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  Abstract 

 

In this work, we are interested to using Saccharomyces cerevisiae as eukaryotic model and an alternative one to 

animal testing for bringing out the effect of nifedipine, a dihydropiridine L-type calcium channel blocker. Thus, a 

culture of Saccharomyces cerevisiae was treated with different concentrations of this xenobiotic (0.01, 0.05, 0.5, 

1 mM) during 3 hours. After that we measured the levels of some stress biomarkers (GSH, GST and peroxidases 

activities). The results obtained show a significant/high significant increase in all studied biomarkers following 

treatment with a dose-response manner. These data highlight an oxidative stress induced by the presence of the 

calcium antagonist, and expressed by a stimulation of the oxidative enzymes activities 
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Introduction 

The understanding of the cellular function and the 

different biological processes are the basis of all 

scientific research, including drug research, this last 

one which also based on the knowledge about the 

mechanism of action of novel therapeutic agents and 

their biological targets. Between the several stages of 

drug research, the evaluation of the toxicity has an 

important place and can be a reason for drug attrition 

(figure 1).  

 

Thereby the determination of drug targets and 

evaluate their toxicity are a very challenging issue 

(Guengerich and MacDonald, 2007). In the order to 

discover, screening, evaluate and develop this 

molecules, the choice of experimental model is 

crucial, requiring a multifactor’s consideration. 

Among model organisms Saccharomyces cerevisiae 

represents an excellent cellular model (for 

discovering and studying drugs) due to the fact that it 

is an eukaryotic organism so its cellular organization 

was highly similar to higher eukaryotic cells at both 

macromolecules and organelles levels, but also for the 

simplicity of their system and the ease of access. In 

addition to its genome is entirely sequenced and 

whose genes are easily manipulated, deleted, 

replaced, which make it a perfect genetic model 

(Oswald, 2006 / Dolinski and Botstein, 2006 / 

Akiyoshi et al., 2009 / Wu et al., 2010). At the same 

time, the response is easier to read, and when 

extrapolated to humans, we can have a better 

understanding of molecular mechanisms of toxicity 

(Braconi et al., 2006)  

 

The usefulness of this eukaryotic organisms in drug 

assess has been already demonstrated (Buschini et 

al., 2003 ; Lee et al., 2005 ; Sturgeon et al., 2006 ; 

Menacho-Márquez and  Murguía, 2007; Guiffant, 

2008 ; Stepanov et al., 2008 ; Bouillet et al., 2012 ; 

Matuo et al, 2012/ Cherait and Djebar, 2013). 

 

In this study, we used this multiple uses species, as 

well in the industrial manufacturing, than as an 

excellent eukaryotic model to assess the effects of 

nifedipine, a calcium antagonist belonging to 

dihydropyridines family widely used for the treatment 

of cardiovascular diseases (Parreira et al, 2003 

; Poole-wilson et al, 2006 ; Cao et al., 2010). 

Nifedipine inhibits selectively and at very low 

concentrations, the entry of calcium ions at the 

voltage-gated L-type channels (Mc Donough, 2004; 

Triggle et al, 2006; Valentin et al, 2009; Mc Donough 

and Bean, 2010). It is known that in human cell there 

are several subtypes of calcium channels voltage-

dependants classified electrophysiologically into five 

classes on the basis of Ca2+ currents called L (Long 

lasting), N (Neither T nor L), T (transient), R 

(resistant) and P/ Q (P for the Purkinje cells of the 

cerebellum, where it found and Q for alphabetic order 

after P) (Catterall, 2000; Yamakage and Namiki, 

2002, Le Chevoir, 2008). Only the L-type calcium 

channels are sensitive to the dihydropyridines. It is 

also known that Saccharomyces cerevisiae have a 

voltage-gated calcium-channel homologue Cch1, 

pharmacologically similar to L-type calcium channels 

(Walker, 1998 ; De Souza Pereira et al., 2001; 2003; 

Teng et al., 2008).  Thereby the influx of calcium 

inside Saccharomyces cerevisiae can be regulated by 

these drugs.  

 

Materials and methods 

Biological material 

The biological material chosen for our investigation is 

a fungus unicellular eukaryotic, the yeast 

Saccharomyces cerevisiae, an optimal eukaryotic 

model system to study toxic effects and mammalian 

biological responses upon exposure to exogenous and 

endogenous perturbations.  

 

Chemical material 

Nifedipine (C17H18N2O6), inhibits selectively the 

transmembrane calcium by blocking the L-type 

calcium channels. It was obtained from national 

control laboratory of pharmaceutical products LNCPP 

(Algeria) and dissolved in acetone and further diluted 

in distilled water with 1% final concentration of 

acetone.  
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Treatment 

A culture of Saccharomyces cerevisiae was isolated in 

a culture medium (0.25 g / L glucose, 10 g yeast 

extract / L, 25 mL of glycerol and 940ml of distilled 

water) (Pol, 1996) and treated by four concentrations 

of nifedipine (0.01mM, 0.05mM, 0.5mM and finally 

1mM) during 3 hours.  

