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  Abstract 

 

Water-deficit stresses occur in about 70% of arable land around the world and have been shown to have an effect 

on every aspect of plant growth. Drought is one of the most common environmental stresses that may limit 

agriculture production worldwide. Many crops have high water requirement and in most countries supplemental 

irrigation is necessary for successful crop production. Photosynthetic response to drought is a highly complex in 

plants. Water deficit inhibits photosynthesis by causing stomatal closure and metabolic damage. Stomata of the 

leaves that are slightly deficient in water opened more slowly in light and close more quickly in the dark. The 

activities of many enzymes are affected by drought conditions. For example, nitrate reductase activity has been 

shown to be highly sensitive to water stress, and a significant decrease in nitrate reductase activity was observed 

in many plant species under drought conditions. Drought stress also increases the levels of radical oxygen 

species (ROS) in plant cells, resulting in lipid peroxidation and protein damage. 
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Introduction 

Drought is one of the most common environmental 

stresses that may limit agriculture production 

worldwide. Many crops have high water requirement 

and in most countries supplemental irrigation is 

necessary for successful crop production. However, in 

many countries as a consequence of global climate 

change and environmental pollution, water use for 

agriculture is reduced. Drought in general is severely 

detrimental to the growth and yield of agricultural 

crops. Drought stress is not seriously detrimental to 

yield and can, in some instances, result in increased 

yield (Nautiyal et al., 1999). Adequate supply of water 

is a prerequisite for optimum plant growth and 

satisfactory yield in every crop. Water-deficit stresses 

occur in about 70% of arable land around the world 

(LeHouerou, 1996) and have been shown to have an 

effect on every aspect of plant growth (Kramer, 1983). 

Of various abiotic factors, water scarcity adversely 

affects the crop productivity (Jones & Corlett, 1992). 

Generally, drought stress reduces growth (Levitt, 

1980) and yield of various crops (Dhillon et al., 1995) 

by decreasing chlorophyll pigments and 

photosynthetic rate (Asada, 1999), and stomatal 

conductance as well as transpiration rates (Lawlor, 

1995). Drought stress reduces the nutrient uptake in 

plants (Baligar et al., 2001). 

 

Root system and drought stress 

Maximized use of store soil water, increased biomass 

productivity per unit water use and highest of 

biomass productivity into economic yield under 

limited –water conditions are the ultimate goals of 

any drought research (Krishnamurthy et al., 2007). 

Root traits associated with drought tolerance are 

important for drought resistant mechanisms of plant. 

Root characteristics such as root length density, 

rooting depth and root distribution have been 

established as constituting factor of drought 

resistance (Matsui & Singh, 2003). Rucker et al. 

(1995) reported that a large root system may improve 

a plants ability to continue growth during drought 

stress. 

 

Growth and development 

Plants growing under suboptimal water levels are 

associated with slow growth and, in severe cases, 

dieback of stems, such plants are more susceptible to 

disease and less tolerant of insect feeding (Wilson, 

2009). In crops, water stress has been associated with 

reduced yields and possible crop failure. The effects of 

water stress however vary between plant species. As 

the plant undergoes water stress, the water pressure 

inside the leaves decreases and the plant wilts. The 

main consequence of moisture stress is decreased 

growth and development caused by reduced 

photosynthesis, a process in which plants combine 

water, carbon dioxide and light to make 

carbohydrates for energy. Chemical limitations due to 

reductions in critical photosynthetic components 

such as water can negatively impact plant growth. The 

ability to recognize early symptoms of water stress is 

crucial to maintaining the growth of plants; the most 

common symptom is wilting (Bauder, 2009). 

 

Photosynthetic 

Photosynthetic response to drought is a highly 

complex in plants. Water deficit inhibits 

photosynthesis by causing stomatal closure and 

metabolic damage. Stomata of the leaves that are 

slightly deficient in water opened more slowly in light 

and close more quickly in the dark (Nuruddin, 2001). 

Soil moisture stress reduces leaf water potential 

which in turn may reduce transpiration (Shibairo et 

al., 1998). Kirnak et al. (2001) have found that water 

stress results in significant decreases in chlorophyll 

content, electrolyte leakage, leaf relative water 

content and vegetative growth; and plants grown 

under high water stress have less fruit yield and 

quality. Tomato plants tend to grow a denser root 

system at soil water potentials which are slightly less 

than field capacity (Nuruddin, 2001). 

