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  Abstract 

 

A large part of the surface of the world is arid. Water deficit is the major abiotic factor limiting plant growth and 

crop productivity around the world. A field experiment was carried out as split plot based on RCB design with 

three replications in 2013 to assess the effects of different irrigation treatments (I1, I2, I3, I4 for irrigation after 70, 

100, 130 and 160 mm evaporation from class A pan, respectively) and different plant densities (D1, D2 and D3 

with 30, 50 and 70 plants/m2) on some physiological traits and grain yield of mung-bean. Leaf area index, 

chlorophyll fluorescence of the PSII (Fv/Fm) and grain yield significantly decreased as water deficit increased. 

LAI was statistically similar under I3 and I4. LAI increased with increasing plant density up to 50 plants/m2, with 

no significant change thereafter. Leaf temperature significantly increased with increasing plant density under 

severe water stress (I4), however no significant differences among densities were observed under I1, I2 and I3. 

Fv/Fm slightly, but not significantly, decreased as plant density increased. Increasing leaf temperature and 

decreasing Leaf area index (LAI) and photosystem efficiency under water stress led to significant reduction in 

grain yield per unit area. The highest grain yield was obtained at 50 plants/m2. 
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Introduction 

In a large part of the agricultural areas in the world, 

water deficit is an important factor limiting growth 

and productivity of the crops (Borsani et al., 2001; 

Micheletto et al., 2007). Water deficit occurs when 

water potentials in the rhizosphere are sufficiently 

negative to reduce water availability to sub-optimal 

levels for plant growth and development (Boyer 

1982). To survive against the stress, plants have 

involved a number of morphological, physiological 

and biochemical responses (Demirevska et al., 2009; 

Munns et al., 2006). Photosynthesis and cell growth 

are the primary processes which are affected by stress 

(Munns et al., 2006). Under drought stress, plant 

leaves are dehydrated, and photosynthesis is 

decreased. The decrease in photosynthesis of 

dehydrated leaves is usually caused by decrease in 

stomatal conductance and transpiration (Cornic, 

1994; Limousin et al., 2010). As a consequence of the 

reduction in transpiration rate, leaf temperature 

increases and the effects of drought and heat stresses 

frequently combine to scorch leaves (Mohammadian 

et al., 2005).   

 

All green plants can contribute to primary production 

by photosynthetic activity in leaves that play a major 

role in this process. Therefore, adequate leaf area 

should be critical to plant regeneration for a constant 

primary production. Ideally, leaf area index (LAI) 

among crops varies between 2-3 and 11, depending on 

the morphological and anatomical structure of the 

plants (Nelson and Sommers, 1995). Reduced canopy 

photosynthetic rates under conditions of water stress 

is attributed to decreased leaf expansion, leaf area, 

leaf age of the canopy and  increased senescence rates 

(Marani et al., 1986). 

 

Stresses that involve deficiencies of N and water will 

adversely affect the amount of under drought stress, 

disturbances of photosynthesis at the molecular level 

are connected with the restricted electron transport 

through PSII and/or with structural injuries to PSII 

(Flexas et al., 2004; Hura et al., 2007). Fluorescence 

of chlorophyll reflected the photochemical activities 

of PSII (Ganivea et al., 1998), with optimal values of 

around 0.832 measured from most plant species 

(Johnson et al., 1993). Values lower than this are 

measured when the plant is exposed to stress, 

indicating a particular phenomenon of photo-damage 

to PSII reaction centres (Maxwell and Johnson, 

2000; Baker and Rosenqvist, 2004). Environmental 

stresses that affect PSII efficiency leads to a decrease 

in the Fv/Fm ratio (Krause and Weis 1991; Mamnouie 

et al., 2006). 

 

The effect of drought stress on growth and yield 

depends on function of genotype, duration of stress, 

weather conditions, growth, and developmental 

stages of crops (Robertson and Holland, 2004). 

Moderate to high drought stress can reduce plant 

biomass, number of pods and seeds, days to maturity, 

harvest index, seed yield and seed weight in common 

bean (Ghassemi-Golezani and Mardfar, 2008). Plant 

density is not stable for a variety at different climatic 

conditions. In a plant community, after a saturation 

threshold, adding more plants will not increase yield 

per unit area. On an individual plant basis, as density 

increases, individual plant yield decreases non-

linearly (Roush and Radosevich, 1985). This research 

was carried out to evaluate changes in leaf area index, 

fluorescence and leaf temperature in leaves of mung-

bean in response to water stress and their 

consequences to crop yield. 

 

Material and methods 

Experimental design  

The experiment was conducted at the Research Farm 

of Tabriz University, Tabriz, Iran (latitude 38.05°N, 

longitude 46.17°E, Altitude 1360 m above sea level) in 

2013. The climate is characterized by mean annual 

precipitation of 245.75 mm per year and mean annual 

temperature of 10°C. The experiment was arranged as 

split plot on the basis of randomized complete block 

in three replicates, with irrigation treatments (I1, I2, 

I3, I4 for irrigation after 70, 100, 130 and 160 mm 

evaporation from class A pan, respectively) in main 

plots and plant densities (D1=30, D2=50 and D3=70 

plants/ m2) in sub plots. 

