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  Abstract 

 

Cannabinoidergic as well as serotonergic systems of the amygdala modulates anxiety like behaviors and 

emotional memory. The effects of cannabinergic system on the anxiety and learning process relate to the central 

amygdala and its interaction with serotonergic system have not studied yet. With the aim of evaluating the 

regulating effects of cerotonergic system on the anxiolytic effects of cannabinoids and the possibility of restoring 

cannabinoid caused amnesia by certonergic system, the current research was conducted using the elevated plus-

maze (EPM) test-retest paradigm in the male mice. The bilateral guide-cannulae were implanted to allow intra-

CeA microinjection of serotonergic agents. The formation of emotional memory was declined by intra-CeA 

injection of ACPA, but the anxiety reaction was not affected by the various doses of the mentioned substance. 

Intra-CeA injection of CP94253 Hydrocholoride, a 5-HT1 serotonin receptor agonist, diminished the formation 

of emotional memory and the locomotor activity, while 5-HT1 serotonin receptor antagonist, did not influence 

the anxiety-like behaviors and the emotional memory formation. According to the obtained findings from the 

current research, it seems that ACPA may trigger anxiolytic-like behaviors and prevent the emotional memory 

formation, mainly via the activation and deactivation of the CeA 5-HT1 serotonin receptors. 
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Introduction 

Without debut learning is regarded as one of the most 

important mental process. Learning literally occurs 

via experiment and exercise resulting in permanent 

alterations in behaviors, not reactions like, exhausting 

or adaptation to darkness (Heimer and Van Hoesen, 

2006) In fact, the brain capability to save past 

experiments, events and better acclimation in the 

future is considered as its main characteristic. 

Sensory input located in the prefrontal cortex, from 

cortex to hypocampus and parahypocampus of the 

limbic system are of the importance in learning.  

 

In human and animals, anxiety is a warning signal 

about the possible occurrence of danger, thereby 

preparing to counteract a threat (Belzung, 2001). 

According to the definition presented by  Barlow 

(2002), anxiety is different from the fear; anxiety 

directs future behavioral reactions related to the 

possible close unfavorable events, whereas the fear is 

a warning response to exist danger felt (Davis, 2006). 

A cascade of biochemical and endocrine process are 

triggered by anxiety and stress, physiologically 

complicated reactions in organisms (Nutt et al., 

2001).     

 

Cannabinoids with the vast pharmacological effects in 

human and other mammals are effective drugs in the 

central nervous system (CNS). There are two well 

known receptors, CB1 and CB2, for cannabinoids. CB1 

receptors concentrate in the central zone and mediate 

many cannabinoid related effects (Hajos and Freund, 

2006). CB1 receptors belonging to Gprotein-coupled 

family (Nasehi et al., 2010 ) diffuse vastly in cortex, 

basal ganglia and amygdale, as well as its implications 

in the physiological and behavioral actions of 

cannabinoid have been well documented(Zarrindast 

et al., 2012). In addition, recently the existence of 

receptors called CB3 in the nervous system has been 

reported(Begg et al., 2005). As the activation of the 

endocannabinoid system occurred under the learning 

state modulates synaptic plasticity during the 

initiation process, the injection of the selective 

antagonist, adversely interacts with the mentioned 

system (De Oliveira Alvares et al., 2005).  

Endocannabinoids act a critical neuromodelatory role 

in many behavioral related reactions, including 

movement, anxiety, learning and memory (Lichtman 

et al., 2002; Pacher et al., 2006). The studies 

conducted on the mice with gene deficiencies in CB1 

receptors revealed that excitements in CB1 receptors 

caused by cannabinoids were responsible for the 

memory destruction and cannabinoid system may 

facilitate amnesia (Varvel and Lichtman, 2002). Also, 

the recorded symptoms of anxiety in mice lack of CB1 

receptors (Zarrindast et al., 2010) and anxiety 

responses resulted from the application of 

cannabinoid ligands (Rezayof et al., 2010) confirm 

this hypothesis that endocannabinoids are involved in 

the expression of anxiety behaviors(Ghiasvand et al., 

2009; Ghiasvand et al., 2011), the destruction in short 

term memory, the spatial learning and anxiety-like 

behaviors(Zarrindast et al., 2010; Degroot et al., 

2005; Lichtman, 2002) . 

 

Serotonin plays vital roles in the physiological and 

pathological process. Transportation of serotonin 

possesses crucial effects in the control and regulation 

of mood, impulse, sleep, eating, libido and cognitive 

functions like learning and memory, mainly via 

serotonin receptors. As some of the agonists of the 5-

HT1 receptor have anxiolytic effects (Nasehi et al., 

2010), this receptor implicates in the occurrence of 

anxiety disturbances. Also the function of 5HT1 of the 

selective ligand had the sufficient influence in the 

various tests related to the learning and memory 

(Smith et al.,1999; Luttgen et al., 2005). At least, 

fifteen presynaptic and postsynaptic serotonin 

receptors have been so far known, classified in seven 

families based on their structure, activation and 

affinity to the different ligands as well as called 5HT1R 

to 5HT7R (Bruss et al., 2000). These receptors, which 

are G-coupled protein, leave out for 5HT3R activates 

adenyl cyclase, the enzyme responsible for producing 

of CAMP, thereby increasing the activity of CAMP-

dependent protein kinase (Miquel et al., 1995). 

