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ABSTRACT 
 

Breast cancer is one of the most common cancers in women and a major cause of deaths. 7,12-

Dimethylbenz(a)anthracene (DMBA) is often used to induce breast cancer in rats. This study investigates the 

potential of myrtenal to prevent breast cancer caused by DMBA in female Sprague-Dawley rats. This study 

evaluates the dose-dependent chemopreventive effect of myrtenal in female Sprague-Dawley rats with 

mammary tumors induced by 7,12-dimethylbenz[a]anthracene (DMBA). The subcutaneous injection of DMBA 

alone in rats resulted in 100% tumor incidence accompanied by an increase in tumor burden, volume, and 

significant biochemical disruptions. Myrtenal at doses of 100, 200, and 400 mg/kg was orally administered to 

DMBA-treated rats, and its protective efficacy was evaluated through tumor inhibition potential, 

histopathological, and biochemical analyses. Myrtenal treatment caused a dose-dependent reduction in tumor 

incidence and volume and restored altered biochemical parameters (lipid peroxidation byproducts, 

antioxidants, and phase I and II detoxifying enzymes) toward normal. Histopathological findings further 

validated the protective effects of myrtenal. This study highlights the potent chemopreventive potential of 

myrtenal, particularly at 400 mg/kg. Myrtenal's anticancer efficacy is primarily attributed to its strong 

antioxidant properties and its regulatory influence on the detoxification pathway. 
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INTRODUCTION 

Breast cancer ranks as the second most frequently 

occurring malignancy globally, with estimates 

suggesting that one in eight women may develop it 

in their lifetime (Karnam et al., 2017). In 2022, 

breast cancer accounting for approximately 2.3 

million new cases and 670,000 deaths globally. In 

India, breast cancer contributed to 26.6% of all 

female cancer cases (192,020) and 22.0% of cancer-

related deaths (98,337) (Zhang et al., 2025). Breast 

cancer arises from a combination of factors, 

including age, genetic predisposition and prolonged 

exposure to endogenous or exogenous estrogens. 

Hormonal imbalances, lifestyle factors such as 

smoking, alcohol consumption and environmental 

carcinogens also play significant roles 

(Mathivadhani et al., 2007; Obeagu and Obeagu, 

2024). DMBA is commonly used to develop 

mammary tumors in Sprague-Dawley rats. DMBA is 

metabolized into its active form, 3,4-diol-1,2-

epoxide, which disrupts redox balance and promotes 

oxidative stress. This leads to increased reactive 

oxygen species (ROS) generation that damage DNA 

and proteins, contributing to mutagenesis and 

carcinogenesis (Wang and Zhang, 2017). 

 

Oxidative stress is implicated in initiation, promotion 

and progression of cancer by inducing mutations, 

promoting cell proliferation and supporting tumor 

growth, invasion and metastasis (Di Carlo and 

Sorrentino, 2017). Antioxidants help prevent cancer by 

neutralizing ROS, thus protecting cells from oxidative 

damage (Jomova et al., 2023). The cellular antioxidant 

defense system includes Superoxide dismutase (SOD), 

catalase (CAT), glutathione peroxidase (GPx) [enzymatic 

components] and reduced glutathione (GSH), vitamin C 

and vitamin E [Non-enzymatic antioxidants]. These 

components collectively reduce cellular damage by 

transforming harmful oxygen radicals into non-toxic 

molecules (Jena et al., 2023). DMBA metabolism 

produces large amounts of free radicals that are 

counteracted by Cytochrome P450 and Cytochrome b5 

(Phase I) and Glutathione S-transferase (GST) and 

Glutathione reductase (GR) [Phase II] detoxification 

enzymes. These cascade conjugate reactive 

intermediates with glutathione, thereby reducing 

oxidative stress and enhancing cellular detoxification 

(Townsend and Tew, 2003). 

 

Many phytochemicals exhibit anticancer potential 

through their ability to scavenge ROS and strengthen 

antioxidant defenses. As dietary agents, these natural 

compounds offer promising chemopreventive 

properties (Zhang et al., 2015). Despite advancements 

in treatment, current breast cancer therapies 

including surgery, chemotherapy and radiotherapy 

are often associated with severe side effects and high 

costs, highlighting the need for safer and more 

affordable alternatives (Burguin et al., 2021). 

