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Abstract 

   
Drought stress is one of the major abiotic stresses in agriculture worldwide. This study was carried out to 

investigate the effect of drought stress at grain filling period on photosynthesis, gas exchange parameters and 

grain yield in twelve varieties of barley. To this end, an experiment was laid out in a split-plot arrangement based 

on randomized complete blocks design with three replications during 2010 to 2011 seasons at the field research 

of Razi University, Kermanshah state in the west of Iran. The results showed that post anthesis water deficiency 

caused 22 percent reduction in grain yield and had not signification effect on plant height. In addition, drought 

stress at grain filling period can considerably decreased leaf photosynthesis rate (Pn), stomatal conductance (gs) 

and transpiration rate (Tr), and increased sub-stomatal CO2 concentration (Ci). The results showed that by 

imposing water deficit, Pn, gs and Tr was reduced in all studied barley genotypes. Pn, gs and Tr were statistically 

higher in full irrigation treatment as compared to drought stress by an average of 32.3, 19 and 15%, respectively. 

The decrease in the net photosynthetic rate in the grain filling stage of drought stress was related to the closure 

of stomata and decreased stomatal conductance. Our data revealed the better performance of ‘Karoun’ than 

‘Nosrat’, ‘Sararud’ and other genotypes in the reduction rate of grain yield at maturity and photosynthetic 

features against soil water deficit conditions 
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Introduction 

Barely (Hordeum vulgare L.) is one of the five 

important crops that commonly used as human and 

animal feed and also malt production (FAOSTAT, 

2010). Among all the factors limiting barley 

productivity, drought remains the single most 

important factor affecting the world security and 

sustainability in agricultural production. Drought is 

undoubtedly one of the most important 

environmental stresses limiting the productivity of 

crop plants around the world (Bohnert et al., 1995; 

Farooq et al., 2009).  

 

The typical first response of all plants to water deficit 

is osmotic adjustment that is by synthesizing and 

accumulating compatible osmolyte such as proline, 

glycine betaine (GB) and reducing soluble sugars 

including monosaccharaides, disaccharides and 

oligosaccharides (Chaves et al., 2003; Ashraf and 

Foolad, 2007). Also up-regulating of enzymatic 

antioxidant as superoxide dismutase (SOD), catalase 

(CAT) and peroxidase (POX) and also non-enzymatic 

antioxidants as vitamin E, carotenoids (carotene and 

xanthophyll) and soluble antioxidant including 

ascorbate and glutathione can is in order to overcome 

oxidative stress due to drought conditions (Esfandiari 

et al., 2009; Gill and Tuteja, 2010; Liu et al., 2011; 

Sarafraz-Ardakani et al., 2014). In drought stress 

environment, some of plant uses drought escape 

mechanism and therefore, reduces vegetative and 

reproductive stages (Mohammadi et al., 2006; Sabeti, 

2011). Drought stress can influence on the procedure 

of cell expansion via physical and metabolic changes. 

For instance, a change in the slope of water potential 

can directly influence the cell’s expansion (Kramer 

and Boyer, 1995). Along with the increasing of 

humidity stress, plant height decreases (Neilson and 

Nelson, 1998). Also, drought stress reduces plant 

height (Soler et al., 2007), leaf area (Pandey et al., 

2000), shoot growth and grain yield (Zand-Parsa and 

Sepaskhah, 2001). 