 

Respiration and Assimilate partitioning 

It was reported by (Lawler and Cornic, 2002; Flexas 

et al., 2005) that respiration is an equally important 

factor controlling productivity, unlike photosynthesis 

which is limited temporally (i.e., daytime hours) and 

spatially (i.e., to green biomass), respiration occurs 

continuously in every plant organ, particularly when 
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photosynthesis is largely depressed due to water 

stress. Respiration is an essential metabolic process 

that generates Adenosine Tri- Phosphate (ATP) and 

several carbon skeletons - metabolites that are used in 

many synthetic processes essential for growth and 

maintenance of the cell homeostasis, including under 

water stress conditions (MacCabe et al., 2000; Bartoli 

et al., 2000). Several authors have found different 

results on the effect of water stress on respiration, 

ranging from decrease (Brix, 1962; Brown and 

Thomas, 1980; Palta and Nobel, 1989; Escalona et al., 

1999; Ghashghaie et al., 2001; Haupt-Herting et al., 

2001) to stimulation (Upchurch et al., 1955; 

Shearmann et al., 1972; Zagdanska, 1995). 

Ghashghaie et al., (2001), showed in sunflower 

(Helianthus annuus) that leaf respiration decreased at 

early stages of water stress and then increased even 

above control values at later stages. Water stress has 

been shown to affect the relationship between the 

carbon content in photosynthetic organs, such as 

leaves (source), and the carbon content in 

heterotrophic organs, such as seeds and roots (sink), 

indicating that the processes related to carbon 

partitioning are sensitive targets of this adverse 

environment (Cuellar-Ortiz et al., 2008). Chaves et 

al., (2002), stated that the ability of genotypes to 

partition stored vegetative biomass to reproductive 

organs to a larger extent determines sink 

establishment and economic yield under drought 

stress. Cuellar-Ortiz et al., (2008), in their study 

showed that carbohydrate partitioning is affected by 

drought in common bean, and that the modulation of 

the partitioning towards seed filling has been a 

successful strategy in the development of drought- 

resistant cultivars. Setter, (1990), reported that 

during water stress photosynthate partitioning is 

altered to increase root/shoot ratio. Several authors 

(Pelleschi et al., 1997; Pinheiro et al., 2001; Yang et 

al., 2001), have reported that under water deficit, 

there is a strong reduction in levels of inactive 

osmotically solutes (starch) and increase in active 

osmotically solutes (soluble sugars) and as a 

consequence the osmotic potential decreases, 

contributing to the maintenance of leaf water status. 

Rosales-Serna et al., (2000, 2003), showed that 

drought resistant bean cultivar displayed a small 

reduction in harvest index under water stress and it 

was hypothesized that the cultivar was able to 

improve carbon partitioning into the pods as part of 

its drought adaptation mechanism. 

 

Seedling 

Seedlings  are  especially  vulnerable  to  water  stress  

and  therefore  seed  germination  and  seedling 

recruitment are thought to be critical stages in the life 

cycle of many semi arid plants  (Esler and Phillips, 

1994). Availability of water greatly affects 

physiological processes which  manifest  in  the  

structural  details  of  plants  and  alter  the  timings  

of  many  vital  processes  (Agarwal et al., 1986). 

Amongst many factors which run counter to the 

natural establishment,  growth  and  development  of  

plants  in  arid  zones,  soil moisture  conditions  

perhaps  play  the  most  significant  role.  In  these  

areas, where  ensured  irrigation  is a  limitation of 

agricultural  crops, growing  trees which are deep 

rooted and can meet  their water  requirements from  

the  deeper horizons helps in overcoming drought 

conditions more easily (Gill et al., 1993).Water  

stress  may  result  in  delayed  and  reduced  seed  

germination  or  may  prevent  germination 

completely (Taylor et al., 1982).   

 

Activities of enzymes 

The activities of many enzymes are affected by 

drought conditions. For example, nitrate reductase 

activity has been shown to be highly sensitive to water 

stress, and a significant decrease in nitrate reductase 

activity was observed in many plant species under 

drought conditions (Casadebaig et al., 2008; Foyer et 

al., 1998). Nitrate reductase activity is induced by 

nitrogen content in plant tissue, and is regulated at 

the transcriptional level by the availability of its’ 

substrate, NO3 , and by glutamine, the end product of 

the nitrogen assimilation pathway (Downs et al., 

1993). 