 

The phosphorylation of the involved enzymes by these 

protein kinases modulate the activity of the ion 

channels and consequently depolarization of 
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serotonin receptors occur. Gi-coupled 5-HT1 inhibits 

adenyl cyclase, thereby hyperpolarizing 5-HT1. Gq- 

coupled 5-HT2 activates phospholipase C (Lam et al., 

2010) At least two types of serotonin receptors, 

including 5-HT1A, B located intensively in hypocamp, 

ceptom, amygdala and raphe nucleus are implicated 

in the expression of behaviors related to learning and 

anxiety (Luttgen et al., 2005; Madjid et al., 2006; 

Zarrindast et al., 2010). It has been stated that vast 

varieties of cognitive functions, including reward, 

feeling, learning, memory, attention and thought 

correlate by amygdala (Baxter et al., 2006). The 

receptors of the both drug types, cannabinoid and 

serotonine, have similarity in intracellular signal 

transduction mechanism, reductions in CAMP, 

mainly via the activation of G1 proteins (Zarrindast et 

al., 2010).     

 

Amygdala possesses a key role in the regulation and 

control of autonomical neuroendocrinal reactions and 

behavior related to the anxiety (Zarrindast et al., 

2010; Jafari et al., 2007; Rezayof et al., 2007). 

Central amygdala determines behaviors and 

alterations in hypocamp function related to stress and 

emotional  memory (Schafe et al., 2005). It has been 

proposed that the high expression rates of both 

cannabinoid and serotonin receptors in the amygdala, 

the interaction and correlation of these amygdala 

systems regulate anxiety and memory process 

(Casswell et al.,1973; LeDoux, 1998; Marco et al., 

2009). The existence of neuronal cycle related to the 

anxiety behaviors and memory process in amygdala 

has been established by the implications of the basal 

lateral amygdala in the control of anxiety, fear and 

learning reactions (Sarkisyan et al., 2009). The 

various brain structures seem to be involved in the 

regulation of different types of anxiety, memory and 

learning. One of the most critical zone in the control 

of anxiety related behaviors and learning reaction is 

Amygdala (Pellow et al., 1986; Haj-Dahmane et al., 

2011). The key role of amygdala in the organization 

and appearance of anxiety and learning has been 

suggested based on the experimental evidences 

recorded in the different invitro studies in various 

species of animals, such as rat (Moshfegh et al., 2010;  

Zarrindast et al., 2011).  

 

With the aim of the evaluating the interaction 

between serotonergic receptors, located in the central 

amygdala, ACPA and the strong selective agonist of 

CB1 cannabinoid receptors, the current research was 

conducted. The Elevated Plus Maze test has been 

applied for assessing anxiety like behaviors, whereas 

EPM method was used to study anxiety like behaviors 

as well as an emotional memory in the present 

research. There are some studies related to the effects 

of ACPA on anxiety process (Chegini et al., 2014; 

Zarrindast et al., 2008 ), however The effects of the 

cannabinergic system on the anxiety, memory and 

learning process relate to the central amygdala  

nucleus and its interaction with serotonergic system 

have not studied yet. Therefore With the aim of 

evaluating the regulating effects of cerotonergic 

system on the anxiolytic effects of cannabinoids and 

the possibility of restoring cannabinoid caused 

amnesia by serotonergic system, the current research 

was conducted.  

 

Material and methods 

Male Wistar rats (250 - 300 g; Institute of 

pharmacology Studies, Tehran, Iran) were used in 

these experiments. Cages, four rats in each one, were 

incubated in the room in which the temperature was 

maintained at 23 ± 1 °C and the light: dark rhythm 

was controlled in a 12:12 h cycle. The animals were 

allowed to acclimate for seven days prior to the 

initiation of experiments. Eight animals were used in 

each experimental group. The experiments were 

carried out during the light phase of the cycle. 

Animals handling was limited to the time of home 

cage cleaning (each 48 h), weighing, and drugs 

administration only. 

 

Drugs 

The drugs used in the study were ketamine and 

xylazine(Alfasan Chemical Co, Woerden, Holland) for 

animal anesthesia.Other drugs which were supplied 

by Tocris, Bristol, UK were: CP94253 Hydrocholoride 

selective 5-HT1 agonist serotonin receptor; at 0.05, 

0.5, 5 and 50 ng/rat) , GR127935 Hydrocholoride  (a 
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selective 5-HT1 receptor antagonist; at 0.05, 0.5,5 

and 50 ng/rat), and ACPA, 

Arachidonylcyclopropylamide (apotent and selective 

CB1 receptor agonist; at0.00025,0.0005, 

0.0001,0.0002 µg/kg ). All drugs were dissolved in 

sterile 0.9% saline, just before the experiments. 5-

HT1 receptor agents were administered into the CeA 

at the volume of 0.3 l/site, while ACPAinjection was 

done intraperitoneally at 10 ml/kg. Control animals 

received saline. The infusion time and selected drug 

doses used in the experiments were chosen according 

to the pilot and published work in scientific literature 

(Paxinos and Watson., 2007; Motevasseli et al., 2010; 

Nikseresht et al., 2012).  