 

Measurement of Biochemical and Enzymatic 

Parameters  

After treatment of cells yeast, we measured the 

production of some stress biomarkers (GSH, GST and 

peroxidases activities). 

 

Thus, a culture of Saccharomyces cerevisiae was 

stopped on exponential growth phase by a 

centrifugation at 1500 × g for 10 min. Afterwards the 

cells yeast was sonicated with 50 mM potassium 

phosphate buffer (pH 7.5) on the ice tray. The 

homogenate was centrifuged at 10000 × g for 20 min 

at 4°C and the supernatant which is the enzyme 

extract was stored at -80C until use. 

 

Measurement of Glutathione (GSH)  

The dosage of glutathione was quantified according to 

the colorimetric method of Weckberker and Cory, 

1988. 

 

The method involved oxidation of GSH by the 

sulfhydryl reagent 5,5′-dithio-bis(2-nitrobenzoic acid) 

(DTNB) to form the yellow derivative 5′-thio-2-

nitrobenzoic acid (TNB), measurable at 412 nm. The 

concentration glutathione is expressed in μM of GSH 

per mg of proteins. 

 

Measurement of Glutathione S-transferase  

The Glutathione S-transferase (GST), an important 

group of enzymes, are involved in the detoxication 

system to protect cells against xenobiotics.  

 

The assay is based on the conjugation of the 

glutathione thiol group’s to the CDNB (1-Chloro-2,4-

dinitrobenzene) substrate, in the presence of 

glutathione. The absorbance was determined at 340 

nm. (Habig et al., 1974)  

Measurement of Peroxidases Activities 

The peroxidase is a key enzyme of the antioxidant 

network that converts hydrogen peroxide to water, as 

the catalase, but in the presence of a specific 

substrate.  

 

To following the peroxidases activities, we prepared 

an assay mixture containing 50 mmol/L phosphate 

buffer (pH 7.5), 20 mM guaiacol or ascorbate for 

respectively gaiacol-peroxidase and ascorbate 

peroxidase assays, 40 mM H2O2 and 0.01 ml of 

enzyme extract. The reaction was initiated by adding 

H2O2 and the absorbance change was monitored by 

UV/Vis spectrometer at 470 nm for gaiacol-

peroxidases and 290 nm for ascorbate-peroxidases. 

The enzymatic activities have been expressed using 

µM /mg protein.( Fielding and Hall, 1978)  

 

Statistical Analysis 

The analysis of variance with two controlled factors is 

used to estimate the differences reported for the 

different studied parameters.  

 

The data are represented by the mean more or less 

the standard deviation (m ± s). 

 

Differences were considered significant when *p < 

0.05; very significant when **p < 0.01; and very high 

significant when ***p < 0.001.   

 

This test is performed using the analysis software 

statistical processing of data: Minitab version 16. 

 

Results 

GSH levels 

Figure 05 illustrates the effects of the various 

concentrations of nifedipine on the GSH rate, one of 

the most frequently used indicators of stress 

biomarkers preventing damage to 

important cellular components caused by reactive 

oxygen species and free radicals (Pompella et al., 

2003). 

 

This figure shows that the treated cells by nifedipine 

present a rather significant/ high significant decrease 
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in GSH level. Indeed, the level of GSH decreased from 

2, 632± 0,204 µM/mg prot in controls to 1,451± 

0,250 µM/mg prot in cells treated by 1mM 

concentration of our molecule.  (to 1.326 ± 0.310 in 

cells treated by 0.5mM nifedipine). 

Fig. 1. Reason for drug attrition in the year 2000 

(Kola et al., 2004). 

 

The Figure 06 show a dose-dependent increase of 

GST activity on the cells yeast treated with different 

nifedipine concentrations compared to controls. The 

GST increase from 1,264 ±  0,314 µM/mg prot in the 

control to 8,061 ±  0,808 µM/mg prot in the yeast 

cells treated with the strongest nifedipine 

concentration. 

Fig. 2.  Nifedipine structure. 

 

This enzyme plays an important role on the 

detoxification system and catalyzes the conjugation of 

the reduced form of GSH to xenobiotic substrates 

such as drugs for the purpose of detoxification.  

 

Peroxidases Activities 

The effect of the calcium antagonist in peroxidases 

activities on S. cerevisiae is pictured in fig 6, and 

show an increase of ascorbate-peroxidase and 

gaiacol-peroxidase activities due to the presence of 

our molecule. 