 

Photosynthesis, which is the most significant process 

influence crop production, is also inhibited by 

drought stress (Shangguan et al., 2000). Water deficit 

inhibits photosynthesis by causing stomatal closure 

(stomatal factor) and metabolic damage (non-

stomatal factor). Stomatal closure is one of the 

earliest responses of plants to water deficit that limits 

transpirational water loss and helps plants to retain 

water status under drought. However, closure of 

stomata in turn, results in reduction of CO2 

availability for photosynthetic carbon metabolism, 

depresses net CO2 assimilation rate and inhibits 

plants ability for dry matter accumulation (Chaves et 

al., 2009). In addition, declines in the CO2 availability 

to the Calvin cycle enzymes result in lower 

regeneration of NADP+ and production of excess 

excitation energy that damages photosystems 

(Hajiboland, 2014). Kirnak et al. (2001) have found 

that water stress results in significant decreases in 

chlorophyll content, electrolyte leakage, leaf relative 

water content and vegetative growth; and plants 

grown under high water stress have less fruit yield 

and quality. The present study aims to determine 

water deficit effects on photosynthesis and gas 

exchange parameters in leaves of twelve barley 

(Hordeum vulgare L.) genotypes and to determine 

the relationship between some morphological traits 

with grain yield under water deficit. 

 

Materials and methods 

Plant material and treatments 

This research carried out during 2010 to 2011 

growing season in the field research of Campus of 

Agriculture and Natural Resources, Razi University, 

Kermanshah state in the west of Iran (34º 20' N 

latitude, 47º 20' E longitude, elevation 1351 m above 

sea level) in the moderate-cold and semi-arid zone. 

The soil was a clay loam (39.1% clay, 37.7% silt and 

23.2% sand) and the experiment was laid out in a 

split-plot arranged as a randomized complete blocks 

design with three replications. Two levels of moisture 

regimes i.e., well water (irrigation in all stages of 

plant growth normally) and drought stress (post 

anthesis water deficiency with withholding of 

irrigation) as the main-plot and different improved 

barley genotypes i.e., ‘Aras’, ‘Afzal’, ‘Jonub’, ‘Reihan’, 

‘Zarjo’, ‘Sararud’, ‘Sahra’, ‘Fajr-30’, ‘Karoun’, ‘Gorgan-

4’, ‘Makuei’ and ‘Nosrat’ as sub-plot were considered. 
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Some growing characteristics of genotypes used in the 

experiments are shown in Table 1. The seeds of barley 

genotypes were obtained from Seed and Plant 

Improvement Institute, Agricultural and Natural 

Resources Research Center of Kermanshah, Iran. 

Each plot included 6 rows 20 cm apart, 2 meters long, 

3 and 1 meters distances were taken between test 

plots and replicates, respectively. Fertilizers were 

applied to the field according to the soil analysis. 

Seeds were sown at a density of 400 seeds m-2 on 12th 

October 2010. The experimental plots received 

similar management practices such as land 

preparation, weed control and etc. Date of anthesis 

was determined from middle rows in each plot when 

50% of the spikes had extruded anthers (Ehdaie et al., 

2006). Humidity and moderate temperatures during 

the crop season is presented in Table 2. 

 

Gas exchange measurements 

The net photosynthesis rate (Pn), stomatal 

conductance (gs), transpiration rate (Tr) and sub-

stomatal CO2 concentration (Ci) were measured using 

a portable photosynthesis system LI-6400 (LI-COR, 

Lincoln, USA) on the flag leaves on midday (09:00-

12:00) at 14 day after anthesis. Photosynthetically-

active radiation (PAR) of 1200-1600 μmol (photon) 

m-2 s-1 was provided at each measurement by the 

ambient CO2 concentration of 380-400 ppm and full 

sunlight. 

 

Grain yield and some agronomic traits 

Grain yield for each genotype were measured by  

harvesting 1 m2 of the central part of each plot at crop 

maturity. In order to measuring plant height, 10 

plants randomly selected and measurement were 

performed. 

 

Statistical analyses 

Statistical analyses were performed using SAS 

statistical software (version 9.0). The significant 

differences between treatments were compared with 

the critical difference at 5% probability level by the 

Duncan’s test. The figures were drawn using Excel 

software (version 10). 