Myrtenal, a bicyclic monoterpenoid, is found in the 

essential oils of cumin, mint, cardamom, spearmint, 

pepper and eucalyptus. It possesses diverse 

pharmacological properties including bronchodilator, 

antiaggregant, antihemolytic, hypotensive, 

antibacterial, anti-inflammatory, antioxidant, 

antihyperglycemic and neuroprotective effects 

(Dragomanova et al., 2023). Lokeshkumar et al. 

(2015) demonstrated that myrtenal inhibited colon 

carcinogenesis through its antioxidant activity. In 

another study, it was shown to stabilize cellular 

membranes and maintain homeostasis (Booupathy et 

al., 2016). Hari Babu et al. (2012) revealed its 

antitumor potential in diethylnitrosamine-induced 

liver cancer. Although myrtenal has shown efficacy in 

several experimental cancer models, its role in 

mammary carcinogenesis remains unexplored. This 

study thus aims to evaluate the tumor inhibiting 

potential of myrtenal by investigating its effects on 

lipid peroxidation and detoxification enzymes in 

mammary carcinogenesis. 

 

MATERIALS AND METHODS 

Chemicals 

DMBA, myrtenal, GSH, NADH and nitroblue 

tetrazolium were procured from Sigma-Aldrich, 

India.  

 

Animals 

Sprague-Dawley rats (7–8 weeks old female; 130–140 g) 

were procured from Biogen, Bengaluru and housed 
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under standard conditions (12 h light/dark cycle, 

24 ± 2 °C, 50 ± 10% humidity) at the Central Animal 

House, Annamalai University. They were given a 

standard pellet diet and water ad libitum. All 

experimental procedures followed CCSEA guidelines 

and were approved by the Institutional Animal Ethics 

Committee (Approval No.: GMCHC-IAEC/1379/3/24). 

 

Study design 

Forty-eight female Sprague-Dawley rats were 

randomly divided into six groups of eight animals 

each. Group I acted as the control and was given 

only the vehicle (1 mL of a sunflower oil-saline 

emulsion), along with a standard diet and water. 

Mammary tumors were induced in Groups II to V 

using a single dose of DMBA (25 mg/kg b.w 

subcutaneously). Group II served as the DMBA-only 

group without further treatment. Groups III, IV and 

V received myrtenal orally at doses of 100, 200 and 

400 mg/kg body weight, respectively, starting one 

week before DMBA injection and continued daily for 

16 weeks. Group VI received only myrtenal 

(400 mg/kg) without DMBA. After 16 weeks, all rats 

were anesthetized and sacrificed; liver and 

mammary tissues were collected, homogenized and 

centrifuged for biochemical analysis. For 

histopathology, tissues were fixed in 10% neutral 

buffered formalin, processed, embedded in paraffin, 

sectioned (2–3 µm) and stained with HandE for 

microscopic evaluation. 

 

Biochemical estimations 

For biochemical analysis, blood was collected in 

heparinized tubes and plasma was separated by 

centrifugation at 1000 × g for 15 minutes. Tissues 

were rinsed with ice-cold saline, blotted, weighed and 

homogenized using a Teflon-glass homogenizer in 

appropriate buffer. Protein content was quantified 

using the protocol described by Lowry et al. (1951). 

Lipid peroxidation products (TBARS) in both plasma 

and mammary tissues were determined based on the 

procedures of Yagi (1987) and Ohkawa et al. (1979). 

The activities of antioxidant enzymes, including 

superoxide dismutase (SOD) and catalase, were 

assessed according to the methods of Kakkar et al. 

(1984) and Sinha (1972), respectively. Glutathione 

peroxidase (GPx) activity was evaluated using the 

approach outlined by Rotruck et al. (1973), while 

reduced glutathione (GSH) levels in plasma, liver and 

mammary tissues were measured following Beutler 

and Kelley (1963). Plasma vitamin E concentration 

was determined by a colorimetric assay as per Desai 

(1984) and its levels in tissues were analyzed 

fluorimetrically following the method of Palan et al. 

(1991). Plasma vitamin C content was measured using 

the technique of Omaye et al. (1979).  