 

Sowing  
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Seeds of Mung-bean were treated with 2 g kg-1 

Benomyl and then were sown by hand in 4 cm depth 

of a sandy loam soil. Each plot consisted of 6 rows of 

3.5 m length, spaced 25 cm apart. All plots were 

irrigated immediately after sowing. Subsequent 

Irrigation treatments were applied after seedling 

establishment. Weeds were controlled by hand during 

crop growth and development as required. 

 

Measurements 

A plant was marked in each pot and Leaf temperature 

(oC) of upper, middle and lower leaves were measured 

by an infrared thermometer (TES-1327) at flowering. 

At this stage, three plants from each treatment were 

harvested and leaf area of the mung-bean were 

measured by a portable Leaf area- meter 

(ADCAM300). The chlorophyll fluorescence 

induction parameters were measured in leaves by a 

chlorophyll fluorometer (OS-30, OPTISCIENCES, 

USA) at flowering just before irrigation of each plot. 

Fluorescence emission was monitored from the upper 

surface of the leaves. Dark-adapted leaves (30 min.) 

were initially exposed to the weak modulate 

measuring beam, followed by exposure to saturated 

white light to estimate the initial (F0) and maximum 

(Fm) fluorescence values, respectively. Variable 

fluorescence (Fv) was calculated by subtracting F0 

from Fm. The quantum yield (Fv/Fm) measures the 

efficiency of excitation energy capture by open PSII 

reaction centres, representing the maximum capacity 

of light-dependent charge separation in PSII (Rizza et 

al., 2001; Basu, 2004). 

 

At maturity, the plants in 1 m2 of each plot were 

harvested and grains were detached from the pods. 

Finally, grains were weighed and grain yield per unit 

area for each treatment at each replicate was 

determined. All the data were analysed on the basis of 

the experimental design, using MSTATC and SPSS 

softwares. The means of each trait were compared 

according to Duncan multiple range test at P≤0.05. 

Excel software was used to draw figures. 

 

Results and discussion 

Analyses of variance  

Analysis of the data (Table 1) showed that water stress 

had significant effects on leaf temperature, Leaf area 

index (LAI), chlorophyll fluorescence and grain yield. 

Grain yield was also significantly affected by plant 

density. The interaction of irrigation × density was 

only significant for leaf temperature. 

 

Table 1. Analysis of variance of the effects of water stress on some physiological characters and grain yield of 

mung-bean at different plant densities. 

Source df LAI  Temperature Fv/Fm Grain yield 

Replication 2 0.014 1.243 0.025* 487.659 

Irrigation(I) 3 0.455** 21.392** 0.133** 2623.419* 

Ea 6 0.011 0.244 0.002 299.463 

Density (D) 2 0.122** 0.738** 0.009* 15434.591** 

I × D 6 0.012 0.235* 0.006 133.346 

Eb 16 0.009 0.079 0.017 50.802 

CV%  4.9 1.16 4.51 4.18 

*,**: Significant at p≤0.05 and p≤0.01, respectively. 

Leaf area index (LAI) 

LAI decreased with increasing irrigation intervals, but 

no significant difference was observed between I3 and 

I4 (Table 2). Leaf area is a critical parameter 

controlling many biological and physical processes 

associated with vegetation (Running, 1990; Bonan, 

2003). Water stress reduces photosynthesis by 

decreasing leaf area (McCree, 1986). At the crop level 

the demand for water as affected by plant size is 

controlled by leaf area index (LAI), which is the total 

area of live leaves per unit ground surface. 

Photosynthesis by crops is severely inhibited and may 

cease altogether as water deficits increase. The 

decrease in leaf growth, or increasing senescence of 

leaves under drought conditions, may also inhibit 

photosynthesis in existing leaves (David et al., 1998). 
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LAI increased with increasing plant density up to 50 

plants/m2, with no significant change up to 70 

plants/m2 (Table 2). Leaf area index (LAI) is one of 

the most important crop parameters that determine 

radiation intercepted by the crop canopy, and 

therefore has strong impacts on crop canopy 

photosynthesis and transpiration (Serdar and 

Demirsoy, 2006). Increase in leaf area more than 

usual, causing competition for light. Any change in 

canopy leaf area index is accompanied by 

modifications in crop productivity. 

 

Table 2. Means LAI, leaf temperature, chlorophyll fluorescence and grain yield of mung-bean for different 

irrigation treatments and plant densities. 