 

Elevated plus-maze (EPM) apparatus 

An EPM, made of Plexiglas and consisting of two 

opposite open-arms (50×10 cm) surrounded by a 1 

cm high ledge, and two enclosed-arms (50×10×40 

cm) was used. The maze was set up 50 cm above the 

floor. The junction area of the four arms (central 

platform) measured 10×10 cm (Zarrindast et al., 

2010; Eslimi et al., 2011). 

 

The Stereotactic surgery and drug infusion 

Rats were intraperitoneally anesthetized using 

ketamine hydrochloride 10% (Alfasan, Woerden, 

Holland; 50 mg/kg) plus xylazine 2% (Alfasan, 

Woerden, Holland; 4 mg/kg) then positioned in a 

stereotactic frame. The upper incisor bar was set at 

3.3 mm below the interaural line so that the skull 

aligned horizontally between bregma and lambda. 

Two bilateral guide-cannulae (through which an 

injection cannula could be inserted for drugs, saline 

or vehicle applications, 5-7 days later) were 

stereotaxically implanted over the central amygdala. 

Taking bregma as the reference point, the coordinates 

for the central amygdala were AP = -2.2 mm, ML = 

±4.2 mm and DV = -6 mm, according to the atlas of 

Paxinos and Watson (Motevasseli et al., 2010; 

Zarrindast et al., 2010; Eslimi et al.,2011; Nikseresht 

et al., 2012). The cannulae were fixed to the skull by 

means of acrylic resin and two stainless steel screws. 

By the end of the surgery, a stylet was introduced 

inside each guide cannula to reduce possible 

occlusion. After the surgery, rats were placed again in 

their home cages in groups of five, similar to before 

surgery. Five to seven days post surgery, rats received 

a bilateral infusion into the central amygdala using 

dental needles (27-gauge) introduced through guide 

cannulae. The injection needles were advanced until 

their tips reached 1 or 2 mm below the cannulae end. 

Then, 0.3 μl/side of solutions were injected central 

amygdale each one. This was done during 60 s, using 

a 2.5-μl glass Hamilton syringe. A polyethylene 

catheter was interposed between the upper end of 

dental needles and the microsyringes. The 

displacement of an air bubble inside the polyethylene 

catheter was used to monitor the drug flow. To allow 

proper infusion, needles were removed 60 s after the 

completion of injection. 

 

Modified behavioral testing 

In the present study, EPM test-retest method was 

chosen to investigate anxiety and the aversive 

learning process. Recent studies have shown that 

using the test-retest sessions in the EPM, results in a 

qualitative shift in emotional state. Thus, 

unconditioned fear in the test session would possibly 

transform to a learnt avoidance during the retest 

(Cruz-Morales et al., 2002; Gianlorenco et al., 2011). 

In our study, animals were given a pretest 

intracerebral drug injection, followed by an injection 

free (undrugged) retest, 24 h later. Thus, drug effects 

on aversive learning with the subsequent long-term 

effects on memory, were tested 24 h later. It has been 

reported that prior experienced undrugged test 

session in the elevated plus-maze, alters behavioral 

responses in the retest drug-free session (Carvalho et 

al., 2005; Stern et al., 2010). It has also been 

suggested that EPM retest outcome depends on the 

test session length and the baseline anxiety state 

(Ghizoni et al., 2006). Support for the former test-

retest procedure stems from the data showing that 

although pretest systemic benzodiazepine 

administration reliably exerts anxiolytic effects, pre-

retest injections fail to affect the response in the 

second EPM session (File et al., 1993). In general, 

reduced open-arms exploratory behaviors of saline 

treated groups during retest session, indicates an 
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aversive learning associated with the initial 

exploration of this potentially dangerous 

environment.  

 

All experiments were carried out in a minimally 

illuminated (40-lux) room, during the diurnal phase, 

between 9:00 AM and 15:00 PM. Five minute EPM 

sessions were recorded by a video camera while a 

monitor and a DVD-recording system were installed 

in the adjacent room. After each EPM session, the 

apparatus was cleaned and towel dried to avoid urine 

impregnation. The  observer,  who  quietly  sat  one  

meter  behind  one  of  the  closed arms  of  the  maze,  

used  chronometers  to  measure  in  the  closed  arms  

and  the  number  of  entries  into  the  open  and 

closed  arms.  Entry  was  considered  only  when  all  

four  paws  were placed  in  the  arms.  The maze was 

cleaned with distilled water after each EPM session.  

The  raw  data  were  used  to  calculate  the  %OAT 

(Open  Arm  Time  percentage),  which  is  the  

percentage  of  time  each mouse  spent  in  the  open  

arms  relative  to  the  total  amount  of  time spent  in  

any  arm  (open/total  ×  100).  %OAE  (Open  Arm  

Entries  per- centage)  was  recorded  as  a  correlate  

for  the  lack  of  aversive  memory upon  retest.  The  

sum  of  all  closed  arm  entries  (CAE)  was  used  as  

an index  for  the  general  locomotor  activity. All  

data  were obtained  by  observer  (but  not  digital-

recording  system)  after  which the  measures  were  

calculated  manually.  The digital-recording system 

was used as backup in case of lost information 

(Casarrubea et al., 2009; Eslimi et al., 2011). 