 

The activities of glutathione S-transferase (GST) and 

glutathione reductase (GR) in liver and mammary 

tissues were estimated using the methods of Habig et 

al. (1974) and Calberg and Mannervik (1985), 

respectively. DT-diaphorase activity was measured 

using Ernster (1958) and levels of CYP450 and CYb5 

in liver and mammary microsomal fractions were 

estimated as per Omura and Sato (1964). 

 

Statistical analysis 

Data were analyzed using one-way ANOVA and group 

comparisons were further evaluated with Duncan’s 

multiple range test (DMRT). Results were presented 

as mean ± standard deviation (S.D.), with significance 

set at p < 0.05. Statistical analysis was carried out 

using SPSS software (version 12.0, SPSS Inc., 

Chicago, http://www.spss.com). 

 

RESULTS 

Fig. 1 shows the external appearance of control and 

DMBA-induced rats, with or without myrtenal 

treatment, after 16 weeks. Tumor incidence, burden 

and volume are detailed in Table 1.  

 

Rats exposed to DMBA alone exhibited 100% 

tumor incidence along with a significant rise in 

tumor volume and burden. However, oral myrtenal 

treatment at doses of 100, 200 and 400  mg/kg 

reduced tumor incidence in a dose-dependent 

manner by 25%, 50% and 75%, respectively, 

compared to the DMBA alone treated group (Fig. 

2). Histopathological evaluation of mammary 

tissue is presented in Fig. 3. 
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Table 1. Tumor incidence in experimental animals (n=8) 

Parameter Control DMBA alone DMBA+ 
Myrtenal 
100mg/kg 
b.w 

DMBA+ 
Myrtenal 
200mg/kg 
b.w 

DMBA+ 
Myrtenal 
400mg/kg 
b.w 

Myrtenal 
alone 
400mg/kg 
b.w 

Tumor incidence - 100% 75% 50% 25% - 
Number of tumors - (8)/8 (6)/8 (4)/8 (2)/8 - 

Tumor volume (cm3) - 2.89±0.34a 2.21±0.21b 1.48±0.11c 0.70±0.12d - 
Tumor burden (cm3) - 2.89±0.34a 1.65±0.16b 0.73±0.04c 0.17±0.02d - 

 

 

Fig. 1. Morphological appearance of mammary 

tumors in rats 

(a) Control and (f) Myrtenal alone (400mg/kg) group 

shows no visible lesions. (b) DMBA alone treated rats 

displayed palpable mammary adenocarcinoma. (c - e) 

Myrtenal treatment (100-400 mg/kg) reduced DMBA-

induced tumor growth in a dose-dependent manner. 

 

 

Fig. 2. Images showing mammary tumors excised 

from various treatment groups 

 

 

Fig. 3. Microscopic images showing histopathological 

alterations in mammary tissues of control and treated 

animals (H & E x40) 

(A) Group I (Control) mammary tissue shows normal 

glandular structures with normal surface epithelium. 

(B) Group II (Breast cancer bearing rats) shows an 

invasive neoplasm composed of pleomorphic 

epithelial cells arranged in solid sheets indicating 

metaplastic infiltrating ductal carcinoma. (C) Group 

III (DMBA+ Myrtenal 100mg/kg) shows vast areas of 

necrosis surrounded by fibroblast proliferation, 

indicating severe dysplasia. (D) Group IV (DMBA+ 

Myrtenal 200mg/kg) shows ductal hyperplasia with 

moderate dysplastic epithelium. (E) Group V 

(DMBA+ Myrtenal 400mg/kg) shows hyperplastic 

ducts with mild dysplastic epithelium. (F) Group VI 

(Myrtenal 400mg/kg alone treated rats) shows 

normal breast ducts with normal surface epithelium. 

 

 

Fig. 4. Plasma TBARS levels and enzymatic 

antioxidant status in experimental rats (n=8). 

Differences between groups were considered 

significant, as denoted by different superscript letters. 

