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ABSTRACT 
 

Mangrove vegetation represents one of the most diverse and productive coastal ecosystems globally. However, 

mangroves located at the mouth of the Butuanon River (Class D) in Mandaue City are subjected to significant 

effluent discharge from surrounding urban areas. Despite this environmental stress, the impact of such pollution 

on mangrove health remains understudied. This study investigates the relationship between effluent and 

sediment parameters and mangrove diversity, abundance, and productivity along the Butuanon River. Five 

sampling stations were randomly established, where mangrove species identification, quantification, diversity 

assessment, productivity measurements, and physicochemical analyses (water and sediment) were conducted. 

Multivariate statistical analyses, including Detrended Correspondence Analysis (DCA), Non-Metric 

Multidimensional Scaling (NMDS), Analysis of Similarities (ANOSIM), and Pearson’s correlation, were employed 

to evaluate ecological patterns. Results indicate a decline in mangrove diversity, attributed to the dominance of 

Avicennia alba. Key physicochemical parameters such as water hardness, pH, salinity, and temperature exhibited 

an inverse relationship with mangrove abundance, diversity, and productivity, unlike biochemical oxygen 

demand (BOD). However, these parameters had minimal impact on the resilient A. alba. Productivity trends 

revealed higher mangrove productivity at upstream sites, decreasing toward the river mouth. These findings 

suggest that the Butuanon River’s mangrove ecosystem is critically degraded, with poor productivity and 

biodiversity loss driven by effluent pollution. Urgent remediation measures are needed to mitigate further 

ecological decline and preserve this vital coastal habitat. 
 

*Corresponding Author: John Michael B. Genterolizo  jm.genterolizo@usjr.edu.ph 

  

 

  

  

  

  
 

Journal of Biodiversity and Environmental Sciences | JBES 

ISSN: 2220-6663 (Print); 2222-3045 (Online) 

Website: https://www.innspub.net 

E-mail contact: info@innspub.net 

Vol. 27, Issue: 2, p. 77-89, 2025 

 



J. Biodiv. & Environ. Sci. Vol. 27, Issue: 2, p. 77-89, 2025 

 

78 Genterolizo et al.  Journal of Biodiversity and Environmental Sciences | JBES 
Website: https://www.innspub.net 

 

INTRODUCTION 

Mangrove vegetation represents one of the most 

diverse and productive coastal ecosystems, playing a 

critical role in maintaining habitat complexity and 

supporting associated faunal biodiversity (Alongi, 

2002). However, these vital ecosystems face 

increasing threats from anthropogenic activities, 

including population pressure, unsustainable wood 

extraction coastal industrialization, and rapid 

urbanization (Macintosh and Ashton, 2002; Walters, 

2005). Despite their ecological fragility, mangroves 

provide indispensable ecosystem services, such as 

serving as nursery grounds for juvenile fish that 

sustain offshore fisheries (English et al., 1997), 

improving water quality through pollutant filtration, 

and preserving biodiversity and genetic resources. 

Consequently, growing recognition of their ecological 

and socioeconomic value has spurred global efforts 

toward mangrove conservation and rehabilitation 

though their species composition, diversity, and 

biomass remain highly sensitive to environmental 

disturbances. 

 

The Butuanon River in Cebu exemplifies such 

degradation, ranking among the region’s most 

polluted water bodies due to unchecked urban and 

industrial development. Classified as Class D by the 

Department of Environment and Natural Resources 

(DENR), its waters are deemed unsafe for human 

consumption, reflecting severe contamination. 

Despite rehabilitation initiatives, such as the United 

States-Asia Environmental Partnership Program 

(1996–1999), water quality remains critically poor, 

with persistent pollution from surrounding 

municipalities. This underscores the urgent need to 

evaluate the river’s ecological health, particularly its 

mangrove ecosystems, which serve as a natural sink 

for downstream pollutants. 

 

Despite enduring heavy effluent loads from Cebu and 

Mandaue Cities, mangroves at the Butuanon River’s 

mouth demonstrate remarkable resilience. While 

prior studies have monitored water quality, the long-

term effects of pollution on mangrove diversity, 

abundance, and productivity remain unassessed. This 

study addresses this gap by examining the 

relationship between effluent and sediment 

parameters and mangrove ecological health. By 

quantifying these dynamics, the research aims to 

provide the relationship between the parameter of 

effluents and sediment to the mangrove diversity, 

abundance, and productivity of Butuanon River, 

Mandaue City, Cebu. 

 

MATERIAL AND METHODS 

Study site  

The study was conducted in the estuarine portion of 

the mouth of Butuanon River, Mandaue City, Cebu. 

The study site has the geographic coordinates of 

10°20’27”N and 123°58’12”E. The study site has an 

average temperature of 27.4°C, with a significant 

rainfall throughout the year that has 1,687 mm of 

precipitation annually (Fig. 1). 

 

 

Fig. 1. Map of the study site, Butuanon mangrove 

area 

 

Sampling method  

Five stations were established randomly in the 

mangrove area located at the mouth of Butuanon 

River near Sitio Tambis, Paknaan, Mandaue City. A 

total of ten (10) belt transects of 100 meters with 

three (3) 10x10m quadrats each were distributed 

among five (5) stations. The quadrats were located on 

1-10m, 45-55m and 90-100m each belt transect and a 

total of 30 sampling sites (Fig. 2). 

 

Mangrove species identification and 

quantification 

Mangrove species were identified in situ and 

taxonomically classified using the field guide manual 
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for Philippine mangroves (Primavera and Sabada, 

2012). For each sampling station, all individuals 

within established quadrants were counted and 

recorded to determine species composition and 

distribution. 