 

Changes in physiological and biochemical processes 

Drought stress limits plants growth and fertility 

especially in arid and semi-arid regions (Erdem et al., 
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2001; Yang et al., 2009, Zaidi et al., 2014). Plants by 

morphological, physiological and metabolic changes 

in all of their organs answer drought stress (Cellier et 

al., 1998). Environmental factors and water deficit as 

the most important physiology and biochemistry 

aspects of plant can influence plants active substances 

(Petropoulos et al., 2008). For optimum growth and 

yield, an adequate supply of water is needed. Water 

stresses have been shown to have an effect on every 

aspect of plant growth, causing anatomical and 

morphological alterations as well as changes in 

physiological and biochemical processes and 

functions of the plants (Hsiao, 1973; Turner and 

Kramer, 1980). Also, some morphological characters 

such as root length, tillering, spike number per m-2, 

grain number per spike, number of fertile tillers per 

plant, 1000 grain weight, peduncle length, spike 

weight, stem weight, awn length, grain weight per 

spike and affect wheat tolerance to the moisture 

shortage in the soil (Passioura, 1977; Levitt, 1980; 

Kramer, 1983; Jhonson et al., 1983; Moustafa et al., 

1996; Plaut et al., 2004; Blum, 2005). 

Fig. 1. Direct effects of drought and salinity on 

stomata and mesophyll (gm) conductance as well as 

on gene expression, resulting in alterations of 

photosynthetic metabolism and ultimately on plant 

acclimation. 

 

Dehydration avoidance 

Dehydration avoidance relates to the maintenance of 

high tissue water potential under varying soil water 

tension and consists of mechanisms that reduce water 

loss while maintaining water uptake. Reduction of 

water loss generally depends on stomatal control of 

transpiration while increased water uptake depends 

on a deep and prolific root system. The general risk 

thus under declining water status is increased root: 

shoot ratio as a result of altered assimilate 

partitioning with the result of reduced grain yield. 

Stomatal closure as a drought avoidance mechanism 

and is one of the first steps in a plant‘s adaptation to 

water deficit, allowing the water status to be 

maintained. Stomatal closure may reduce 

transpiration losses but reduces CO2 uptake (Ci) 

negatively affecting photosynthesis (Chaves, 1991, 

Flexas et al., 2006). 

Fig. 2.   Mitochondria are exposed to water stress, 

desiccation and hypoxic conditions in the course of 

seed development and germination. The scheme 

shows a typical timeline of seed development, storage 

and germination with changes in development of dry 

weight, water content and respiration. Mitochondria 

are exposed to severe water stress during late seed 

maturation, desiccation and imbibition. They also 

need to be functional at the onset of imbibition, and 

thus to retain sufficient integrity during storage in the 

dry state, which can last for long periods of time. In 

many species, mitochondria operating during seed 

maturation until late desiccation, as well as during 

seed imbibition and germination are likely to face 

internal hypoxic conditions, requiring a control of 

respiration to prevent anoxia. 

 

Radical oxygen species (ROS) and superoxide 

dismutase (SOD) 

Drought stress also increases the levels of radical 

oxygen species (ROS) in plant cells, resulting in lipid  
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peroxidation and protein damage (Taylor et al., 

2004). Glutathione S-transferase (GST) is an 

essential enzyme which utilizes glutathione to 

catalyze glutathione- dependent detoxification 

reactions, reducing organic hydroperoxides and 

protecting protein sulfuric groups (Edwards et al., 

2005). Drought stress often leads to the accumulation 

of reactive oxygen species (ROS). ROS can act as 

second messengers involved in the stress signal 

transduction pathway, but excessive ROS production 

can cause oxidative stress to the photosynthetic 

apparatus and seriously impair the normal function of 

cells (Foyer et al. 1994, Smirnoff 1998, Niyogi 1999). 

In addition to proteolysis, ROS can damage lipids, 

terpenoids, carbohydrates and nucleic acids (Foyer 

and Noctor 2005, Moller et al. 2007). To keep the 

levels of active oxygen species under control, plants 

have evolved a series of antioxidative systems which 

are composed of metabolites such as ascorbate, 

glutathione, tocopherol, and enzymatic scavengers 

such as superoxide dismutase (SOD), peroxidase and 

catalase (Asada 1999). There are many cases that 

plants growing in hostile environments exhibit 

increased antioxidant enzyme activities to combat the 

deleterious effect of ROS (Duan et al. 2005, Jebara et 

al. 2005, Yin et al. 2005). The capabilityof scavenging 

ROS and reducing their damaging effects may 

correlate with the drought tolerance of plants 

(Tsugane et al. 1999). 