A – Enzyme activity required for 50% inhibition of 

nitroblue tetrazolium reduction, B – µM of H2O2 

consumed per second, C – µM of glutathione 

consumed per minute 

 

Control rats and those treated with myrtenal alone 

exhibited normal tissue architecture. In contrast, 

DMBA-treated rats (Group II) showed pronounced 

epithelial cell proliferation, multilayered epithelium, 

increased cellular density, nuclear atypia and 

malignant infiltration. Treatment with myrtenal 
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significantly reduced these pathological features, 

indicating a protective effect against DMBA-induced 

cellular proliferation. 

 

 

Fig. 5. Plasma non-enzymatic antioxidant status in 

experimental rats (n=8). 

Differences between groups were considered 

significant, as denoted by different superscript letters. 

 

 

Fig. 6. Mammary tissues TBARS and antioxidants 

status in experimental rats (n=8) 

Differences between groups were considered 

significant, as denoted by different superscript letters. 

A – Enzyme activity required for 50% inhibition of 

nitroblue tetrazolium reduction, B – µM of H₂O₂ 

consumed per second, C – µM of glutathione 

consumed per minute. 

 

The myrtenal’s efficacy on lipid peroxidation and 

antioxidant status in plasma are illustrated in Figs. 4 

and 5. DMBA alone administered rats exhibited 

elevated TBARS levels, indicating increased lipid 

peroxidation. The animals also exhibited reduced 

antioxidant enzyme activities and lowered 

concentrations of non-enzymatic antioxidants. Oral 

treatment with myrtenal decreased TBARS levels and 

restored antioxidant enzyme and non-enzymatic 

antioxidant levels in a dose-dependent manner. There 

was no notable difference between the control group 

and the group treated with myrtenal alone. 

 

 

Fig. 7. Liver phase I and II detoxification enzymes in 

experimental animals (n=8) 

Differences between groups were considered 

significant, as denoted by different superscript letters. 

A – µM of CDNB-GSH conjugate formed per hour, B 

– µM of NADPH oxidized per hour, C – µM of 2,6-

dichlorophenol indophenol reduced per minute. 

 

 

Fig. 8. Mammary tissue phase I and II detoxification 

enzymes in experimental animals (n=8) 

Differences between groups were considered 

significant, as denoted by different superscript letters. 

A- µM of CDNB-GSH conjugate formed per hour, B– 
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µM of NADPH oxidized per hour, C– µM of 2,6-

dichlorophenol indophenol reduced per minute. 

 

The myrtenal’s efficacy on lipid peroxidation and 

antioxidant status in breast tumor tissues is shown in 

Fig. 6. Rats treated with DMBA alone exhibited 

significantly elevated TBARS levels accompanied by 

lowered antioxidant activities, indicating increased 

oxidative stress. Oral administration of myrtenal led 

to a dose-dependent reduction in TBARS levels and 

restoration of both enzymatic and non-enzymatic 

antioxidant levels. There was no notable difference 

between the control group and the group treated with 

myrtenal alone. 

 

Figs. 7 and 8 depict the impact of myrtenal on phase I 

and phase II detoxification enzymes in liver and 

mammary tissues. DMBA-treated rats showed a 

notable rise in phase I enzymes (CYP450 and 

cytochrome b5) and a significant reduction in phase 

II enzymes (GSH, GST, GR and DT-diaphorase) when 

compared to the control group. Oral administration of 

myrtenal at 100, 200 and 400 mg/kg body weight 

significantly downregulated phase I enzymes and 

upregulated phase II enzyme activities in a dose-

dependent manner in both tissues. These changes 

were statistically significant when compared to the 

DMBA only treated group. There was no notable 

difference between the control group and the group 

treated with myrtenal alone. 

 

DISCUSSION  

Chemoprevention research aims to reduce the burden 

of cancer by identifying the protective effects of 

phytochemicals (Wali et al., 2025). Myrtenal, a 

naturally occurring monoterpene found in herbs such 

as mint, cumin and black pepper, has demonstrated 

strong anticancer potential (Kury et al., 2021). This 

investigation explored the potential of myrtenal to 

prevent the growth of mammary tumors. 

