amylase 

inhibitory activity (48. 98 ± 0. 07%).  

 

The chloro and methoxy groups of compound 30a 

increased its interactions with the enzyme residues 

in the binding site. Docking studies indicated that 

compound 30a binds effectively to α-amylase, 

achieving a binding energy of -19. 57 kcal/mol. The 

compounds were determined to possess drug-like 

physicochemical properties and favourable oral 

bioavailability, as suggested by ADMET analysis. 

 

CONCLUSION 

Pyrazoline derivatives signify a promising class of 

compounds in the development of novel anti-diabetic 
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agents. They demonstrate important inhibitory effects 

on α-glucosidase and α-amylase enzymes, improve 

insulin sensitivity, and decrease oxidative stress, 

making them compelling candidates for diabetes 

treatment. Extensive structure-activity relationship 

(SAR) analyses have elucidated how numerous 

functional groups and substitution patterns impact 

the efficacy and selectivity of these compounds. It has 

been revealed that pyrazoline derivatives can lower 

blood glucose levels with minimal toxicity. 

Additionally, molecular docking have said their 

interactions with crucial diabetic targets. However, 

their clinical application remains in early stages, 

facing important challenges such as improving 

pharmacokinetic profiles, ensuring long-term safety, 

and conducting thorough in vivo and clinical trials. 

Future advancements, driven by computational 

methods and interdisciplinary collaboration, will be 

crucial to fully unlocking the therapeutic potential of 

pyrazoline derivatives. The findings of this review 

highlight the importance of sustained research and 

innovation to address unmet needs in diabetes 

treatment and to inspire the development of next-

generation therapies. 
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