 

 

 

Discussion 

The results obtained in this study shown that the 

administration of nifedipine led to a decrease the  

levels of reduced glutathione (GSH) and increase the 

activities of glutathione-S-transferase (GST), gaiacol-

peroxidases (GPx) and ascorbate-peroxidases (APx) 

which may be indicate a generation of oxidative stress 

by this drug. 

Fig. 3. Evolution of GSH level as a function of 

different Nifédipine concentrations on 

Saccharomyces cerevisiae 

 

The decrease in GSH level is a consequence of the 

increase on its utilization by the antioxidant enzymes 

glutathione-S-transferase (as is shown in our results) 

and glutathione peroxidase. This result is in 

agreement with those found by (Vitcheva et al., 

2009) on male wistar rats and tends to show an 

oxidative stress caused by the nifedipine presence. A 

GSH will be conjugate with free radical and ROS, this 

conjugate reaction gives a radical thiol and during 

which the GSH is oxidized to glutathione disulphide 

(GSSG), a chain reaction ensues leading to the 

conversion superoxyde anions by the superoxide 

dismutase (SOD) into hydrogen peroxide (H2O2) 

which itself will be converts into water (H2O) by the 

peroxidases enzymes. Therefore, GSH acts as a 

cofactor in the removal of toxic radicals. During 

oxidative stress GSH level declines and GSSG level 

increases (Ray et al., 2005 / Ray et al., 2012). 

 

Literature data shown that Nifedipine induce 

cytochrome P 450 (Kastelova et al., 2000; Drocourt et 

al., 2001) which can be responsible of reactive oxygen 

species (ROS) formation and may explain the GSH 

depletion and antioxidants enzymes stimulation.  
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Paradoxically, another study rapport that nifedipine 

increase the GSH rate by modulation of biliary GSH 

and GSSG/conjugate efflux in rat liver due to the 

stimulation of the GSH secretion (Yang and Hill, 

2001) which is in disagreement with our found. When 

the work of (Gaafa and al., 2011) demonstrates that 

nifedipine doesn’t influence the GSH rate.  

Fig. 4. Evolution of glutathione S-transferase activity 

as a function of different nifédipine concentrations on 

Saccharomyces cerevisiae. 

 

When the increase of APx and GPx indicate that 

nifedipine caused an occurrence of oxidative stress 

translated by the outbreak of detoxification system.  

Our results are in desagreement with the work of 

(Wang et al., 2011) on the plants peroxidase, who 

show that nifedipine affected the activity of 

peroxidase because the plant defense systems rely in 

part on a finely regulated cross-talk between calcium 

and H2O2 and the nifedipine as L-type calcium 

channels blocker inhibit the expression of the calcium 

gradient, thereby this would cause the decrease of 

peroxidases activities.  

Fig. 5. Evolution of Peroxidases activities (GPx: 

gaiacol-peroxidases and APx: ascorbate-peroxidases) 

as a function of different nifédipine concentrations on 

Saccharomyces cerevisiae 

 

In the other side, nifedipine is known for its 

antioxidant properties (Mak et al., 2002 / Berkels et 

al., 2005/ Yamagishi et al., 2006). This antioxidant 

action is due to fact that nifedipine indirectly 

regulates the expression and activities of antioxidant 

enzymes such as superoxide dismutase (Fukuo et al., 

2002 ; Passacquale et al., 2008) these one catalyse 

the dismutation of superoxide (O2
•) into oxygen (O2) 

and hydrogen peroxide (H2O2). This will cause the 

activation of the peroxidases enzymes such as 

catalase, glutathione peroxidase, gaiacol-peroxidase 

and ascorbate-peroxidase and this is confirmed by the 

increase of those activities in our study and even an 

increase in the catalase activity in our precedent study 

(Cherait and Djebar, 2013) which will converts 

hydrogen peroxide into water.  

 

So we can conclude that nifedipine in the presence of 

stress induced by another molecules such as in the 

case of cyclo-sporine induced nephrotoxicity 

(Chander and Chopra, 2005) or renal tubular toxicity 

caused by gentamicin (Jin Li et al., 2009) or even the 

cocaine toxicity (Vitcheva et al., 2011) will act as a 

protective and antioxidant agent due to its inhibitory 

effects of stress and ROS increases (Mamczarz et al., 

1998 / Rojas-Rivera et al., 2009) but in the absence of 

another stress causes this drug will be the oxidative 

stress source as in the case of our studies. This 

hypothesis needs further investigations that are an 

object of future studies. 

 

Furthermore, we notice that the yeast Saccharomyces 

cerevisiae, is well-established and convenient 

eukaryote model chiefly for toxicology studies but 

also for understanding the mechanisms of drug action 

and the cellular response interfering in drugs 

treatment. Nevertheless, Saccharomyces cerevisiae 

cannot completely substitute the mammalian cells 

and animal models especially for the complexity of 

genetic interactions in these models. 
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