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  Abstract 

 

The expression pattern of LEA and Dehydrin genes in two chickpea (Cicer arietinum L.) genotypes   MCC283 

and MCC80 in the various phonological stages under drought stress was investigated. For drought treatment, 

soil-grown 30 day-old (vegetative stage), 50 day-old (flowering stage) and 60 day-old (podding stage) plants 

were subjected to progressive drought by withholding water for 2, 4, and 6 day and untreated plants were used 

as control. RNA was extracted from leaf and then cDNA was synthesized. RT-qPCR analysis of LEA and 

Dehydrin expression using specific primers showed different expression patterns in different stages of both 

chickpea genotypes. Differential expression of LEA was observed in both genotypes in various phonological stage 

and its timing, duration and intensity of drought treatments. The expression levels of Dehydrin in both 

genotypes were increased significantly from 2 to 6 day of water deficit in vegetative and podding stages. Based on 

the obtained results, the increase in LEA and Dehydrin expression in the drought treatment for both genotypes 

in the Vegetative, Flowering and podding stages might be an adaptation to overcome the stress condition, 

supplying energy for growth and survival, thus helping the plant to survive. 
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Introduction 

Chickpea (Cicer arietinum L.), one of the most 

important grain-legume crop, is grown in more than 

45 countries, mostly in arid and semiarid zones 

(Kumar and Abbo., 2001). It’s the second important 

legume in the world with 12.1 million ha under 

cultivation and with 11.1 million tonnes produced 

annually (FAOSTAT, 2012.). Drought, cold and 

salinity are the major abiotic stresses affecting 

chickpea in order of importance (Croser et al., 

2003).It has been estimated that 70% of the crop 

yield loss can be attributed to abiotic stresses, 

especially drought (Bray et al. 2000). Drought is a 

meteorological term and an environmental event, 

defined as a water stress due to lack or insufficient 

rainfall and/or inadequate water supply (Toker et al., 

2007).The seriousness of drought stress depends on 

its timing, duration and intensity (Serraj et al., 2003). 

Worldwide, 90% of chickpea is grown under rain fed 

conditions (Kumar and Abbo, 2001) where the 

terminal drought stress during the chickpea 

reproductive phase results heavy yield losses (Sharma 

2004-05). 

 

Chickpea cultivars have different response to drought 

stress and plant densities in dry conditions (Kumar 

and Dhiman, 2004). Plants respond and adapt to 

water deficit at both the cellular and molecular levels, 

for instance by the accumulation of osmolytes and 

proteins specifically involved in stress tolerance. An 

assortment of genes with diverse functions are 

induced or repressed by these stresses (Yamaguchi-

Shinozaki and Shinozaki, 2005). Most of their gene 

products may function in stress response and 

tolerance at the cellular level. Significantly, the 

introduction of many stress-inducible genes via gene 

transfer resulted in improved plant stress tolerance 

(Umezawa et al., 2006). The expression and 

interaction of these genes is complex and diverse, and 

every gene involved forms part of a coordinated 

response network. The speed and coordination of 

expression of these genes is vital for plant survival. 

The identification of differentially expressed genes 

between 2 genotypes differing in drought tolerance is 

an important indicator of drought-associated genes in  

chickpea. 

 

The interface between the expression of stress 

responsive genes and plant physiological response to 

drought stress is critical for translating molecular 

genetics into advances in crop production under 

stress conditions (Bruce et al., 2002). A large number 

of genes have been described that respond to drought 

at the transcriptional level and the mechanisms of the 

molecular response to water stress in higher plants 

have been analyzed by studying the expression of 

genes responding to drought and other abiotic 

stresses (Seki et al., 2001, Watkinson et al., 2003; 

Oono et al., 2003; Boominathan et al., 2004). 

 

Late embryogenesis abundant proteins (LEA 

proteins) were first found in cotton (Gossypium 

hirsutum) seeds, accumulating late in embryogenesis 

(Dure et al., 1981). These proteins are a diverse group 

of stress protection proteins which are classified into 

six groups. LEA proteins comprise the vast majority 

of stress-responsive proteins. Many reports have 

described LEA proteins induction in vegetative 

tissues of several plant species under water deficit 

conditions imposed by the environment or 

accumulated as part of a developmental program in 

desiccation tolerant structures or stages (Garay-

Arroyo et al., 2000). The expression profiles strongly 

supported a role for LEA proteins as protective 

molecules which enable the cells to survive 

protoplasmic water deficit (Ingram and Bartels, 

1996). An important role for at least some LEA 

proteins in cellular dehydration tolerance is indicated 

by their systematic expression at the onset of 

dehydration and the increase in stress tolerance 

observed upon over expression in different eukaryotic 

or prokaryotic hosts (Tunnacliffe & Wise, 2007). 

