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  Abstract 

 

The present investigation was conducted to determine the effect of cytokinin (CK), abscisic acid (ABA) and cytokinin/abscisic 

acid interaction (CK/ABA) on carbohydrate contents, oxidative stress and antioxidant components induced by drought stress 

in two wheat cultivars (Triticum aestivum L.) of Pishgam and MV-17 as tolerant and sensitive to drought during post-anthesis 

phase, respectively grown in field conditions during grain filling period. The most considerable effect of the treatments was 

exhibited 21 days after anthesis. Under drought conditions, the flag leaf carbohydrate content including total soluble 

carbohydrate and reducing sugars increased in both cultivars while starch content was remarkably decreased in Pishgam as 

compared to MV-17. Although Pishgam exhibited a significant increase in glucose, sucrose and fructose content but MV-17 

showed only a significant increase in fructose content. Relatively, CK/ABA increased total soluble carbohydrates, sucrose, and 

fructose content more than other hormonal treatments. Also, ABA only reduced starch level of Pishgam, significantly. 

Nevertheless, level of glucose was significantly affected by none of the hormonal treatments. The tolerant cultivar exhibited 

less accumulation of hydrogen peroxide and malondialdehyde (MDA) in relation to more significant increase of catalase (CAT) 

and peroxidase (POX) activities and α-tocopherol content under drought conditions. Among hormonal treatments, ABA and 

CK/ABA resulted in the highest activities of POX and CAT under both irrigation and drought conditions, respectively. But, 

higher accumulation of α-tocopherol was showed when CK foliar was applied. ABA and CK/ABA could decrease drought-

induced hydrogen peroxide and MDA level, to some extent under drought conditions. 

* Corresponding Author: Mohammad-Reza Sarafraz-Ardakani  sarafraz_ardakani@yahoo.com 

 

International Journal of Biosciences | IJB | 

ISSN: 2220-6655 (Print) 2222-5234 (Online) 

http://www.innspub.net 

Vol. 5, No. 8, p. 11-24, 2014 

 

http://dx.doi.org/10.12692/ijb/5.8.11-8
mailto:sarafraz_ardakani@yahoo.com
http://www/


 

12 Sarafraz-Ardakani et al. 

 

Int. J. Biosci. 2014 

Introduction 

Among crop plants, wheat (Triticum aestivum), 

which often experiences water-shortage conditions, is 

an appealing study system because there are so many 

natural genotypes differing in drought tolerance 

(Loggini et al., 1999). Wheat as well as the most 

cereals is especially threatened by water deficit during 

flowering and grain filling period (Plaut et al., 2004). 

The typical first response of all plants to water deficit 

is osmotic adjustment that is by synthesizing and 

accumulating compatible osmolyte such as proline 

(Pro), glycine betaine (GB) and reducing soluble 

sugars including monosaccharaides, disaccharides 

and oligosaccharides (Chaves et al., 2003; Ashraf and 

Foolad, 2007). Also up-regulating of enzymatic 

antioxidant as superoxide dismutase (SOD), catalase 

(CAT) and peroxidase (POX) and also non-enzymatic 

antioxidants as vitamin E, carotenoids (carotene and 

xanthophyll) and soluble antioxidant including 

ascorbate and glutathione can is in order to overcome 

oxidative stress due to drought conditions (Gill and 

Tuteja, 2010; Liu et al., 2011).  

 

Among plant hormones, ABA and CK-dependent 

changes of stress responses, such as drought, have 

been studied at various levels. Extended works 

exhibited that increased endogenous ABA (Chaves et 

al., 2003; Ashraf and Foolad, 2007) and exogenous 

ABA (Wang et al., 2003) improves defensive 

mechanisms in plants by regulation up to 10% of 

protein-encoding genes in response to stress, 

transcriptionally including cases as osmoregulators 

and both enzymatic and non-enzymatic antioxidants. 

But, The negative CK-controlled function in plants 

encounter to drought has been proved in genetic 

studies in which endogenous CK levels were mostly 

changed either by loss of the biosynthesis genes 

isopentyl transferase (IPT) or by overexpression of 

cytokinin oxidase (CKX)-encoding degradation genes 

(Nishiyama et al., 2011; Wang et al., 2011). 