 

Verification of cannulae placements  

Upon concluding each experiment, rats were deeply 

anesthetized after which 1% Methylene Blue solution 

was injected into the central amygdala (0.5 μl/side) as 

described in the drug section. Each animal was then 

decapitated, its brain removed and placed in a 10% 

formalin solution. After 7-10 days, the brains were 

sliced and the sites of injections were verified 

according to the atlas of Paxinos (Paxinos and 

Watson., 2007). Data from rats with cannulae 

placements outside the intended sites were excluded 

from the statistical analyses. 

Statistical analysis 

Given the normality of  distribution  and  the  

homogeneity  of  variance,  the  results  were  

statistically  evaluated  using  the  repeated measure 

and  two-way  analysis  of  variance  (ANOVA),  in  

which mean  ±  S.E.M  was  employed  for  the  

comparison  of  outcomes between experimental  

groups  and  their  corresponding  controls. 

 

Experimental design  

Experiment 1  

Open-arms exploratory behavior following pretest 

intra-central amygdala microinjections of ACPA  

In order to substantiate that the intracentral 

amygdalamicroinjection of ACPA involves in anxiety 

and  learling , the drug infusion took place 5 min prior 

to EPM testing. Naive rats were tested in the EPM, 5 

min after concurrent intra- microinjection  of  saline 

(0.3 μl/rat); ACPA (0.00025, 0.0005, 0.001 and 

0.002  μg/rat) .To investigate the possible carryover, 

intra central amygdala ACPA effects on aversive 

learning during test session to aversive memory in 

retest. Treated groups were retested in EPM 24 h 

later, undrugged. 

 

Experiment 2 

Open-arms exploratory behavior following pretest 

intra-central amygdala microinjections of CP94253 

Hydrocholoride 

In this experiment, the animals received concurrent 

intra-central amygdala microinjection of saline (0.3 

μl/rat); CP94253 Hydrocholoride(0.05, 0.5,5 and 

50ng/rat). Rats were tested in the EPM, 5 min after 

infusion. To investigate whether intra- central 

amygdala CP94253 Hydrocholorideaffects aversive 

memory acquisition, treated groups were retested in 

the EPM 24 h later, undrugged. 

 

Experiment 3 

the effect of subthreshold dose of CP94253 

Hydrocholoride in the central amygdala  upon open-

arms exploratory behaviors induced byACPAin the 

central amygdala 

Four groups of animals received concurrent intra-

central amygdala microinjection of subthreshold dose 
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ofCP94253 Hydrocholoride(5ng/rat, intracentral 

amygdala)  or different doses ofACPA (0.00025, 

0.0005, 0.001 and 0.002μg/rat). Rats were tested in 

the EPM, 5 min after infusion. Treated groups were 

then retested in EPM, 24 h later, undrugged. 

 

Experiment 4 

Open-arms exploratory behavior following pretest 

intra-central amygdala microinjections of GR127935 

(5-HT1 serotonin receptor antagonist) 

In this experiment, the animals received concurrent 

intra-central amygdala  microinjection of saline (0.3 

μl/rat); GR127935(0.05, 0.5,5 and 50ng/rat). Rats 

were tested in the EPM, 5 min after infusion. To 

investigate whether intra- central amygdala 

GR127935 affects aversive memory acquisition, 

treated groups were retested in the EPM 24 h later, 

undrugged. 

 

Experiment 5 

The effect of subthreshold dose of GR127935in the 

central amygdala  upon open-arms exploratory 

behaviors induced byACPAin the central amygdala. 

Four groups of animals received concurrent intra-

central amygdala microinjection of subthreshold dose 

ofGR127935(5μg/rat, intracentral amygdala)  or 

different doses ofACPA (0.00025, 0.0005, 0.001 and 

0.002μg/rat). Rats were tested in the EPM, 5 min 

after infusion. Treated groups were then retested in 

EPM, 24 h later, undrugged. 

 

Results  

Results from the experiment 1 

Effects of the pretest intra-CeA microinjection of 

ACPA on the open-arms exploratory behaviors  

Repeated measure and posthoc analysis between test 

and retest days showed that intra-BLA injection of 

ACPA at applied doses did not alter the transfer 

latency [Intra-groups: F(1, 35) = 8.95, P < 0. 01, 

Inter-groups: F(4, 35) = 1.63, P > 0.05, Inter-Intra 

groups inter-action: F(4, 35) = 3.66, P > 0.05; Fig. 1, 

panels 1A and 2A], %OAT[Intra-groups: F(1, 35) = 

15.09, P < 0.001, Inter-groups: F(4, 35) = 2.32, P > 

0.05, Inter-Intra groups interaction: F(4, 35) = 4.31, P 

< 0. 01;Fig. 1, panels 1B and 2B], %OAE [Intra-

groups: F(1, 35) = 32.40, P < 0.001, Inter-groups: 

F(4, 35) = 2.77, P > 0.05, Inter-Intra groups 

interaction: F(4, 35) = 8.45, P < 0.001; Fig. 1, panels 

1C and 2C] and locomotor activity [Intra-groups: F(1, 

35) = 0.24, P > 0.05, Inter-groups: F(4, 35)=3.712, P 

> 0.05, Inter-Intra groups interaction: F(4,35) = 

497.4, , P < 0.001; Fig. 1, panels 1D and 2D] on test or 

retest days as compared to the own control groups, 

suggesting that ACPA applied doses does not appear 

to alter anxiety-like behaviors and aversive memory 

acquisition. 