Several LEA genes or proteins, belonging to different 

groups, were induced during water-deficit stress in 

Arabidopsis (Bray, 2002) and maize (Boudet et al., 

2006), and played distinct roles in cells subjected to 

the stress. Group 2 LEA proteins or dehydrins are 

highly hydrophilic, glycine-rich and boiling stable 

proteins which are the most frequently described so 

far (Rorat, 2006). 
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 The dehydrins are a class of drought-induced 

proteins that lack a fixed three-dimensional structure. 

The dehydrin sequence is highly evolved and adapted 

to remain disordered under conditions of severe 

dehydration (Mouillon et al., 2008). 

 

 LEA and Dehydrin genes previously validated for 

their significance in stress responses in various model 

crops and other legumes, were amplified in chickpea 

and sequenced after purification using gene specific 

primer pairs (Roorkiwal & Sharma, 2012  (. Earlier 

studies in chickpea have also reported the induction 

of LEA and  Dehydrin under drought stress     

(Boominathan et al., 2004, Gao et al., 2008,  Deokar 

et al., 2011). Differences in water-stress    tolerance 

among cultivars, or within a cultivar at various 

developmental stages, may result from differences in 

the expression of genes in signal-perception and 

transduction mechanisms (Chinnusamy et al., 2004). 

It was important to develop a comprehensive 

understanding of LEA and Dehydrin expression at 

the RNA level in response to drought stress in 

phonological different stages. Using semi-quantitative 

method for evaluation of gene expression under stress 

condition has already been reported for some plants 

(Volkov et al., 2003).                 

 

 The objective of this study is to evaluation of 

expression level of LEA and Dehydrin transcripts as 

two important genes induced by drought stress using 

RT-PCR after drought treatments of MCC283 and 

MCC80 chickpea cultivars in phonological different 

stages. 

 

Materials and methods 

Plant materials and stress treatments 

Two germplasme accessions, MCC283 and MCC80, 

with different drought-tolerance, were selected from 

chickpea mini-core collection based on the previous 

studies (Ganjeali et al., 2009). Both the cultivars were 

individually grown in 4 L pots containing a mixture of 

70% soil and 30% sand. Three seeds per pot from the 

same cultivar were sown and a total of 15 pots per 

cultivar were used to have 3 replicates at each 

sampling. Temperature was maintained at 22± 2°C 

and relative humidity was about 50 ± 5%. 

Supplementary light giving an approximately 14 h 

light period and 10 h dark period was maintained 

during experiment. The pots were irrigated with 200 

ml water every day. For drought treatment, soil-

grown 30 day-old (vegetative stage), 50 day-old 

(flowering stage) and 60 day-old (podding stage) 

plants were subjected to progressive drought by 

withholding water for 2, 4, and 6 d respectively. In 

this period the soil moisture content decreased from 

approximately 50% to approximately 20% at the end 

of 6 d. As a control some plants were kept under the 

same condition for the same period without water 

stress. Drought stressed leave samples were harvested 

at the same time of the 2, 4, and 6 day, to avoid 

diurnal changes; immediately frozen in liquid 

nitrogen and stored at -80°C before RNA isolation.  

 

RNA isolation and construction of subtracted cDNA 

library  

Total RNA was isolated from the frozen tissues of 

both the drought treated and control plants using 

modified RNA extraction buffer containing 100 mM 

Tris-HCl, pH =8; 100 mM liCl; 10 mM EDTA, pH = 8; 

and 1% SDS, according to the hot phenol method 

described by Verwoevd et al. (1989). The RNA quality 

and integrity was determined by analyzing 4 ml of 

total RNA by agarose gel electrophoresis RNA 

quantity was also checked using the NanoDrop 1000 

spectrophotometer (Wilmington Wilmington U.S.A). 

To eliminate any contaminating genomic DNA, 

samples of RNA were treated, prior to cDNA 

synthesis, with RNase-free DNase Kit (Fermentas, 

Hanover, MD). First-strand cDNA was synthesized 

from 5 mg of total RNA treated with DNase I using 

200U reverse transcriptase (Fermentas). Second 

strand cDNA was synthesized using 10 U of DNA 

polymerase I and RNaseH (Fermentas) according to 

the manufacturer’s instructions. 