Fig. 3. Plant responses to water stress. 

 

Osmotic adjustment 

Osmotic adjustment is a mechanism to maintain 

water relations and sustains photosynthesis by 

maintaining leaf water content at reduced water 

potentials. Osmotic adjustment is accomplished with 

the accumulation of compatible solutes. Of these, 

proline is one amongst the most important 

cytosolutes and accumulates in plants during the 

adaptation to various types of environmental stress, 

such as drought, salinity, high temperature, nutrient 

deficiency, and exposure to heavy metals and high 

acidity (Oncel et al., 2000). Of the two carotenoid 

content classes, carotenoids show multifarious roles 

in drought tolerance including light harvesting and 

protection from oxidative damage caused by drought. 

Thus, increased contents specifically of carotenoids 

are important for stress tolerance (Jaleel et al., 2009). 

Fig. 4. Summary of the cellular mechanisms of action 

of polyamines. Upon entering the cell, polyamines 

exhibit various functions in the cytoplasm, nucleus 

and mitochondria. Polyamines are involved in the 

regulation of cell death and cell proliferation as well 

as in protein synthesis at the level of both gene 

expression and translation. Recent evidence also 

assigned polyamines functions in cell reprogramming 

and autophagy regulation. Thus, polyamines are 

involved in a broad array of processes and cellular 

responses that suggest a complex and important role 

in the control of cellular life and death. PT: 

permeability transition; Δψm: mitochondrial 

membrane potential. 

 

Proline  

Under various environmental stresses, high 

accumulation of proline is a characteristic feature of 

most plants (Rhodes et al., 1999; Ozturk & Demir, 

2002; Hsu et al., 2003; Kavi-Kishore et al., 2005). Its 
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accumulation is generally correlated with stress 

tolerance because tolerant species accumulate more 

proline as compared to sensitive ones. For example, 

salt-tolerant alfalfa (Fougere et al., 1991; Petrusa & 

Winicov, 1997) and drought tolerant wheat (Nayyar & 

Walia, 2003) accumulated higher amount of proline 

than the sensitive cultivars. Exogenous application of 

proline is known to induce abiotic stress tolerance in 

plants (Claussen, 2005; Ali et al., 2007; Ashraf & 

Foolad, 2007), because proline may protect protein 

structure and membranes from damage, and reduce 

enzyme denaturation (Iyer & Caplan, 1998; 

Rajendrakumar et al., 1994; Saradhi et al., 1995; 

Smirnoff & Cumbes, 1989). It may also act as a 

regulatory or signaling molecule to activate a variety 

of responses (Maggio et al., 2002). Its storage is also 

beneficial for plants as a source of nitrogen (Hare et 

al., 1998). Ali et al., (2007) found that exogenous 

application of proline enhances gas exchange 

attributes like net CO2 assimilation rate, 

transpiration rate and stomatal conductance. 

However, effect of proline is concentration dependent 

(Ashraf & Foolad, 2007). Exogenous application of 

proline in low concentration decreased the potassium 

efflux from the barley root under salt stress (Cuin & 

Shabala, 2005). In grasses, high nitrogen uptake due 

to high proline accumulation is also reported 

(Tanguiling et al., 1987). Different osmotica can be 

applied exogenously to plants in three different ways 

i.e., through the rooting medium, as a foliar spray or 

pre-sowing seed treatment. Reports on the effects of 

foliar application of proline in alleviating the adverse 

effects of abiotic stresses can be deciphered from the 

literature (Claussen, 2005; Ali et al., 2007; Ashraf & 

Foolad, 2007). 

 

Water management 

knowledge management is about applying the 

collective knowledge of the entire workforce to 

achieve specific organizational goals. It is about 

facilitating the process by which knowledge is created, 

shared and utilised. Though there is no way of 

neutralizing all negative impacts resulting from 

disasters such as droughts, efforts can be made in 

order to reduce their consequences. Knowledge on 

drought disaster management strategies, together 

with good practices and lessons learned can 

undoubtedly support this effort through well-

informed mitigative measures and preparedness 

planning (Mohanty et al., 2006). Knowledge on 

drought management strategies appears fragmented, 

emphasizing a perceived gap in information 

coordination and sharing (Mohanty et al., 2006). The 

experiences, approaches and adopted modalities for 

drought management remain with individuals as tacit 

knowledge. Therefore the lack of effective information 

and knowledge sharing, and knowledge creation on 

drought management strategies can thereby be 

identified as one of major reasons behind the 

unsatisfactory performance levels of current drought 

management practices (Seneviratne et al., 2010). 