 

Results of the experiment 2 

Effects of the pretest intra-CeA microinjection of 

CP94253 Hydrocholoride on the open-arms 

exploratory behaviors 

Repeated measure and posthoc analysis between test 

and retest days showed that intra-CeA injection of 

CP94253 HCL at applied doses did not alter the 

transfer latency [Intra-groups: F(1, 35) = 32.68, P < 

0. 001, Inter-groups: F(4, 35) = 2.52, P > 0.05, Inter-

Intra groups inter-action: F(4, 35) = 1.405, P > 0.05; 

Fig. 2, panels 1A and 2A], %OAT[Intra-groups: F(1, 

35) = 44.48, P < 0.001, Inter-groups: F(4, 35) = 9.57, 

P < 0.001, Inter-Intra groups interaction: F(4, 35) = 

1.050, P > 0.05;Fig. 2, panels 1B and 2B], %OAE 

[Intra-groups: F(1, 35) = 15.58, P < 0.001, Inter-

groups: F(4, 35) = 0.906, P > 0.05, Inter-Intra 

groupsinteraction: F(4, 35) = 1.45,P > 0.05; Fig. 2, 

panels 1C and 2C] andlocomotor activity [Intra-

groups: F(1, 35) = 6.78, P < 0. 01, Inter-groups: F(4, 

35)= 2.63, P > 0.05, Inter-Intra groups interaction: 

F(4,35) = 1.68, , P > 0.05; Fig. 2, panels 1D and 2D] 

on test or retest daysas compared to the own control 

groups, suggesting that reduced the emotional 

memory formation and locomotor activity but 

ineffective treatment on the anxiety -like behaviors. 

 

Results of the experiment 3 

The effects of the pretest intra-CeA microinjection of 

CP94253 HCL on the ACPA-induced open-arms 

exploratory behaviors 

Two-way ANOVA and posthoc analysis showed that 

intra-CeA injection of the sub threshold dose 

CP94253 HCL decreased %OAT [Intra-groups: F (1, 
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70) = 0.18, P > 0.05, Inter-groups: F(4, 70) = 3.63,P < 

0.001, Inter-Intra group interaction: F  (4, 70) = 

1.009, P > 0.05;Fig. 1, panels 1B and 3B] and %OAE 

[Intra-groups: F (1, 70) = 0.869,P > 0.05, Inter-

groups: F(4, 70) = 0.625, P > 0.05, Inter-Intra group 

interaction: F (4, 70) = 2.14, P < 0.01; Fig. 1, panels 

1C and 3C] while did not alter the transfer latency 

[Intra-groups: F(1, 70) = 9.52, P < 0. 01,Inter-groups: 

F(4, 70) = 0.76, P > 0.05, Inter-Intra group 

interaction: F(4, 70) = 0.98, P > 0.05; Fig. 1, panels 

1A and 3A] and locomo-tor activity [Intra-groups: F(1, 

70) = 23.82, P < 0.001, Inter-groups: F(4, 70) = 3.78, 

P < 0.01, Inter-Intra group interaction: F(4, 70) = 

0.532,P > 0.05; Fig. 1, panels 1D and 3D] already 

induced by ACPA on test day as compared to the 

respective control group, indicating thatCP94253 

HCL blocks the ACPA-induced anxiolytic-like 

behaviors. Moreover, two-way ANOVA indicated that 

the subthresholddoseCP94253 HCL decreased the 

transfer latency [Intra-groups: F(1,70) = 7.05, P < 0. 

01, Inter-groups: F(4, 70) = 2.58, P < 0.05, Inter-

Intragroups interaction: F(4, 70) = 2.051, P > 0.05; 

Fig. 1, panels 2A and4A] and %OAT [Intra-groups: 

F(1, 70) = 6.37, P < 0.05, Inter-groups: F(4, 70) = 

4.17, P < 0. 01, Inter-Intra group interaction: F(4, 

706) = 17.92 ,P < 0.001; Fig. 1, panels 2B and 4B] 

while did not alter %OAE [Intra-groups: F(1, 70) = 

2.164, P > 0.05, Inter-groups: F(4, 70) = 1.84, P > 

0.05,Inter-Intra group interaction: F(4, 70) = 12.77, P 

< 0. 001; Fig. 1, panels2C and 4C] and locomotor 

activity [Intra-groups: F(1, 70) = 0.019,P > 0.05, 

Inter-groups: F(4, 70) = 2.813, P < 0.05, Inter-Intra 

group interaction: F(4, 70) = 2.925, P < 0.05; Fig. 1, 

panels 2D and 4D] already induced by ACPA on retest 

day as compared to the respective control group. In 

conclusion, the data revealed that the intra-

CeAinjection of CP94253 HCL restored the ACPA-

induced aversive memory deficits. 