Meanwhile, elevated endogenous ABA and exogenous 

ABA excited the reduction of endogenous CK 

(Pospisilova et al., 2005). Nevertheless, in the one 

manner similar to ABA, CKs may partially ameliorate 

negative effects of water stress by stimulating osmotic 

adjustment (Merewitz et al., 2011). Also, Stoparic and 

Maksimovic (2008) reported directly or indirectly 

effect of CK on scavenging ROS.  

 

Especially important is the question to how do we 

profit the CK characters in alleviating of water-deficit 

damages, while drought and drought-induced 

endogenous ABA reverse CK accumulation and its 

effects. Consequently, the present investigation was 

conducted to determine whether exogenous 

application CK and ABA combination (interaction) 

can improve drought tolerance more than individual 

application of ABA and CK while two named hormone 

operate antagonist together in different levels of plant 

development and plant challenge to abiotic stress and 

if such tolerance correlated with changes in 

carbohydrate content, as important candidates in 

osmotic adjustment, and some components of 

antioxidant. Also, our previous studies are extended 

to address the following question: 

Which cultivar can be more beneficiaries by 

exogenous application of hormonal treatments? 

Drought-tolerant or drought-sensitive.  

 

Materials and methods 

Plant materials and growth conditions 

A homogenous lot of wheat seeds (Triticum aestivum 

L.) of two cultivars, Pishgam (drought- tolerant) and 

MV-17 (drought-sensitive) were obtained from the 

Seed and Plant Improvement Institute of Iran. The 

experimental period started on November 22, 2009 

and ended on April 25, 2010. Factorial experiment 

was based on the randomized complete blocks with 

three replicates under irrigation (hormonal and non-

hormonal treatments) and drought (hormonal and 

non-hormonal treatments) conditions. The seeds 

were sown on field, in 48 rows 20 cm apart with the 

density of 400 seeds m–2. The needed nitrogen for 

wheat growth based on the field experiment results 

was 60 kg net nitrogen per hectare from urea source 

added to the soil in fall (Feyziasl and Valizadeh, 2001 

and 2003). The needed phosphorous was supplied on 

the basis of soil test and phosphorous deficit from 

critical level in soil (9 mg per hectare-Feyziasl et al., 

2004). The experimental field was covered by a 
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shelter. Watering of irrigation treatments were 

routinely done until the end of growth period while 

watering of drought stress treatment was interrupted 

at the start 2nd week of flowering stage. Also, degree of 

soil moisture was weekly measured by time domain 

reflectometry (TDR). Application of CK (BA 150 μL) 

and ABA (100 μL) treatments was begun as foliar 

spray in irrigation and drought conditions in the start 

of 2nd and 4th week after anthesis, respectively. 

Therefore hormonal treatments were complete at 21 

and 28 days after anthesis and the most significant 

data was obtained at 21 DAA. Then in the treatments 

(irrigation and drought stress) after the removal of 

marginal effects, 60 plants were randomly selected 

and cut in 0, 7, 14, 21 and 28 days after the pollination 

stage, respectively. Flag leaves of the samples were 

separated and wrapped in aluminum foil and were 

immediately put in liquid nitrogen. The samples were 

then dried in freeze dryer (-120°C) and were kept at -

80°C until next measurement. Although, many of 

samples were only transferred at -80°C immediately 

in related to enzyme activity assay. 

 

Extraction and estimation of carbohydrate content 

Estimation of carbohydrate content 

A 0.03 g freeze dried samples of flag leaf were ground 

and extracted three times 50 mL hot 80% ethanol 

(Gill et al., 2003). The extract was evaporated to the 

water phase, and the volume adjusted to 100 mL with 

distilled water after 0.47 mL 0.3 N Ba(OH)2 and 0.5 

mL 5% ZnSO4 was added to remove proteins. Total 

soluble carbohydrates were determined based on the 

method of phenol-sulfuric acid by Dubois et al (1956). 