Population growth and increased urbanization have 

increased competition for fresh water among 

agriculture, industry, and municipal water users (Lea-

Cox and Ross, 2001). Therefore, water conservation 

and the improvement of irrigation efficiency are 

important in landscape water management (Nicolas 

et al., 2008; Niu et al., 2006).With watering 

restrictions, the effect of drought stress is exacerbated 

on plant establishment and survival, and selection of 

drought-tolerant plants becomes increasingly 

important for the development of sustainable 

landscapes. 

 

Different irrigation levels 

According to Abbaszadeh and his colleagues’ study 

(Abbasazadeh et al., 2009), different irrigation levels 

(100 (control), 80, 60, 40 and 20% of field capacity) 

significantly affected shoot yield, oil yield, oil percent, 

leaf yield, plant height, tiller number, stem diameter 

and yield of Melissa officinalis L. (α≤0.01). The 

highest plant height and shoot yield were observed in 

control treatment. 40% of field capacity showed the 

highest oil yield. The highest oil percent and stem 

diameter belonged to 20% of field capacity treatment 

(Abbasazadeh et al., 2009). 

 

Water Use Efficiency (WUE) 

The physiological parameter of crop WUE is 

important to describe the relationship between plant 
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water use and dry matter production. With increased 

WUE, there is a greater biomass production per 

amount of water transpired and less amount of water 

needed for growth and development (Nemali and van 

Iersel, 2008). In several studies (Araus et al., 2002; 

McKay et al., 2003), it has been reasoned that plants 

having high WUE at low gS in response to drought 

stress are more drought-resistant. In a study on 

clover (Trifolium alexandrinum L.), increased 

instantaneous WUE resulting from lowered water loss 

was observed in plants under drought stress, which 

was induced by decreased transpiration rate and leaf 

area (Lazaridou and Koutroubas, 2004). 

 

Drought tolerance 

Drought tolerance is defined as relative yield of a 

genotype compared to other genotypes subjected to 

the same drought stress (Larcher, 2001). Improving 

the drought tolerance in cultivated species has been, 

for long time, a major objective for most of the plant 

breeding programs (Acevedo and Ceccarelli, 1989; 

Sánchez et al., 1998). Intensive studies have been 

carried out in order to identify factors involved in 

drought tolerance, which can be used as criteria for 

selection (Acevedo and Ceccarelli, 1989; Blum, 1996) 

for example: the osmotic adjustment (OA) in wheat 

(Bajji et al., 2001) and sorghum (Girma and Krieg, 

1992), the water use efficiency (WUE) in barley 

(Acevedo and Ceccarelli, 1989) and wheat (Condon et 

al., 2002) or the cellular wall elasticity (CWE) in 

soybean (Sinclair and Venables, 1983). 

 

Protein contents 

Plants can partly protect themselves against mild 

drought stress by accumulating osmolytes. Proline is 

one of the most common compatible osmolytes in 

drought stressed plants. For example, the proline 

content increased under drought stress in pea 

(Sanchez et al., 1998; Alexieva et al., 2001). Proline 

accumulation can also be observed with other stresses 

such as high temperature and under starvation 

(Sairam et al., 2002). Proline metabolism in plants, 

however, has mainly been studied in response to 

osmotic stress (Verbruggen and Hermans 2008). 

Proline does not interfere with normal biochemical 

reactions but allows the plants to survive under stress 

(Stewart, 1981). The accumulation of proline in plant 

tissues is also a clear marker for environmental stress, 

particularly in plants under drought stress (Routley, 

1966). Proline accumulation may also be part of the 

stress signal influencing adaptive responses (Maggio 

et al. 2002). According to ROSE (1988) water stress 

decreased protein contents in plants. The results of 

present investigations were inconsistent with the 

finding, which implies that soluble protein did not 

contribute to osmotic adjustment. The increase in 

proline content due to drought stress was more severe 

at flowering stage than at the vegetative stage. The 

proline content depends on plant age, leaf age, leaf 

position or leaf part (Chiang and Dandekar, 1995). 

Under vegetative stage, drought stress increased 

proline content about tenfold, this increasing roles as 

an osmotic compatible and adjust osmotic potential 

which resulted in drought stress avoidance in 

chickpea. Prolin accumulation is believed to play 

adaptive roles in plant stress tolerance (Verbruggen 

and Hermans 2008). Accumulation of proline has 

been advocated as a parameter of selection for stress 

tolerance (Yancy et al., 1982. Jaleel et al., 2007). 