 

Results of the experiment 4 

Effect of the pretest intra-CeA microinjection of 

GR127935 on the open-arms exploratory behaviors 

The repeated measure and posthoc analysis showed 

that the intra-BLA injection of  GR127935 increased 

transfer latency in retest day; Intra-groups: F(1, 35) = 

35.36, P < 0.001,Inter-groups: F (4, 35) = 1.98, P > 

0.05, Inter-Intra group interaction: F (4, 35) = 6.29, P 

< 0.001; Fig. 2, panels 1A and 2A], %OAT in retest 

day; Intra-groups: F (1,35) = 39.33,P < 0.001, Inter-

groups: F (4, 35) = 6.288, P < 0.001, Inter-Intra 

group interaction: F (4, 35) = 0.47, P > 0.05; Fig. 2, 

panels 1B and 2B],%OAE in retest day; Intra-groups: 

F (1, 35) = 33.90, P < 0.001, Inter-groups: F (4, 35) = 

4.24, P < 0.01, Inter-Intra group interaction: F(4, 35) 

= 2.14, P < 0.05; Fig. 2, panels 1Cand 2CA], while 

alter locomotor activity [Intra-groups: F (1,35) = 6.56, 

P < 0.05, Inter-groups: F(4, 35) = 2.64, P < 0.05, 

Inter-Intragroups interaction: F (4, 35) = 2.87, P < 

0.05; Fig. 2, panels 1D and 2D]. 

 

Results of the experiment 5 

The effects of the pretest intra-CeA microinjection of 

GR127935 on the ACPA-induced open-arms 

exploratory behaviors 

Two-way ANOVA and post hoc analysis showed that 

the intra-CeA injection of the sub threshold dose 

GR127935 did not alter the exploratory behaviors 

already induced by the sub threshold and effective 

doses of ACPA both on test and retest days when 

compared to the respective controls. The measured 

indices for compared to test days were transfer 

latency [Intra-groups: F(1, 70) = 6.53,P < 0.05, Inter-

groups: F(4, 70) = 2.14, P > 0.05, Inter-Intra groups 

interaction: F(4, 70) = 3.069, P < 0.05; Fig. 1, panels 

1A and 5A], %OAT[Intra-groups: F(1, 70) = 0.009, P 

>0.05, Inter-groups: F(4, 70) = 9.565,P < 0.001, 

Inter-Intra group interaction: F(3, 56) = 3.1, P > 0.05; 

Fig. 3,panels 1B and 5B], %OAE [Intra-groups: F(1, 

70) = 5.32, P < 0.05,Inter-groups: F(4, 70) = 2.38, P 

> 0.05, Inter-Intra group interaction: F(4, 47) = 2.47, 

P > 0.05; Fig. 1, panels 1C and 5C] and locomotor 

activity [Intra-groups: F(1, 70) = 14.98, P < 0.001, 

Inter-groups: F(4,70) = 3.21, P < 0.01, Inter-Intra 

groups interaction: F(4, 70) = 3.13, P > 0.05; Fig. 1, 

panels 1D and 5D].The measured indices for 

compared of retest days were transfer latency [Intra-

groups: F(1, 70) = 1.47, P > 0.05, Inter-groups: 

F(4,70) = 0.65, P > 0.05, Inter-Intra groups 

interaction: F(4, 70) = 4.18, P < 0.01; Fig. 1, panels 2A 

and 6A], %OAT [Intra-groups: F(1,70) = 0.22, P > 
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0.05, Inter-groups: F(4, 70) = 0.324, P > 0.05, Inter-

Intra groups interaction: F(4, 70) = 4.461, P < 0.001; 

Fig. 1, panels2B and 6B], %OAE [Intra-groups: F(1, 

70) = 0.068, P > 0.05, Inter-groups: F(4, 70) = 0.072, 

P > 0.05, Inter-Intra groups interaction: F(4,70) = 

11.23, P < 0.001; Fig. 1, panels 2C and 6C] and 

locomotor activity[Intra-groups: F(1, 70) = 0.59, P > 

0.05, Inter-groups: F(4, 70) = 0.406,P > 0.05, Inter-

Intra groups interaction: F(4, 70) = 3.64, P < 0.01; 

Fig. 1,panels 2D and 6D].In conclusion, our data 

suggested that the intra-CeA injectionof GR127935 

does not alter the ACPA-induced exploratory 

behaviors upon EPM test and retest. 

 

Histology 

Fig. 1 shows locations of the injection cannulae tips in 

the central amygdala. illustrate the representative 

sections taken from the rat’s brain atlas of Paxinos 

and Watson [44]. Shaded and dark areas represent 

the approximate points in which the cannulae were 

positioned for each animal. Data from the animals 

with injection sites located outside the central 

amygdala were not used in the analysis. 

 

Discussion  

The effects of ACPA on anxiety like behaviors and 

learning 

The obtained results of the present study indicated 

that the pretest injections of various concentrations of 

ACPA, the selective agonist of the CB1 receptor, into 

the central amygdala led to the amnesia, while were 

ineffective on anxiety related behaviors. By receiving 

signals from basolateral amygdale, central amygdale 

nucleus which is the critical region implicated in 

learning and anxiety process, sent messages to 

targets, including hypothalamus and brain stem, the 

area involved in the most authonomical and 

electrophysiological behaviors caused by fear, anxiety 

and emotional learning (Walker et al., 2003). Based 

on the behavioral studies, the anxiety like behaviors 

have been mentioned as one of the main effects of 

cannabinoids in animal and human models(Lichtman 

et al., 2002; Zarrindast et al., 2010). 