The reducing sugars were quantitatively estimated in 

the obtained extract, by Nelson’s method (1944). 

Starch content was also determined using the method 

of phenol-sulfuric acid by Dubois et al (1956). After 

total soluble sugars and reducing sugars assay, 

extracts were pooled and dried under vacuum, 

redissolved in one milliliter of HPLC purity-grade 

H2O was added to the obtained extract. Levels of 

glucose, sucrose and fructose were determined using 

two-dimensional HPLC (controller, Waters 600 s; 

pump, Waters 626; autosampler, Waters 717; Waters, 

Massachusetts, USA) using U.V. detector and C-18 

column according to Albertson and Grof (2007). 

Sugars were quantified from standard curves 

calculated from external standards preceding and 

following each group of samples with the 

concentration of 0, 5, 10, 15, 20, 25 and 30 mM of 

glucose.  

 

Oxidative stress parameters  

Lipid peroxidation was measured in terms of content 

of malondialdehyde (MDA, ε = 155 mmol-1 cm-1), a 

product of lipid peroxidation, MDA was extracted 

with 10% trichloro-acetic acid and was determined 

following the method of Heath and Packer (1968). A 

0.03 g of freeze dried samples were homogenized in 2 

ml of refrigerated an ice bath with 5 ml of 0.1% (w/v) 

trichloro-acetic acid (TCA), the supernatant was used 

for the H2O2 content assay as described by H2O2 

content was determined according to Velikova et al 

(2000). The content of H2O2 was calculated by 

comparison with a standard calibration curve 

previously made by using different concentration of 

H2O2. 

 

Estimation of vitamin E (α-tocopherol)  

0.01 g flag leaf sample (freeze dried) was poured in 

tube under dark conditions (tube was covered in 

aluminum foil) and 200 μl pyrocatecole and 5 ml of 

0.5M KOH (in methanol) were added and placed in 

water at 80°C . Then, 1 ml deionized water and 5 ml 

hexane were added to the mixture and centrifuged at 

373 rpm for 2 min. Three milliliter supernatant was 

taken and freeze dried. Residue was dissolved in 1.5 

ml methanol-acetonitrile (50:50 v/v) mobile phase, 

filtered and 20 μl of each sample was injected to 

HPLC system (detector: florescence, mobile phase: 

flow intensity: 1.3 ml min-1, excited wavelength: 288 

ml min-1, excited wavelength: 288 nm, emission 

wavelength: 322 nm) with C18 column (Botsoglou et 

al., 1998). 

 

Measurement of antioxidant enzyme activity 

After homogenized with liquid nitrogen, 0.3 g of flag 

leaves were suspended in 3 ml of ice-cold HEPES 

buffer (25 mM, pH 7.8) which contained 0.2 mM 

EDTA and 2% PVP. The homogenate was centrifuged 



 

14 Sarafraz-Ardakani et al. 

 

Int. J. Biosci. 2014 

at 4°C and 12,000 rpm for 20 min, and the resulting 

supernatant was used for determination of CAT and 

POX (Ramiro et al., 2006). A modification of the 

method of Aebi (1984) was used to assay CAT activity. 

Activity of POX was measured according to the 

method of Chance and Maehly (1955). One unit of 

CAT activity corresponded to the amount of enzyme 

that decomposes 1 μmole of H2O2/min/g fresh wt. 

One unit of POX is the amount of enzyme required to 

oxidize one μ mole of guaiacol by H2O2 at test 

conditions.  

 

Statistical analysis 

The mean values of studied parameters were taken 

from the measurements of three replicates and the 

"Standard Error" of the means was calculated. One-

way ANOVA was applied to determine the 

significance of the results between different 

treatments and then Duncan multiple range tests (p < 

0.05) were performed. All the statistical analyses 

were done using the Statistical Package for Social 

Sciences (SPSS) for Windows (version 18.0). All 

significant different were calculated as percentage 

with two digits after decimal.   