 

Damages the cell membrane 

Cell Membrane Thermo-stability (CMT) is the ability 

of a plant to resist cellular membrane modification as 

a result of environmental stress such as drought. 

Drought stress damages the cell membrane which 

leads to increased electrolyte leakage. The relative 

rate of this electrolyte leakage is used as a measure of 

the cell membrane stability. The electrolyte leakage is 

estimated by measuring the electrical conductivity of 

the medium in which the leaf sample is equilibrated. 

Cell membrane modification, which results in total 

dysfunction, is a major factor in plant environmental 

stress. The exact structural and functional 

modification caused by stress is not fully understood. 

However, the cellular membrane dysfunction due to 

stress is well expressed in its increased permeability 

for ions and electrolytes (Ruter, 1993). Chu-Yung et 

al., (1985) and Espevig, et al., (2012) suggested that 

increased solute leakage is attributed to the loss of 

membrane integrity through lipid phase transitions 
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(principally, altered phospholipid and fatty acid 

composition) and to the effect on membrane bound 

transport proteins. These proteins play a role in 

preventing leakage. 

 

Chlorophyll content 

Severe drought stress also inhibits the photosynthesis 

of plants by causing changes in chlorophyll content, 

by affecting cholorophyll components and by 

damaging the photosynthetic apparatus 

(IturbeOrmaetxe et al., 1998). Ommen et al. (1999) 

reported that leaf chlorophyll content decreases as a 

result of drought stress. Drought stress caused a large 

decline in the chlorophyll a content, the chlorophyll b 

content, and the total chlorophyll content in all 

sunflower varieties investigated (Manivannan et al., 

2007). The decrease in chlorophyll under drought 

stress is mainly the result of damage to chloroplasts 

caused by active oxygen species (Smirnoff 1995). 

 

Polyamines 

Polyamines (PAs) are essential to all cells, since 

mutants lacking the ability to synthesize polyamines 

are unable to grow and develop normally (Galston 

and Kaur-Sawhney, 1990). As polycations they bind 

readily to cellular polyanions such as DNA, RNA, 

phospholipids and acidic protein residues, affecting 

their synthesis and activity. They are also involved in 

the reproductive activity (flower initiation, fruit 

growth) (Galston et al., 1997) and stress responses of 

plants (Bouchereau et al., 1999). Their accumulation 

during a mild stress period functions as a type of 

hardening and results in better survival in the case of 

subsequent stress. The ability of PAs to reduce stress-

induced injuries can be explained by their 

participation in the removal of reactive oxygen 

species (Guerrier et al., 2000) and their involvement 

in the maintenance of turgor (Islam et al., 2003) and 

photosyn thetic activity (Galston et al., 1997). 

Polyamines can be synthesized in plants through both 

the ornithine decarboxylase and arginine (Arg) 

decarboxylase pathways, but the latter is much more 

important under stress situations (Tiburcio et al., 

1997; Cohen, 1998). The involvement of PAs in the 

response to drought stress was reported in several 

publications (Erdei et al., 1996; Zhang et al., 1996; 

Rajasekaran and Blake, 1999; Guerrier et al., 2000). 

 

Mannitolinduced osmotic stress increased the 

putrescine (Put), spermidine (Spd) and spermine 

(Spm) contents in wheat (Galiba et al., 1993). In a 

time course experiment a great increase in their level 

was detected after one week of drought (Kubis and 

Krzywanski, 1989). Similarly, osmotic stress induced 

a greater increase in Put and Spd contents in the 

tolerant species Lycopersicon pennellii than in the 

sensitive L. esculentum (Santa-Cruz et al., 1997). The 

withholding of water induced a greater increase in the 

Put synthesis (as shown by the greater activity of Arg 

decarboxylase and ornithine decarboxylase) in 

drought-tolerant sugarcane varieties than in sensitive 

ones (Zhang et al., 1996). 

 

Activity of photosynthetic enzymes 

The data on water stress induced regulation of the 

activity of photosynthetic enzymes other than 

Rubisco are scarce. Thimmanaik et al (2002) studied 

the activity of several photosynthetic enzymes under 

progressive water stress in two different cultivars of 

Morus alba. Unlike Rubisco, which is highly stable 

and resistant to water stress, the activity of some 

enzymes involved in the regeneration of ribulose-1,5-

bisphosphate (RuBP) are progressively impaired from 

very early stages of water stress. Thus, these results 

present the possibility that some enzymes involved in 

the regeneration of RuBP could play a key regulatory 

role in photosynthesis under water stress. During 

water stress induced by polyethilen glycole, Rubisco 

activity significantly increased in young potato leaves, 

while decreased in mature leaves (Bussis et al., 1998). 