 

Results and discussion 

Leaf photosynthetic rate and gas exchange 

The main effects of moisture and genotype were 

highly significant for all the measured traits (Figure 

1). Also, the interaction between genotype by 

moisture was also significant for all gas exchange 

traits. Leaf gas exchange parameters indicated that 

under soil moisture stress net photosynthesis rate 

(Pn), stomatal conductance (gs) and transpiration 

rate (Tr) declined in all genotypes tested. The mean 

decreases were 32.3%, 19% and 15%, respectively 

(Figures 1A, B, C). The results in this experiment 

confirmed several previous studies showing that 

water deficit stress significantly affects gas exchange, 

water relations and physiology in wheat, tomato and 

other plant (Srinivasa Rao et al., 2001; Tahi et al., 

2007; Saeidi et al., 2010; Ghaderi et al., 2011; Nguyen 

et al., 2012; Abdoli and Saeidi, 2013). 

 

Table 1. Characteristics of genotypes used in the experiments. 

Number Name Characteristics 

Number or rows per spike Growth habit Source 

No. 1 Aras Two rows Winter SPII † 

No. 2 Afzal Six rows Winter SPII 

No. 3 Jonub Six rows Winter SPII 

No. 4 Reihan Six rows Winter SPII 

No. 5 Zarjo Six rows Winter SPII 

No. 6 Sararud Two rows Winter SPII 

No. 7 Sahra Six rows Winter SPII 

No. 8 Fajr-30 Six rows Winter SPII 

No. 9 Karoun Six rows Winter SPII 

No. 10 Gorgan-4 Two rows Winter SPII 

No. 11 Makuei Six rows Winter SPII 

No. 12 Nosrat Six rows Winter SPII 

† Seed and Plant Improvement Institute of Iran. 



 

369 Azhand et al.  

 

Int. J. Biosci. 2015 

Under well-watered conditions, ‘Fajr-30’ and ‘Sahra’ 

had the highest Pn (14.2 and 12.2 μmol(CO2) m-2 s-1, 

respectively) and ‘Zarjo’ and ‘Karoun’ the lowest (9.5 

and 9.3 μmol(CO2) m-2 s-1, respectively). Under 

drought stress ‘Sahra’ and ‘Afzal’ had the highest (9.2 

μmol(CO2) m-2 s-1) and lowest (5.8 μmol(CO2) m-2 s-1) 

Pn values, respectively (Figure 1 A). Results revealed 

that Pn and gs in ‘Karoun’, ‘Makuei’ and ‘Reihan’ was 

lower influenced by drought stress in comparison to 

other genotypes (Figure 1). Azizian and Sepaskhah 

(2014) reported that Pn and gs were statistically 

decreased in water deficit by an average of 30 and 

43% as compared to full irrigation treatment, 

respectively. Abdoli and Saeidi (2013) reported that 

net photosynthesis rate generally decreased with 

chlorophyll content and also this was paralleled by a 

lower stomatal conductance. Stomatal closure is one 

of the earliest responses of plants to water deficit that 

limits transpirational water loss and helps plants to 

retain water status under drought. However, closure 

of stomata in turn, results in reduction of CO2 

availability for photosynthetic carbon metabolism, 

depresses net CO2 assimilation rate and inhibits 

plants ability for dry matter accumulation (Chaves et 

al., 2009; Zoubeir et al., 2012).  

 

Table 2. Mean of minimum (T min) and maximum (T max) air temperature, minimum (RH min) and maximum 

(RH max) relative humidity and also total rainfall at the site of experiment during 2010-2011. 

Characteristic Oct. Nov. Dec. Jan. Feb. Mar. Apr. May. Jun. 

T min (°C) 10.6 4.5 -1.5 -2.2 -2.7 0.6 4.5 9.5 12.8 

T max (°C) 30.3 21.9 16.8 9.6 8.0 15.4 20.1 23.6 33.8 

Rainfall (mm) 1 31 24 50 65 21 47 128 0 

RH min (%) 13.2 22.8 26.5 47.1 52.1 28.1 24.6 33.6 11.3 

RH max (%) 46.4 66.8 62.4 91.0 94.2 82.0 78.8 87.4 51.1 

Source: Meteorological Office, Iran. 