 

Results and discussion 

Effect of hormonal treatments of CK, ABA and 

CK/ABA interaction on Carbohydrate content under 

irrigation and drought conditions 

Results revealed that, total soluble carbohydrate 

(TSC) increased during 21 days after anthesis (DAA) 

by 140.91 and 29.81% in Pishgam and MV-17 under 

drought conditions as compared to normally-watered 

plants, respectively. According to our experiments, 

significant increase in the amount of reducing sugars 

92.91% was recorded in tolerant cultivar during the 

drought conditions, as compared to the irrigation 

conditions at the time period of 21 DAA. While, the 

sensitive cultivar showed 28.03% increase in reducing 

sugars at 21 DAA. Drought stress could reduce starch 

content of two cultivars especially by 31.06 in 

Pishgam at 21 DAA. In related to results above, 

TSC/starch ratio increased under drought conditions 

in either cultivar that reached the maximum at 21 

DAA by 211.0% in Pishgam and by 45.83% in MV-17 

(Fig 1). The accumulation of sugars in response to 

drought stress and decrease of starch content due to 

the decline of photosynthesis and its degradation was 

studied during the present works (Parida et al., 2007; 

Xue et al., 2008). The available results are consistent 

with a recent report who observed that in many 

woody plants, two shrub species, which exhibited 

more active accumulations of soluble sugars and 

proline, also revealed higher resistance to drought 

than the other species and showed the positive 

correlation between contents of osmotic solutes 

(proline and soluble sugars) and antioxidant enzyme 

activities (Liu et al., 2011). Maintain of hydrophilic 

interactions in membranes and proteins during 

dehydration because of probably substitution of 

hydroxyl groups of sugars for water (Leopold et al., 

1994) and also contribution in vitrification, which is 

the formation of a biological glass in the cytoplasm of 

dehydrated cells (Buitink et al., 1998) are two protect 

mechanisms of sugars in plants exposure to drought.  

Sucrose, glucose and fructose are known to play a 

central role in plant metabolism at the cellular and 

whole plant levels. They are involved not only in the 

response to abiotic stresses, but also act as nutrient 

and metabolite signalling molecules, modulating 

expression of a large number of metabolic genes 

through sugar sensing mechanisms (Xue et al., 

2008). During drought conditions, fructose content 

had tremendous increase (107.75%) at 21 DAA. The 

same situation was observed in the susceptible 

cultivar with lesser extent with an increase of 45.79%. 

56.41% significant increase in glucose level occurred 

in tolerant cultivar during drought phase than well-

water conditions while significant change was not 

exhibit insensitive cultivar. As well as fructose 

content, sucrose level increased highly in Pishgam by 

255.18% at 21 DAA. MV-17 cultivar also showed 

22.64% increase in sucrose level at 21 DAA (Fig 2).  

 

Increased level of sucrose, glucose and fructose 

during drought conditions implies that complex 

carbohydrates, such as starch, hydrolyze to simple 

sugars such as hexoses during drought conditions 

(Xue et al., 2008). Previous studies demonstrate that 

drought induces these carbohydrates into sugar 
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alcohols and proline in different plants (Wang et al., 

1996). Our results are supported by study that 

reported genes encoding cytoplasmic and vacuolar 

enzymes in the pathways leading to glucose, fructose 

and fructan production were up-regulated in the 

wheat leaves during drought stress although enzymes 

involved in carbon fixation (Calvin cycle) were 

conversely reduced (Xue et al., 2008). 

 

Table 1. Mean monthly temperature and rainfall during crop growth. 

month November  December  January  February  March  April  

conditions 

Temperature (°C) 10.3 1.9 11.9 13.3 20.9 23.7 

Rainfall (mm) 8.4 11.6 17.8 16.9 8.7 5.8 

 

Table 2. Soil physical and chemical properties of the experimental site (0-30 and 30-60 cm depth). 

Depth (cm)  pH  
EC (dS m

-1
)  

OC (%)  P (ppm)  K (ppm)  Sand (%)  Silt (%)  Clay (%)  Soil texture  

0-30  7.44  1.23 1.19 17.06  463 19.6 41.1 29.4 Clay loam  

30-60 7.51 1.38 1.04 39.01  791 23.9 45.6 21.2 Loam  

Plant hormones such as; CK and ABA play important 

roles in conferring tolerance to environmental stress 

as effect on osmolytes content (Pospisilova, 2003). 