But NADP-GAPDH and PRK activities have been 

decreased and this change became faster in the course 

of drought. While decreased Rubisco activity may not 

be the cause of photosynthetic reduction during water 

stress, its down-regulation may still be important 

because it could preclude a rapid recovery upon 

rewatering (Ennahli and Earl, 2005). Similarly, some 

reports have shown strong drought-induced 

reductions of Rubisco activity per unit leaf area 

(Maroco et al., 2002) and per mg showed that the 
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decrease of Rubisco activity in vivo was not connected 

with the protein content. It occurs because of CO2 

concentration decrease in the carboxylation center in 

consequence of the partly closing of stomata (Flexas 

et al., 2006). But it is known, that enzyme regulation 

occurs not only in transcription, but also in 

posttranscriptional level. Activities of the tested 

enzymes are regulated by light as well as by the 

concentration of photosynthetic metabolites (Raines, 

2006). Reductions of more than 50% in the levels of 

NADP-GAPDH, FBP, PRK, and plastid aldolase were 

also needed before photosynthetic capacity was 

affected (Stitt and Schulze, 1994). 

 

Pigments synthesis 

Water stress, among other changes, has the ability to 

reduce the tissue concentrations of chlorophylls and 

carotenoids (Havaux, 1998; Kiani et al., 2008), 

primarily with the production of ROS in the 

thylakoids (Niyogi, 1999; Reddy et al., 2004). 

However, reports dealing with the strategies to 

improve the pigments contents under water stress are 

entirely scarce. The available reports show that 

exogenous application of brassinolide, uniconazole 

and methyl jasmonate improved the drought 

tolerance with increased activities of SOD, CAT and 

APX, ABA and total improved carotenoid contents in 

maize (Li et al., 1998), while methyl jasmonate 

brought about a threefold increase in the β-carotene 

synthesis as well as degradation of the cholorophyll 

contents in the epidermal peels (Pérez et al., 1993). 

Likewise, an important role of tocopherols, lipid-

soluble antioxidant in chloroplasts, has been 

envisioned in improved pigments contents under 

stress conditions in the photosynthetic organisms 

including tobacco (Tanaka et al., 1999) and 

Arabidopsis thaliana and Synechocystis sp. PCC6803 

(DellaPenna & Pogson, 2006). 

 

Phytohormones 

Some researchers have used PGRs for reducing or 

eradicating the negative effects of salinity (Kabar, 

1987; Mutlu and Bozcuk, 2000). Phytohormones 

suggested playing important roles in stress responses 

and adaptation (Sharma et al., 2005; Shaterian et al., 

2005). It is thought that the repressive effect of 

salinity on seed germination and plant growth could 

be related to a decline in endogenous levels of 

phytohormones (Zholkevich and Pustovoytova, 1993; 

Jackson, 1997; Debez et al., 2001). Wang et al. (2001) 

clearly defined that ABA and JA will be increased in 

response to salinity, whereas indole-3-acetic acid 

(IAA) and salicylic acid (SA) are declined. For 

example, the exogenous application of PGRs, auxins 

(Khan et al., 2004), gibberellins (Afzal et al., 2005), 

cytokinins (Gul et al., 2000) produces some benefit in 

alleviating the adverse effects of salt stress and also 

improves germination, growth, development and seed 

yields and yield quality (Egamberdieva, 2009). It has 

been reported that exogenous application of ABA 

reduces the release of ethylene and leaf abscission 

under salt stress in plants, probably by decreasing the 

accumulation of toxic Cl- ions in leaves (Gomez et al., 

2002). 