Drought conditions, as expected, reduced stomatal  

opening and in consequence, decreased net 

transpiration rates. In general, resistant genotypes 

performed higher Pn, gs and Tr than susceptible ones 

under either conditions (Figure 1). Under controlled 

conditions, ‘Afzal’ and ‘Gorgan-4’ had the lowest 

stomatal conductance (0.073 mol m-2 s-1) and ‘Sahra’ 

and ‘Makuei’ the highest (0.130 mol m-2 s-1) (Figure 1 

B). Minimum and maximum gs under drought stress 

was observed in ‘Afzal’ and ‘Makuei’ (0.063 and 0.113 

mol m-2 s-1, respectively). Plants respond to drought 

primarily by closing stomata for minimizing water 

loss (Yordanov et al., 2003; Chaves et al., 2009). The 

decrease in stomatal conductance may be derived 

from the decrease in hydraulic conductivity between 

soil and plant or from the shortage in the oxygen 

supply to the root system (Vartapetian and Jackson, 

1997; Mohd et al., 2010). 

 

The averages of sub-stomatal CO2 concentration (Ci) 

of different genotypes in controlled condition were 

166 µmol(CO2)/mol air, while under water deficiency 

stress these values significantly increased to 208 

µmol(CO2)/mol air (Figure 1C). Aghaee and 

Ehsanzadeh (2011) reported that water deficit led to 

decreases in Pn and gs, but it led to increases in Ci. 

Also, reported it seems that water deficit stress leaves 

negative impacts on all components of photosynthesis 

in oilseed pumpkin (Cucurbita pepo L.), including 

photosynthetic surfaces, stomatal closure and 

mesophyll cell activities. For genotypes, Ci was 

increased significantly under water deficits (Figure 

1C); the increase percentage in ‘Aras’ and ‘Afzal’ 

(52.4% and 64.8%, respectively) was higher than 

‘Jonub’ and ‘Sararud’ (9.1% and 9.5%, respectively) 

under drought stress condition. But, under mild or 

moderate drought stress stomatal closure (causing 

reducted leaf internal CO2 concentration) is the major 

reason for reduced rates of leaf photosynthetic 

(Chaves, 1991; Cornic, 2000; Flexas et al., 2004). 

 

Mean comparisons showed that ‘Fajr-30’ with 4.80  

mol(H2O) m-2 s-1 and ‘Aras’ with 2.55 mol(H2O) m-2 s-

1, respectively had the highest and the lowest 
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transpiration rate under non-stress condition (Figure 

1 D). But, under drought stress environment ‘Sahra’ 

and ‘Makuei’ genotypes with 3.38 and 3.55 mol(H2O) 

m-2 s-1 and also, ‘Jonub’ with 1.99 mol(H2O) m-2 s-1, 

respectively had the highest and the lowest 

transpiration rate (Figure 1 D). The decrease in the 

transpiration rate per leaf area of drought stress was 

related to the closure of stomata and decreased 

stomatal conductance (Abdoli and Saeidi, 2013). 

According to Chaves et al. (2003) discrepancies in 

results concerning the contribution of stomatal and 

non-stomatal factors in photosynthesis inhibition 

may be explained by differences in the rate of 

imposition and severity of stress, developmental stage 

and plant condition, species studied and 

superimposition of other stresses. 

 

In full irrigation and water-withholding at anthesis 

conditions, a positive correlation was found between 

Pn and transpiration rate. Also, a positive correlation 

was found between gs and transpiration rate (Figure 

3). Tavakoli et al. (2011) reported that the correlation 

of photosynthesis and stomatal conductance showed 

that the stomatal limitation was very important than 

non-stomatal limitation. 

 

Grain yield and agronomic traits 

The results obtained from mean comparison analysis 

of grain yield and plant height are shown in Figure 2. 