 

In well watered plants of Pishgam, CK/ABA 

interaction treatment increased TSC at 21 DAA by 

100.25% more than other hormonal treatments. The 

hormonal treatments had no significant effect on TSC 

of sensitive cultivar during irrigation conditions. 

Under drought conditions, CK/ABA interaction had 

the most significant effect on TSC at 21 DAA and 

improved it by 45.34 and 28.95% in Pishgam and 

MV-17, respectively. At 21 DAA, during irrigation 

conditions, the hormonal treatment of CK/ABA 

increased the reducing sugars by 29.40% as compared 

to the non-hormone treatment in Pishgam, although; 

significant effect of hormonal treatments was not 

seen in MV-17 in latter condition. The results have 

shown that CK/ABA and ABA increased reducing 

sugar content during drought conditions more 

effectively than other hormonal treatments by 43.49 

and 27.98 % in Pishgam and MV-17 at 21 DAA, 

respectively. Under irrigation conditions, only 

CK/ABA increased the starch content by 15.99 and 

6.05% at 21 DAA in tolerant and sensitive cultivar, 

respectively. Interestingly, under drought conditions, 

only ABA decreased starch content by 14.28% in 

Pishgam. Although, ABA decreased starch level of 

MV-17 but it was not a significant reduction. This 

showed the significantly effective behavior of ABA on 

starch content in the stems of wheat cultivar. In well 

watered plants, only CK/ABA increased significantly 

sugar/starch ratio at 21 DAA by 71.0% in Pishgam. In 

drought conditions, effect of ABA was much 

pronounced which was able to elevate the soluble 

sugar/starch ratio by 63.02% at 21 DAA in tolerant 

cultivar as compared with non-hormone treatment 

more than other hormonal treatments, although 

CK/ABA only improved this ratio by 30% in MV-17. 

Effect of other hormonal treatments was not 

significant in both cultivars (Fig 1). CKs excite the 

carbohydrate import into sink or inhibit carbohydrate 

export from it so increase the sink power (Morris, 

1993). Also, CKs are important in the development of 

plants’ photosynthetic apparatus by directly effecting 

on chloroplast, increasing the photochemical activity 

of photosystem II (PS II) and reducing chlorophyll 

degradation (Goltsev, 2001). Therefore, it can be 

presumed that the foliar application of CK had the 

ability to increase carbohydrate content due to a good 

effect on photosynthesis system in our work. In this 

study, application of exogenous ABA resulted in 

increased sugar accumulation, which may partly be 

responsible for improving relative water content of 

plant leaves because make osmotic potential more 

negative (Pospisilova, 2003). In agreement with our 

study, foliar application of kinetin increased total 

carbohydrate in leaves of Codiaeum variegatum in 
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normal condition (Mazher et al., 2011) and also in 

water-logged or sea water-treated Vigna sinensis and 

Zea mays plants (El-Shahaby et al., 2003). 

Furthermore, ABA-increased sugar accumulation and 

starch reduction in polypodium vulgar (Bagniewska-

Zadworna et al., 2007) and Oryza sativa (Pattanagul, 

2011) were similar to influence of ABA on level TSC 

and starch in obtained results.  

 

CK/ABA caused the most significant increase in 

fructose content of Pishgam at 21 DAA by 57.69 and 

28.64% under irrigation and drought conditions, 

respectively. Fructose content of sensitive cultivar 

increased remarkably by 21.36% under irrigation 

conditions at 21 DAA when it applied CK in compared 

to other hormonal treatments. But under drought 

conditions, ABA caused the most increase in fructose 

content by 13.03%. Obtained results did not reveal 

the significant influence of hormonal treatment on 

glucose level in both cultivars. Application of ABA 

caused a high significant increase in sucrose level of 

Pishgam by 108.49 and 65.33% at 21 DAA under 

irrigation and drought conditions, respectively. 