 

Real-Time RT PCR 

Real-time quantitative RT-PCR was carried out using 

an ABI 7500 Real-time PCR System and 7500 System 

software version 1.2.3 (Applied Biosystems). The 

Hsp90 gene used as reference gene (Rapacz, et al., 
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2012) was amplified in parallel with the target gene 

allowing gene expression normalization and 

providing quantification. LEA and Dehydrin genes 

primers were developed. The primer sequence 

(designed by Primer Premier 3.0) is shown in Table 1. 

 

RT-PCR was performed to measure the relative 

expression level of   LEA (Accession Number, 

HO063258) and Dehydrin genes (Accession Number, 

AY170010.1). After amplification of cDNA using 

specific primers (Table 1), Detection of real-time RT-

PCR products was done using the SYBR® Green 

Universal Master Mix kit (ABI) following 

manufacturer's recommendations. Ten micro liters of 

each sample were run using 2% agarose gel 

electrophoresis and visualized with ethidium 

bromide. PCR efficiencies of target and reference 

genes were determined by generating standard 

curves. 

 

The reaction conditions were 50°C for 2 min, 95°C for 

10 min, 45 cycles at 95°C for 2 min, 62°C for 30 s and 

72°C for 30 s; the data were collected in the last phase 

(extension phase). All amplification reactions were 

repeated three times under identical conditions and 

included a negative control. For the Quantitative Real 

Time PCR data, the relative expression for the genes 

of interest was calculated using the threshold cycle 

(CT) method. The CT values were plotted against the 

log of the known starting concentration value and 

from the slope of the regression line (y). 

Quantification of the relative transcript levels was 

performed using the comparative CT method. 

Transcript levels of target genes were normalized 

against the Hsp90 gene transcript levels as described 

in the 7300 Real Time System (Applied Biosystems). 

The induction ratio (IR) was calculated as 

recommended by the manufacturer and corresponds 

to 2−ΔΔCT, where ΔΔCT = (CT, Target gene − CT, 

Hsp90) stressed − (CT, Target − CT, Hsp90) control. 

Relative quantification relies on the comparison 

between expression of a target gene versus a reference 

gene and the expression of same gene in target 

sample versus reference sample. 

 

Results 

Expression of   LEA 

 Expression level of LEA transcripts in two chickpea 

cultivars (MCC283 and MCC80) were determined by 

RT-PCR. Differential expression of LEA was observed 

in both genotypes in various phonological stage and 

its timing, duration and intensity of drought 

treatments. The increase in LEA expression in 

MCC283 genotype under 6 day treatment implies a 

more rapid expression response, in comparison to the 

other periods of exposure. The expression level of 

LEA in MCC283 cultivar was increased significantly 

from 4 to 6 day of water deficit in vegetative and 

podding stages. However, the expression level of LEA 

was increased significantly from 2 to 4 day of water 

deficit in flowering stage. However, for the tow first 

drought treatment period (2 and 4 day), at the same 

level in vegetative stage expresses maintained. 

(Figure1).

 

Table 1. Primers used for RT PCR. 

 Name Sequence 

  FW- LEA 5' GCC TTA TCT TCT ATG TTG CCA ATC 3' 

  RV- LEA 5' CCA CGA CCA AAG TTA CAG AGC 3' 

  FW- Dehydrin 5' AAA GTG GTG TTG GGA TGA CC 3' 

  RV- Dehydrin 5' TCC TCT CTC CCG AAT TCT TG 3' 

  FW- HSP90 5' CAG AGG GCT GTG TGC ATG AT 3' 

  RV- HSP90 5' GAT GCG GGA GAA GAC CTC AA3' 

In the vegetative stage, there were slower and steadier 

increases in the expression level during the treatment 

periods of LEA in MCC80 genotype from 2 to 6 day of 

water deficit. In the flowering stage under 2 and 4-d 

drought treatments of LEA in MCC80 genotype, its 

expression increased significantly. However, the 

expression level of LEA increased significantly from 4 

to 6 day of water deficit in podding stage (Figure 1). 
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Expression of   Dehydrin 

Expression level of Dehydrin transcripts in two 

chickpea genotypes (MCC283 and MCC80) Were 

determined by RT-PCR. Differential expression of 

Dehydrin was observed in both genotypes in the 

various phonological stage and its timing, duration 

and intensity of drought treatments. The expression 

level of Dehydrin in MCC283 cultivar was increased 

significantly from 2 to 6 day of water deficit in 

vegetative and podding stages. However, increases in 

expression level of Dehydrin were significant from 2 

to 4 day of water deficit in flowering stage. (Fig. 1). 

Fig. 1. Relative expression of LEA gene under 

drought treatment in MCC283 and MCC80 chickpea 

genotypes in phonological different stages. The error 

bars indicates the standard deviations of 

measurements (n = 3). 