 

The anxiolytic impacts of agonists of CB1 receptors  

have been supported by the induced changes by the 

applications of Win 55,229(Haller et al., 2007) and 

CP55,940 [55, 56], in contrast to antagonists of CB1, 

such as  AM251(Haller et al., 2002; Rodrigues et al., 

2004). Δ9-THC, a non selective cannabinoid agonist, 

and annandamid, an endogenic cannabinoid ligand, 

elevated the presence of mice in the close arm, 

indicator of anxiogenic effects, which are in consistent 

with our finding. Morover, there are some reports 

reflecting the cannabinoid agonists led to the anxiety 

response (Zarrindast et al., 2008; Zarrindast et al., 

2010). In addition, the consumption of cannabinoid 

drugs in human caused the anxiety reaction (Hall et 

al., 1998). It has been stated that the animal 

responses to cannabinoids (McGregor IS et al., 1996) 

and the diffusions of the cannabinoid receptors in the 

brain structure are variable dependent to the species 

(Arnold et al., 2001).  

 

Canabinoid antagonist reverses the various anxiety 

related behaviors induced by Cannabis sativa (Hall et 

al., 1998).Overall, it seems that the dose of 

cannabinoid agonist and experimental animal species 

play critical roles in anxiety related responses caused 

by cannabinoids.  

 

The recorded findings from the current study clearly 

reflected that ACPA damaged memory. Based on the 

various behavioral studies, the destructions in short 

term memory and spatial learning have been 

proposed as the main effects of cannabinoids 

(Moshfegh et al., 2010; Nasehi et al., 2010). The 

firing of amygdale neurons during formation of short 

term memory were inhibited by Cannabinoids 

(Wilson et al., 2002; Wilson et al., 2002; Moore et 

al., 2010). The systemic pretest usage of Delta-9-

Tetrahydrocannabinol ruined working memory while 

restored (Nava et al., 2000; Lopez-Moreno et al., 

2008) and improved memory process by antagonist 

of CB1 receptor (Da and Takahashi., 2000). 

 

Also, there are evidences indicating agonist of CB1 

receptor may affect achievement and/or fixation of 

memory (Da and Takahashi, 2000; Robinson et al., 

2007) The high rate of CB1 receptors in the area, like 
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amygdale and the implication of cannabinoid system 

of amygdala in memory process have been confirmed 

by different researches (Viveros et al., 2005; Collin et 

al., 2007; Marco et al., 2009). The modulating role of 

the cannabinoid system in the memory consolidation 

process has been proposed (BRUSCO 2008) and 

seems that the mentioned system may act as a dual 

neuromodulator (Moreira et al., 2008). The 

reductions in release of glutamate and acetyl colin in 

amygdala and some other related regions, including 

hypocamp could be responsible for destroying the 

memory.  

 

Fig. 1. (panels 1 and 2) shows open-arms exploratory behaviors following N the pretest intraperitoneal injection 

of ACPA. After 24 h, all groups were retested in the EPM,undrugged. %Open-Arms Time (A); %Open-Arms 

Entries (B) and number of Closed Arm Entries (C). Values are expressed as mean ± S.E.M (n = 8 in each 

group).*P < 0.05 and**P < 0.01 different from saline group in panel 1. P < 0.01 and P < 0.001 different from the 

respective saline group in panel 1.+<0.05 and++<0.01different from the saline group in panel 2. In addition, Fig. 

1 (panels 3 and 4 for CP94253 HCL, while panels 5 and 6 for GR127935) shows the effect of the intra-CeA pre-test 

injectionof the subthreshold dose CP94253 HCL and GR127935on open-arms exploratory-like behaviors induced 

by both the subthreshold and effective doses of ACPA. After 24 h, all groups were retested in the EPM, 

undrugged. Values are expressed as mean ± S.E.M (n = 8 in each group). For panels 3 and 4,δ<0.05 as compared 

to the respective group in panel 1(comparison of the two drugs on test day), while ˛β< 0.05 is as compared to the 

respective group in panel 2 (comparison of the two drugs on retest day). 

Effect of intra-CeA microinjection of agonist and 

antagonist of 5HT1 receptor on anxiety behaviors 

and memory 

Intra-CeA microinjection of CP Hcl and GR 

(respectively agonist and antagonist of 5HT1B 

serotonin receptor) at high concentrations, 

immediately pretest, were ineffective on the anxiety 

however, led to amnesia. The highest levels of 5HT1A, 

B receptors have been recorded in hypocamp, septom, 

cortex and amygdala, locations of post synaptic 

receptors (Davis and Claridge, 1998).  

 

Conditional fear studies revealed that 5HT inhibited 

the inducing signals to the amygdala nucleus 

http://www.google.com/url?url=http://medical-dictionary.thefreedictionary.com/neuromodulator&rct=j&frm=1&q=&esrc=s&sa=U&ei=blscVKPvNIuGywPx0YGoCA&ved=0CBoQFjAB&usg=AFQjCNFv34xSzef1cBiI9JIEwnOEQuVeSg
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reflecting the critical involvement of amygdala in 

Conditional fear reaction (LeDoux, 1998; Armony et 

al., 1998). Analysis of the found data of this study 

showed that anxiety like behaviors were not 

influenced by agonist or antagonist of 5HT1B. These 

results are contradictory to the findings of Dimmler 

2004 and Ramboz 1998 shown that the various types 

of 5HT1 agonists mediated the anxiogenic effects in 

animal and human models. Also, it has been stated 

that 5HT1A agonist acts as an anxiolytic compound in 

animals and human model systems (Ramboz et al., 

1998; El-Khodor et al., 2004). 