Sucrose content of MV-17 did not change by 

hormonal treatment in irrigation and drought 

conditions. (Fig. 2). Exogenous ABA application could 

increase soluble carbohydrate as stachyose and 

raffinose, glucose and fructose in plants in exposure 

cold (Meng et al., 2008) and drought (Wang et al., 

2002), although effects of exogenous ABA application 

on plant sugar contents are largely dependent on the 

concentrations of the applied ABA (Wang et al., 

2002). Increase of monosaccharides has also been 

reported in response to CKs application including N6-

furfurylaminopurine (FAP) and N6-

benzylaminopurine (BAP) in Wolffa arrhiza 

(Piotrowska et al., 2005). ABA and CK-induced 

Changes in invertase activity have also been reported 

to correlate with reducing sugar content in maize 

(Piotrowska et al., 2005) and in chickpea (Kaur et al., 

2003), respectively. Moreover, it has been observed 

that water stress-induced ABA was involved in sugar 

accumulation in peach fruits by activating sucrose 

synthase, sucrose phosphate synthase, sorbitol 

oxidase and acid invertase (Kobashi et al., 2000). 

Wonderfully, glucose content was not affected by 

hormonal treatments whereas, many studies have 

supported that glucose might be a bridge between 

carbohydrate and phytohormone signaling (Halford 

et al., 2003; Hartig and Beck, 2006). 

 

Effect of hormonal treatments of CK, ABA and 

CK/ABA interaction on H2O2 and MDA content 

under irrigation and drought conditions 

Lipid peroxidation and H2O2 accumulation not only 

directly affecting normal cellular functioning, but also 

aggravating the oxidative stress through production 

of lipid-derived radicals in abiotic stresses such as 

drought. Although, H2O2 at low concentrations acts as 

a signal molecule involved in acclimatory signaling 

triggering tolerance to various biotic and abiotic 

stresses (Gill and Tuteja, 2010).  

 

H2O2 content increased significantly under drought 

condition in Pishgam and MV-17 by 254.61 and 

437.40%, respectively during 21 DAA. According to 

increased H2O2 level under drought conditions, MDA 

content also increased by 503.43 and 750% in 

tolerant and sensitive cultivars, respectively (Fig. 3).  

 

Generally, all hormonal treatments decreased H2O2 

content under drought condition. However, during 21 

DAA, the most reduction of H2O2 content of Pishgam 

and MV-17 was induced by CK/ABA interaction by 

140.10 and 33.33%, respectively. Under irrigation 

conditions, ABA application caused considerably a 

significant increase of 73.23% in MDA content of MV-

17 cultivar at 21 DAA. However, under drought 

conditions, CK/ABA decreased MDA content by 

196.62 and 46.98.96% in Pishgam and MV-17 at 21 

DAA, respectively (Fig. 3). 

 

Partial increasing H2O2 level during irrigation is due 

to particular role of ABA on plasma-membrane 

NADPH oxidase complex and its-produced H2O2 

(Ghassemian et al., 2008). Therefore, increased level 

of H2O2 caused oxidative damages as MDA 

production that was more partially in MV-17, 

although a level of H2O2 is necessary for signaling and 

up-regulation of antioxidants (Ghassemian et al., 
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2008). ABA effect on up-regulation antioxidant 

system (Ghassemian et al., 2008) especially during 

exposure with stress and effect of CKs on antioxidants 

(Synkova et al., 2006; Zavaleta-Mancera et al., 2007) 

and also direct effect of CK on reduction of ROS such 

as which have been exhibited about inhibition of the 

xanthine oxidase activity (Leshem et al, 1981), 

reduction of the lipoxygenase activity (Grossman and 

Leshem, 1978) and decrease of hydroxyl radicals 

(OH.) concentration (Stoparic and Maksimovic, 2008) 

caused that CK and ABA combination possibly 

inhibited H2O2 and MDA accumulation in drought 

condition higher than effect of individual ABA or CK 

treatment on H2O2 and MDA content.   