 

Affecting drought on quality and quantity of 

essential oils 

Farahani et al,( 2009 ) indicated that drought stress 

motivated a significant reduction in all of growth 

parameters of Mentha piperita L and essential oil 

yield and percent. The highest values of menthol were 

obtained under 70 % yield capacity by using (GC- 

MS). The result of Rahbariana et al,( 2010 ) showed 

that the water stress significantly decreased relative 

water content from 77.69% uder mild stress under 

severe stress. RWC increased as manure level 

increased. As stress was intensified, the electrolyte 

leakage increased, but it started to increase under 

severe stress. The manure treatment of 40 t/ha had 

the greatest electrolyte leakage (328.89 ds.m-1). The 

main components of the oil of Tagestes minuta L. 

were monoterpenes of which trans – cis tagetone 

together were 52.3%-64.2%. Drought significantly 

altered the content of some oil components. Drought 

stress is characterized by reduction of water content, 

diminished leaf water potential and turyor loss, 

closure of stomata and decrease in cell enlargement 

and growth. Severe water stress may result in the 

arrest of photosynthesis, disturbance of metabolism 

and finally the death of plant (Jaleel et al., 2008a). 
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Water stress inhibits cell enlargement more than cell 

division. It reduces plant growth by affecting varios 

physiological and biochemical processes, such as 

photosynthesis, respiration, translocation, ion uptake, 

carbohydrates, nutrient metabolism and growth 

promoters (Jaleel et al., 2008a,b, Faroog et al., 2008 

and Hendawy and Khalil, 2005). Azizi et al.,(2008a) 

To compare the response of oregano (Origanum 

vulgare L.) populations to soil moisture regimes, a 

greenhouse experiment with three populations of 

oregano cultivated in Germany (O. vulgare var. 

creticum, O. vulgare ssp. hirtum, O. vulgare var. 

samothrake). The population of O. vulgare var. 

Samothrace showed a stable dry matter yield with 

higher essential oil content than the populations of O. 

vulgare var. creticum and O. vulgare ssp. hirtum. 

Water deficiency after beginning of blooming (folded 

flowers) can induce an increase in essential oil 

content and thus result in higher quality of oregano 

herbage and higher water use efficiency of oregano 

plants. The effects of water deficit on vegetative 

growth, fatty acids and essential oil yield and 

composition of Salvia officinalis aerial parts were 

investigatedby ( Belaqziz et al., 2009). Results 

showed important reductions of the different growth 

parameters. Drought decreased significantly the foliar 

fatty acid content and the double bond index (DBI) 

degree. A field experiment was evaluate the effect of 

drought stress on agromorphological characters 

(fresh flower weight, dried flower yield, shoot weight 

and root weight), oil content, oil composition and 

apigenin content of chamomile. Drought stress had 

four different levels of soil moisture depletion (30%, 

50%, 70% and 90%). Analysis of variance showed that 

drought stress decreased plant height, flower yield, 

shoot weight and apigenin content but it had no 

significant effect on oil content or oil composition. 

Impacts of drought stress on growth indices were 

evaluated as well and the results indicated that plant 

managed to maintain potential for biomass 

production under the drought stress. Growth analysis 

results as well as phytochemical properties of this 

plant showed that despite decrease in agronomical 

traits, chamomile could be proposed as a moderate 

drought resistant medicinalplant with a reasonable 

performance (Baghalian et al., 2011). Rajeswara 

(2002 ) the yield components, fatty acid, essential oil 

compositions and phenolic contents fruit essential oil 

composition and the total phenolic amounts as well as 

the antioxidant activities of cumin (Cuminum 

cyminum L.) seeds under drought. This plant is one of 

the most common aromatics in the Mediterranean 

kitchen. The results indicated that MWD improved 

the number of umbels per plant as well as the number 

of umbellets per umbel and the seed yield, in 

comparison to the control, but it decreased under 

severe water deficit (SWD). Fatty acid composition 

analysis indicated that petroselinic acid was the major 

fatty acid (55.9%) followed by palmitic (23.82%) and 

linoleic (12.40%) acids. Water deficit enhanced the 

palmitic acid percentage and affected the double 

bound index of the fatty acid pool and thus the oil 

quality. The essential oil yield was 1.64% based on the 

dry weight and increased by 1.40 folds under 

moderate water deficit (MWD). Nevertheless it 

decreased by 37.19% under SWD in comparison to the 

non-treated seeds. Drought results on the 

modification of the essential oil chemotype from γ-

terpinene/phenyl-1,2 ethanediol in the control seeds 

to γ-terpinene/cuminaldehyde in stressed ones. 

Besides, total phenolic contents were higher in the 

treated seeds (MWD and SWD). Results suggest that 

water deficit treatment may regulate the production 

of bioactive compounds in cumin seeds, influencing 

their nutritional and industrial values. Besides, 

antioxidant activities of the extracts were determined 

by four different test systems, namely DPPH, β-

carotene/linoleic acid chelating and reducing power 

assays and showed that treated seeds (MWD and 

SWD) exhibited the highest activity. 
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