 

Fig. 2. Open-arms exploratory behaviors following the pretest intra-CeA microinjections of CP94253 (panels 1 

and 2) and GR127935 (panels 3 and 4). After 24 h, all groups were retested in the EPM, undrugged. %Open-

ArmsTime (A); %Open-Arms Entries (B) and number of Closed Arm Entries (C). Values are expressed as mean 

±S.E.M (n = 8 in each group).*P < 0.05 and**P < 0.01 different from the respective saline group in panel 1.+P < 

0.05 and ++P < 0.051   different from the control saline group in panel 3.βP < 0.05 and ββP < 0.01 different from 

the respective saline group in panel 4. 

The complete depletion of 5HT1 receptors led to the 

anxiety like behaviors (Gross et al., 2002). The 

anxiolytic impacts of serotonin have been well 

documented and there are more concerns about 5HT1 

receptors for improving the anxiety related disorders 

(Laaris et al., 1997; Belzung et al., 2001; Menard et 

al., 2007). There is a positive correlation between 

5HT concentrations in brain and anxiety rate (Nasehi 

et al., 2010). 5HT plays a vital role in the 

development and continuity of anxiety disorders 

(Zarrindast et al., 2008). The concentrations of 5HT 

in brain of different mouse and rat species were 

variable and there were close relation between 5HT 

contents in central neurone system (CNS) and anxiety 

related behaviors (Zarrindast et al., 2008). The 

increases in 5HT levels in various regions of CNS have 

been recorded in animals showing the anxiety 

behaviors (Gomez-Merino et al., 2001; Kusserow et 

al., 2004). According to the obtained results from the 

present study it could be stated that the high fear 

enhances the concentrations of 5HT in serotonergic 

area and there is a correlation between 5HT levels 

and anxiety in animals. 

 

In this study, the recorded destruction of memory 

caused by injection of agonist of 5HT1 receptor is in 

agreement with findings of Luttgen (Luttgen et al., 

2005). The disturbance in the learning process 

induced by the different doses of 8-OHPAT, agonist of 

5HT1A receptor, in PA and water Maze tests have 
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been reported (Carli et al., 1999; Luttgen et al., 

2005). In the current research, the antagonist of 

5HT1B did not influence memory process which 

inconsistence with the results of Madjid (Madjid et 

al., 2006) and Luttgen (Luttgen et al., 2005) 

reflecting the improving impacts of 5HT1A antagonist 

on the learning process under the various kinds of 

tests, including  EPM, PA and MAZE tests. It has been 

shown by the different studies that 5HT1 antagonist 

affects spatial memory via the hypocamp and 

amygdala as well as the activity of 5HT1 receptor may 

indirectly involve in the mechanisms of strategical 

and spatial learning (Horisawa et al., 2011).  

 

The interaction of serotonin and cannabinoid 

receptors on anxiety behaviors and memory 

Based on the obtained results from the present study, 

the simultaneous injections of different doses of 

ACPA and ineffective dose of serotonin agonist were 

ineffective treatments on anxiety like behaviors, in 

contrast to ineffective dose of serotonin antagonist 

which had the anxiolytic effects. During retest the 

destruction of memory achievement caused by ACPA 

restored by the injection of the ineffective dose of this 

drug. Based the evaluations done on the serotonin 

and the cannabinoid system in the amygdale, the both 

CB1 and 5HT1A are the ligand dependent channels 

and the activation of CB1 receptor may influence the 

stimulation of raphe nuclei by the control of 

stimulating and inhibitory inputs or by direct 

inhibiting of serotonergic neurons (Hermann et al., 

2002; Haj-Dahmane and Shen., 2011). The both 

cannabinoid and serotonin receptors are present in 

gabargic neurons of amygdala and hypocamp 

structures (Akimova et al., 2009). There is an 

interaction between cannabinoid and serotonergic 

systems in neuronal transmissions. The both CB1 

receptors and serotonin transporter protein are 

located in rat amygdale (Kleijn et al., 2011). CB1 

receptors presented on the serotonergic fibers of 

raphe nucleus forms synaps in amygdala; therefore it 

has been concluded that there is an interaction 

between cannabinoid and serotonergic systems 

(Brailov et al.,  2000). 

 

The activation of the CB1 receptor decreased Ca+2-

dependent release of serotonin from the frontal 

cortical terminals of the mouse (Darmani and 

Pandya, 2000; Yang et al., 2010). Cannabinoid 

presynapsis CB1 receptors prevent the secretion of the 

many neurotransmitters, including γ-aminobutyric 

acid (GABA), glutamate, dopamine, noradernaline, 

acetylcolin and 5- hydroxytryptamine (5-HT). The 

reduction in 5HT secretion by the activation of 

cannabinoid CB1 have been confirmed by the 

functional electrophysiological studies in neocortex 

(Nakazi et al ., 2000) and it seems that this decrease 

possesses the considerable inhibitory effects. In the 

current research serotonin agonist partially alleviated 

anxiolytic impacts of ACPA, but it was not significant. 

Also the destroying impacts of ACPA on the memory 

process were restored by the agonist and antagonist 

of serotonin. It could be explained by the substitution 

of ACPA-prevented neurotransmitters by serotonin 

agonist. The damaging effects of ACPA on the 

learning and memory could be attributed to the 

presynapsis inhibition of serotonin release by the 

cannabinoid receptors.   
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