 

Table 3. Measurement of soil moisture as sampling in 0-30 cm and 30-60 cm depths. 
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3 drought Pishgam 0-30 36.0 28.2 49.2 15.7 54.9 11.6 48.4 15.4 46.4 14.3 

3 drought Pishgam 30-60 37.5 23.9 38.9 20.9 36.8 16.1 38.2 19.7 31.1 19.8 

3 drought MV17 0-30 35.3 21.6 50.7 14.1 59.9 9.8 50.7 12.2 50.7 12.1 

3 drought MV17 30-60 41.4 21.1 42.5 18.1 42.2 14.3 39.8 17.4 35.7 17.6 

3 irrigation Pishgam 0-30 32.5 28.8 37.5 29.8 45.5 17.1 37.9 29.7 38.5 21 

3 irrigation Pishgam 30-60 33.9 25.3 34 25.3 34.5 18.4 37.2 22.7 29.2 22.6 

3 irrigation MV17 0-30 34.9 19.6 41 27.4 43.0 17.1 34.2 30.3 36.4 21 

3 irrigation MV17 30-60 37.9 24.1 36.7 22.3 39.3 17.1 36.7 20.6 33.2 21 

 

Effect of hormonal treatments of CK, ABA and 

CK/ABA interaction on α-tocopherol content under 

irrigation and drought conditions 

Drought stress excited the molecule and enzyme 

antioxidant in different cell compartments. 

Antioxidant capacity is greatly dependent on the 

severity of the stress as well as the species and the 

development stage (chaves et al., 2003). α-tocopherol 

as a constitutive component of lipid matrix of 

thylakoid membrane has a photoprotective and 

stabling function. In agreement with previous study, 

higher α-tocopherol contents occurred in drought-

tolerance species than in susceptible one (chaves et 

al., 2003). Also, Overexpression of VTE1 (Tocopherol 

cyclase) from Arabidopsis in transgenic tobacco 

plants, showed decrease in LPO, electrolyte leakage 

and H2O2 content in drought stress (Liu et al., 2008). 

α-tocopherol content showed a 50.20 and 10.76% 

increase in Pishgam and MV-17 at 21 DAA under 

drought condition, respectively. Under drought 

conditions, CK treatment caused the most significant 

increase in α-tocopherol content of Pishgam and MV-

17 by 27.69 and 26.99% at 21 DAA, respectively (Fig. 

4).  

 

It was suggested that, the increased α-tocopherol 

level in flag leaf tissue under CK treatment might be 

in related to especial CK effect on the chloroplast 

development and stability (Hare et al., 1997) that is 

an important synthesis and accumulation location for 

vitamin E. Nevertheless, the role of ABA proved in 

increase of α-tocopherol and L-ascorbic acid in 

transcriptional and post-transcriptional levels 

(Ghassemian et al., 2008), ABA application had non-

significant effect on its of tolerant and sensitive 

cultivars in this study.  

 

Effect of hormonal treatments of CK, ABA and 

CK/ABA interaction on CAT and POX activity under 

irrigation and drought conditions 
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Undoubtedly, catalase (CAT) and peroxidase (POX) 

are the most important antioxidant enzymes that 

scavenge H2O2 as well as APX (Liu et al., 2011). 

During the present study, 151.89 and 64.7% increase 

in CAT activity was seen for Pishgam and MV-17 at 21 

DAA under drought stress, respectively. Also, the 

results have shown that 214.58 and 90.90% increase 

in POX activity for Pishgam and MV-17 under 

drought stress at 21 DAA, respectively. More 

increased activity of POX and CAT in tolerant cultivar 

was related to less increased MDA content under 

drought conditions (Fig. 4). These results are in line 

with those related to tolerant and sensitive cultivars 

of maize seedling under water deficit (Chugh et al., 

2011). 

 

Fig. 1. Effect of hormonal treatments of CK, ABA and 

CK/ABA on total soluble carbohydrate, reducing 

sugar, starch content and total soluble carbohydrate 

/starch ratio under irrigation and drought condition 

in flag leaves during grain filling in two wheat 

cultivars (drought tolerant cv. Pishgam and drought 

sensitive cv. MV-17). Data are shown as mean ± SD of 

three independent measurements. 