 

Although not statistically significant, expression 

increased of Dehydrin in MCC80 genotype when the 

drought increased from 2 to 6 day in flowering stage. 

However, the expression level of Dehydrin   increased 

significantly from 2 to 6 day and from 4 to 6 day of 

water deficit in vegetative and podding stages 

respectively. In the flowering stage, there were slower 

and steadier increases in the expression level during 

the treatment periods of Dehydrin in MCC80 

genotype from 2 to 6 day of water deficit (Figure 2).  

Fig. 2. Relative expression of Dehydrin gene under 

drought treatment in MCC283 and MCC80 chickpea 

genotypes in phonological different stages. The error 

bars indicates the standard deviations of 

measurements (n = 3). 

 

Discussion 

Abiotic stresses, such as drought, can limit the 

geographical distribution of plants and limit the 

growth and yield of economically important species. 

Substantial efforts have been devoted to determine 

the nature of the injury caused by these stresses and 

the plant-protection mechanisms involved in 

tolerance responses (Bray, 2004). Tolerance of 

drought is a complex phenomenon, because it 

changes according to drought intensity and duration, 

and the plant developmental stage during which 

drought occurs. Differences in water-stress tolerance 

among cultivars, or within a cultivar at various 

developmental stages, may result from differences in 

the expression of genes in signal-perception and 

transduction mechanisms (Chinnusamy et al., 2004).  

Understanding the mechanisms involved in the 

response of plants to adverse environmental 

conditions is, without a doubt, the first step in the 

generation of crops with higher tolerance to stress. 

Molecular responses to water deficiency have mainly 

been investigated in terms of survival of stress. (Iuchi 

et al., 2000). Gene products involved in water-deficit 

responses can be includes proteins, osmolytes, and 

other compounds that probably confer direct 

tolerance to abiotic stresses, including chaperones, 

late embryogenesis abundant (LEA) proteins, such as 

LEA14 (Singh et al., 2002), mRNA-binding proteins, 

such as glycine-rich protein (Bocca et al., 2005), key 

enzymes for osmolyte biosynthesis, such as galactinol 

synthase and delta-1-pyrroline-5-carboxylate 

synthetase, involved in synthesis of raffinose-family 

oligosaccharides (Hannah et al.,2006) and proline 

(Schafleitner et al., 2007). 

 

This study provides a comparative of genotype-

specific expression patterns of two unigenes in 

chickpea phonological different stages in response to 

drought. The regulation of this gene was confirmed by 

real-time qPCR.  
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To determine whether drought stress is involved in 

the expression level of LEA and Dehydrin  genes 

quantification of transcripts of these genes under 

performed by  RT-PCR analysis to find the changes in 

transcript level of these genes under phonological 

different stages. 

 

 In the present study, LEA and Dehydrin genes in 

both chickpea genotypes showed different expression 

patterns in different stages (Figure1, 2). Data from a 

number of previous studies suggested accumulation 

of LEA and Dehydrin was correlated with stress 

tolerance in chickpea (Gao et al., 2008, Deokar et al., 

2011), oat (Maqbool et al., 2002), rice (Moons et 

al.,1997), wheat  (Ried and Walker-Simmons, 1993), 

and tobacco (Kim et al. 2005). 

 

The increase in LEA and Dehydrin   expression in the 

drought treatment for both genotypes in the 

Vegetative, Flowering and podding stages might be an 

adaptation to overcome the stress condition, 

supplying energy for growth and survival, thus 

helping the plant to survive (Figure1, 2). But the 

drought-tolerant genotype, MCC283 that we studied 

seemed to increase synthesis of osmotic regulators for 

protection against water-deficit damage, more, the 

drought-sensitive genotype MCC80. In other hand, 

drought-tolerant MCC283 showed higher molecular 

responses to drought at the all stages; it probably 

perceives water stress more quickly than the sensitive 

genotype MCC80, allowing it to adapt and ensure 

reproduction because of the role of LEA and 

Dehydrin  proteins as protective molecules that 

enable cells to survive protoplasmic water depletion. 

In contrast, MCC80 presented later perception of, 

and defense to, stress, conferring survival ability. 

However, our molecular data, gene-expression values, 

suggest that the same molecular mechanisms operate 

in both genotypes at different stages in response to 

drought.  

 

More in depth expression studies involving the use of 

additional genotypes and more time-points 

supplemented with physiological observations during 

stress imposition may possibly provide a better 

insight into the role of the proposed genes in drought 

responses in chickpea. The identification of genes 

involved in tolerance to these stresses and their 

required timing of expression shall greatly aid 

development of elite chickpea cultivars through 

molecular breeding or genetic manipulation. 
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