Treatments LAI Temperature (oC) Fv/Fm Grain yield (g/m2 ) 

Irrigation     

I1 2.301 a 23.25  c  0.7791 a 188.83 a 

I2 1.983 b 23.57  b  0.7545 a 178.88 b 

I3 1.872 c 23.72  b  0.7015 ab 163.59 c 

I4 1.787 c 26.57  a  0.620   b 149.99 d 

Density     

D1 1.870 b 24.06 b 0.7285 a 129.19 c 

D2 2.034 a 24.23 b 0.7215 a 195.07 a 

D3 2.054 a 24.55 a 0.6918 a 186.71 b 

Different letters in each column indicate significant difference at P≤0.05. 

I1, I2, I3, I4: Irrigation after 70, 100, 130 and 160 mm evaporation from class A pan, respectively 

D1, D2 and D3: 30, 50 and 70 plant/m2, respectively. 

Leaf temperature 

Mean leaf temperature increased with increasing 

water stress. However, leaf area index, chlorophyll 

fluorescence of the PSII (Fv/Fm) and grain yield 

decreased as water deficit increased (Table 2). 

Increasing leaf temperature due to water stress is 

possibly related to decreasing stomatal conductance 

and transpiration (Ehrler et al., 1978; Reginato, 1983; 

Siddiaue et al., 2000).  

Fig. 1. Changes in mean leaf temperature of mung-

bean at different plant densities under different 

irrigation treatments. Different letters at each column 

for each treatment indicate significant difference at 

p≤0.05. I1, I2, I3, I4: Irrigation after 70, 100, 130 and 

160 mm evaporation from class A pan, respectively. 

D1, D2 and D3: 30, 50 and 70 plant/m2, respectively. 

Leaf temperature significantly increased with 

increasing plant density under severe water stress 

(I4), but no significant differences among densities 

were observed under I1, I2 and I3 (Figure 1). With 

water availability limitation, stomatal conductance 

and transpiration decrease and leaf temperature 

increases (Reginato, 1983). This may inhibit 

photosynthesis by limiting the availability of CO2 

within the leaf (Boyer, 1976; Chaves, 1991) and 

predispose leaves to photo-inhibition (Bjorkman and 

Powles, 1996) and decrease photosynthetic efficiency 

by stimulating photorespiration (Brooks and 

Farquhar, 1985). 

 

Chlorophyll fluorescence 

Reduction in quantum yield of the PSII (Fv/Fm) 

under water stress (Table 2) indicate that occurrence 

of chronic photo-inhibition due to photo-inactivation 

of PSII centers probably associated with the 

degradation of D1 protein (He et al., 1995; Giardi et 

al., 1996). Despite of the fact that photosystem II is 

highly drought resistant, photosynthetic electron 

transport through PSII is inhibited by water stress. 

The Fv/Fm ratio characterizes the maximal quantum 
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yield of the primary photochemical reaction in dark 

adapted leaves (Debaeke and Aboudrare, 2004).  

 

Fv/Fm slightly, but not significantly, decreased as 

plant density increased (Table 2). It has been well 

documented that the photosynthetic system is very 

sensitive to many environmental stresses and that 

chlorophyll fluorescence analysis is a good index for 

measuring rapidly the change in photosynthetic 

metabolism of plants to such environmental stresses 

as drought (Conroy et al., 1986; Genty et al., 1987). 

PSII has been shown to be the most thermally labile 

component of the electron transport chain and the 

critical site of damage by high temperatures 

(Allakhverdiev et al., 2008). An important 

implication of PSII photo inactivation is that non-

functional PSII centers, still embracing pigment 

molecules, can exacerbate photo oxidative damage to 

the thylakoid membranes unless light energy 

absorbed by the pigments is dissipated safely. Thus, it 

has been hypothesized that photo inactivated PSII 

complexes are able to efficiently dissipate excitation 

energy harmlessly (Krause, 1988). 

 

Grain yield  

Grain yield of mung-bean decreased with increasing 

water stress, possibly due to low Leaf area index (LAI) 

and low photosystem efficiency (Table 2). These may 

result in pod and flower abortion and reduction in 

mean grain number and weight (Ghassemi-Golezani 

et al., 2012; Ghassemi-Golezani and Lotfi, 2012). 

These results clearly show that supplementary 

irrigation can considerably improve physiological 

performance and grain yield of mung-bean. 

 

The highest grain yield was obtained at D2 (50 

plants/m2), followed by D3 (70 plants/m2) and D1 (30 

plants/m2), respectively. The lowest grain yield per 

unit area at 30 plants/m2 mainly associated with the 

lowest LAI at this density (Table 2). Decreasing grain 

yield at the highest density (D3) strongly related with 

increasing competition for water and other 

environmental resources available to each plant, 

particularly under severe water stress. This is also 

reflected in significantly higher leaf temperature of D3 

plants under the most limited water supply (I4) 

(Figure 1). Hence, to reach higher yields, proper plant 

density is critical in arid and semi-arid regions . 
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