The results revealed that under irrigation conditions, 

CK/ABA caused considerably 110.12 and 62.96% 

increase in CAT activity in Pishgam and MV-17 at 21 

DAA, respectively. Under drought conditions, 

CK/ABA also caused the highest increase in CAT 

activity of Pishgam and MV-17 by 48.24 and 15.94% 

at 21 DAA, respectively.  

Fig. 2. Effect of hormonal treatments of CK, ABA and 

CK/ABA on fructose, glucose and sucrose content 

under irrigation and drought condition in flag leaves 

during grain filling in two wheat cultivars (drought 

tolerant cv. Pishgam and drought sensitive cv. MV-

17). Data are shown as mean ± SD of three 

independent measurements. 

 

Under both irrigation and drought conditions, ABA 

caused significant increase in POX activity of Pishgam 

by 60.41 and 20.30% and MV-17 by 66.66 and 36.11% 

at 21 DAA, respectively (Fig. 4). 

 

It was shown that increased amounts of ABA induced 

CAT activity during drought conditions in triploid 

Bermudagrass that accompanied with H2O2 and NO 

production (Lu et al., 2009). It has also been shown 

that the ABA-induced antioxidant enzyme activities in 

maize leaves require the participation of H2O2 (Jiang 
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and Zhang, 2003). It seems that ABA- induced H2O2 

accumulation modulated metabolic and redox control 

pathways in Arabidopsis by influence on many of 

POX. Moreover, there is an intricate relationship, at 

the transcriptional and possibly post-transcriptional 

levels, between ABA biosynthesis and scavenger 

system of H2O2 (Ghassemian et al., 2008). Also, this 

was proved by Synkova et al (2006) who found that 

kinetin inhibited a decline in CAT activity. It was 

concluded that the mechanism of cytokinin-

dependent delay in leaf senescence involves the 

reduction in H2O2 levels due to the hormone’s 

stimulatory effect on CAT and APX activities 

(Zavaleta-Mancera et al., 2007). Nevertheless, in 

contrary with latter studied works, it was reported 

that the CK repress the expression of antioxidant 

enzymes such as a soybean Fe-containing superoxide 

dismutase gene (Crowell and Amasino, 1991). 

Therefore, the positive effect of both CK and ABA on 

enhancement of antioxidants, in related to performed 

studies, might be one reason for more increasing of 

CAT activity subjected to CK/ABA application than 

other hormonal treatments in Pishgam and MV-17 

during drought condition, although the highest level 

of POX activity was exhibited when ABA foliar 

applied.       

Fig. 3. Effect of hormonal treatments of CK, ABA and 

CK/ABA on H2O2 and MDA content under irrigation 

and drought condition in flag leaves during grain 

filling in two wheat cultivars (drought tolerant cv. 

Pishgam and drought sensitive cv. MV-17). Data are 

shown as mean ± SD of three independent 

measurements. 

Fig. 4. Effect of hormonal treatments of CK, ABA and 

CK/ABA on α-tocopherol content andenzyme activity 

of CAT and POX under irrigation and drought 

condition in flag leaves during grain filling in two 

wheat cultivars (drought tolerant cv. Pishgam 

drought sensitive cv. MV-17). Data are shown as mean 

± SD of three independent. 

 

In a general conclusion of obtained results, With 

regard to different cultivars, the constitutive H2O2 

scavenging enzyme activity and α-tocopherol as non-

enzymatic antioxidant and also carbohydrate content 

in the flag leaves of drought-tolerant Pishgam were 

higher than those in drought-sensitive MV-17. This 

fact is related to lower lipid peroxidation and pigment 

degradation in Pishgam as compared to MV-17. This 

study reveals that, as compared to drought-sensitive 

MV-17, drought-tolerant Pishgam could successfully 

activate defensive system and diminish subsequent 

damage, under drought. Also, tolerant cultivar could 

use the hormonal treatment better than susceptible 

cultivar to improve its defensive system. Also, it 

seems that exogenous application of CK and ABA 

combination caused the most effect on assayed 

parameters in many treatments and so may be a 

successful experience in relation to utilization of  
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hormonal treatments.      
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