 

Histological assessment is essential for understanding 

tumor progression. The DMBA-induced mammary 

cancer model is well-established for mimicking 

human breast cancer, particularly due to its origin in 

ductal epithelial cells, similar to human tumors 

(Hollern et al., 2018). This model closely resembles 

the histopathological, biochemical and morphological 

features of human breast carcinoma (Costa et al., 

2002). In our study, 100% tumor incidence with 

infiltrating duct carcinoma and severe dysplasia was 

observed in DMBA-only treated rats, confirmed by 

histopathology. In contrast, rats administered 

myrtenal at 400 mg/kg exhibited a 75% reduction in 

tumor occurrence (only 2 out of 8 rats developed 

tumors) and the remaining 25% showed only minimal 

tumor burden and mild dysplastic features. These 

findings highlight myrtenal's ability to preserve tissue 

architecture and suppress carcinogenic progression, 

consistent with earlier reports on its protective role 

against various cancers (Lingaiah et al., 2013; 

Boopathy et al., 2024). 

 

Lipid peroxidation, driven by reactive oxygen species 

(ROS), disrupts cellular membranes integrity and 

metabolic functions. Elevated TBARS levels in 

DMBA-induced rats confirmed increased oxidative 

damage, in line with prior observations in mammary 

tumors (Lakshmi and Subramanian, 2014). 

Treatment with myrtenal significantly decreased 

TBARS levels, suggesting its potent free radical 

scavenging and anti-lipid peroxidation properties. 

Oxidative stress, resulting from excessive ROS and 

diminished antioxidant defense, is a well-known 

contributor to carcinogenesis (Basak et al., 2020). In 

our study, DMBA administration led to a marked 

depletion of antioxidant enzyme activity, which was 

restored dose-dependently by myrtenal, 

corroborating earlier reports (Kolanjiappan and 

Manoharan, 2005; Dong et al., 2025).  

 

Interestingly, some studies report elevated GPx and 

GSH levels in tumors, likely reflecting adaptive 

responses to high oxidative stress (Adelegan et al., 

2024).  

 

Lokeshkumar et al. (2015) showed that myrtenal 

suppressed colon cancer via activation of endogenous 

antioxidant enzymes. Buddhan et al. (2020) reported 

similar effects in oral carcinogenesis, while Korkmaz 
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and Tekin (2024) demonstrated that pure myrtenal 

significantly inhibited MCF-7 breast cancer cell 

viability in vitro. These studies support myrtenal’s 

role in attenuating cancer progression by modulating 

oxidative stress and promoting apoptosis, aligning 

with our results showing antioxidant enhancement in 

myrtenal-treated DMBA rats. 

 

Environmental carcinogens like DMBA are 

bioactivated by phase I enzymes (e.g., CYP450 and 

CYb5) into electrophilic intermediates that bind DNA. 

Phase II enzymes (e.g., GST, GR, DT-diaphorase) 

facilitate detoxification through conjugation with 

nucleophiles like GSH, enhancing excretion and 

reducing carcinogen-induced damage (Iacopetta et 

al., 2023; Wen et al., 2013).  

 

Our study revealed elevated phase I enzyme activity 

and reduced phase II enzyme levels in DMBA-only 

rats. Myrtenal administration by the oral route 

markedly downregulated phase I enzymes while 

upregulating key phase II enzymes activities in both 

hepatic and mammary tissues, thereby re-establishing 

the cellular detoxification equilibrium. These findings 

are consistent with Mathivadhani et al. (2007) and 

Babu et al. (2012) who also observed that myrtenal 

mitigated DEN-PB-induced liver cancer by 

normalizing the activities of detoxifying enzymes. 

Collectively, these findings indicate that myrtenal 

may reduce the carcinogenic burden by inhibiting 

metabolic activation of procarcinogens and 

promoting their detoxification and elimination. 

 

CONCLUSION 

This investigation offers compelling support for the 

protective efficacy of myrtenal in preventing DMBA-

triggered mammary tumor development. Oral 

administration of myrtenal effectively mitigated 

oxidative stress by modulating oxidative stress 

biomarkers and phase I and phase II detoxifying 

enzymes activities. These biochemical investigations 

were further supported by histopathological 

observations, which revealed preservation of normal 

mammary tissue architecture in myrtenal-treated 

animals. Collectively, these findings suggest that 

myrtenal may serve as a promising natural compound 

for breast cancer prevention. Additional molecular 

studies are necessary to unravel the precise pathways 

and targets through which myrtenal exerts its 

chemopreventive effects. 
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