Showed that post anthesis water deficiency stress 

caused 22% reduction in grain yield. The averages of 

grain yield of different genotypes in well watered 

condition were 6130 kg ha-1, while under water 

deficiency stress these values significantly reduced to 

4783 kg ha-1. Closure of stomata and decrease in CO2 

concentration as an initial response to water stress 

inhibited dry mater production due to limitation of 

photosynthesis (Ready et al., 2004) and so that 

decreased of grain yield. Gupta et al. (2001) evaluated 

two spring wheat genotypes, Kalyansona and C-306, 

for yield and yield attributes and noted that water 

stress caused significant reduction in plant height, 

leaf area, number of grain per spike, test weight and 

yield.  

 

 

Fig. 1. Influence of drought stress on net 

photosynthetic rate, Pn (A), stomatal conductance, gs 

(B), sub-stomatal CO2 concentration, Ci (C) and 

transpiration rate, Tr (D) of flag leaf (14 days after 

anthesis) of barley genotypes. Vertical bars represent 

± standard deviation (SD). 

 

The results showed that there were significant 

differences among genotypes in respect to grain yield 

under non-stress condition. Also, significant 

differences were observed among genotypes under 

stress condition (Figure 2). These results demonstrate 

high diversity among genotypes that enable us to 

select genotypes under non-stress and stress 

environments. Mean comparisons showed that 

‘Nosrat’, ‘Karoun’ and ‘Jonub’ genotypes with 8383, 
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7777 and 7483 kg ha-1, respectively had the highest 

and ‘Afzal’ with 3919 kg ha-1 had the lowest grain yield 

under non-stress condition (Figure 2 A). But, under 

drought stress environment ‘Nosrat’, ‘Karoun’ and 

‘Sararud’ genotypes with 6959, 6561 and 6300 kg ha-1 

and also, ‘Afzal’, ‘Sahra’ and ‘Aras’ genotypes with 

3393, 3268 and 3219 kg ha-1, respectively had the 

highest and the lowest grain yield (Figure 2 A).  

Fig. 2. Influence of drought stress on grain yield (A) 

and plant height (B) of barley genotypes. Vertical bars 

represent ± standard deviation (SD). 

 

Blum and Pnuel (1990) reported that the final grain  

yield and its associated traits of bread wheat were  

significantly decreased due to water stress. Reduction 

in kernel weight of wheat was also reported by various 

other researchers (Anjum et al., 2011; Abdoli and 

Saeidi, 2012). Kar et al. (2007) observed that under 

water deficit condition, supplemental irrigation 

during reproductive phases had a significant effect on 

increasing seed yield. Water stress at flowering 

negatively influenced the formation of grain, grain 

size, resulting in lower final grain yield. 

 

The results showed that, plant height was no 

significantly affected by water deficit after anthesis 

stage (Figure 2 B). ‘Zarjo’, ‘Makuei’ and ‘Karoun’ had 

the longest stem (87.5, 84.4 and 81.6 cm, 

respectively) and ‘Jonub’ lower stem length (52.6 cm) 

(Figure 2 B). Richards et al. (2001) have reported that 

one of the major effects of water stress is to decrease 

plant height, which also caused a reduction in dry 

matter accumulation and subsequently plant 

production. 

Fig.  3. Relationship between the grain yield (GY), 

net photosynthesis rate (Pn), stomatal conductance 

(gs) and transpiration rate (Tr) of barley genotypes 

under drought stress. 

 

Conclusion 

In conclusion, results of this study indicated that 

drought stress at grain filling period can considerably 

decrease grain yield of barley, as well as significantly 

reduced gas exchange parameters such as Pn, gs and 

Tr, and increased sub-stomatal CO2 concentration, 

but had not signification effect on plant height. 

Overall, ‘Karoun’ genotype was less affected by water 

deficit in comparison with other genotypes in terms of 

photosynthetic function as indicated by less reduction 

in gas exchange and agronomic traits. The results of 

present research may contribute toward choosing 

parents for stress tolerance breeding in Iranian barley 

genotypes. 
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