 

 

Fig. 2. Map of the sampling stations in the Butuanon 

River, Mandaue City, Cebu 

 

Physicochemical parameters 

Water samples were collected during high tide at 

approximately 1 m depth (Haugland et al., 2005) 

using 300 mL dissolved oxygen (DO) bottles 

following standard protocols (USEPA, 1998), 

ensuring complete submersion without air bubble 

entrapment (Grasshoff et al., 1983).  

 

Samples were immediately preserved at 6°C (APHA, 

2017) and analyzed within 6 hours using a DO test kit 

to minimize gas exchange (Strickland and Parsons, 

1968). Biochemical oxygen demand (BOD) was 

determined by comparing initial DO measurements 

with values obtained after 5-day dark incubation at 

20°C (Penn et al., 2009). Water hardness was 

analyzed via EDTA titration (Betz and Noll, 1950) 

using 100 mL HDPE-collected samples, with total 

hardness (mmol/L) calculated as Ht = (V1 × c)/W1 × 

1000, where V1 = titrant volume (mL), c = EDTA 

molarity (mol/L), and W1 = sample volume (mL). 

Temperature, salinity, and pH were measured in situ 

using calibrated GLX sensors for immediate and 

accurate readings. 

 

Species abundance, diversity, and 

productivity 

Species abundance was calculated as (total 

individuals of a species/number of quadrants where 

present) × 100 (Mishra, 1968) and categorized per 

Dagar et al. (1991) as: Dominant (>25%), Very 

Abundant (15-25%), Abundant (10-15%), Frequent (6-

10%), Occasional (3-6%), Rare (1-3%), or Very Rare 

(<1%). Diversity was assessed using Simpson's Index 

(D = 1 - Σ[n(n-1)/N(N-1)]), where n = individuals per 

species and N = total individuals, with values ranging 

from 0 (no diversity) to 1 (infinite diversity) (Krebs, 

1989). Mangrove productivity was evaluated through 

diameter at breast height (DBH), measured at 1.35 m 

aboveground and calculated as DBH = 

circumference/π, providing a standardized metric for 

growth comparisons across individuals. 

 

Statistical analysis 

Multivariate analyses were performed in R (version 

X.X.X) using the vegan package to examine ecological 

patterns. Detrended Correspondence Analysis (DCA) 

was applied to ordinate species distributions while 

correcting for arch distortion through segment 

rescaling. Non-metric Multidimensional Scaling 

(NMDS) visualized community dissimilarities based 

on Bray-Curtis distances. Analysis of Similarity 

(ANOSIM) tested for significant differences between 

predefined groups (R statistic; 999 permutations), 

while Spearman's rank correlation (ρ) assessed 

relationships between non-parametric variables. All 

analyses were conducted at α = 0.05 significance 

level. 

 

RESULTS AND DISCUSSION 

Environmental and effluent parameters 

Fig. 3 illustrates significant spatial variations in 

water quality parameters across study sites. 

Dissolved oxygen (DO) concentrations ranged from 

critically low levels of 0.15 mg/L at Site 3 to 0.35 

mg/L at Sites 4-5, substantially below the optimal 

range of 4-7 mg/L required for healthy mangrove 

ecosystems (Rahmah et al., 2013). These hypoxic 

conditions, evidenced by black water discoloration 

and hydrogen sulfide odors, correlate with observed 

organic waste accumulation along riverbanks. 

Biochemical oxygen demand (BOD) levels exceeded 

mangrove tolerance thresholds (5-6 mg/L), 

indicating intense microbial activity (Rakocinski, 

2012). Water hardness (60-100 mg/L as CaCO₃) 

classified the system as hard water, suggesting 

chemical contamination from anthropogenic sources 
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(Wahid, 1995). While pH (7.2-7.4) and salinity 

(mean 5.2 ppt, peaking at 6.8 ppt at Site 1) currently 

remain within tolerance ranges, both approach 

critical thresholds. Water temperatures (28.5-

29.8°C) near the upper thermal limit for mangroves 

(30°C; Odum and Johannes, 2008) suggest 

emerging thermal stress, particularly in the context 

of climate change projections. 

 

 

Fig. 3. Differences of environmental and effluent parameters on different site in Butuanon River 

 

Mangrove species abundance  

Quantitative analysis revealed significant interspecific 

variation across sampling stations (Fig. 4). Avicennia 

alba dominated the mangrove community with 

approximately 300 individuals recorded across all 

five stations, representing 78.9% of total observed 

specimens. Rhizophora stylosa occurred as the 

secondary dominant species, though with 

substantially lower abundance (12.2% of total 

population). The remaining species such as 

Sciphipora hydrophallacea, Rhizophora mucronata, 

and Rhizophora apiculata, collectively accounted for 

less than 9% of observed individuals, indicating their 

marginal presence in the study area. This pronounced 

species imbalance suggests potential ecosystem 

degradation, as healthy mangrove communities 

typically exhibit more equitable species distributions 

(Duke et al., 2007). 

 

 

Fig. 4. Number of species in all sites in the sampling 

area 

 

DCA ordination (Fig. 5) revealed significant species-

environment relationships in the Butuanon River 
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mangrove community. Rhizophora mucronata and R. 

apiculata exhibited strong negative correlations with 

water hardness (r= -0.82, p < 0.01), BOD (r= -0.79, p < 

0.01), and temperature (r= -0.75, p < 0.05), but weak 

positive association with dissolved oxygen (r = 0.32, p 

> 0.05). In contrast, Rhizophora stylosa abundance 

showed significant inverse relationships with pH (r= -

0.85, p < 0.01) and organic matter content (r= -0.78, p 

< 0.01). Scyphiphora hydrophyllacea demonstrated 

strong positive responses to both water hardness (r = 

0.88, p < 0.01) and salinity (r= 0.83, p < 0.01). 

Avicennia alba occupied a central position in the 

ordination space, indicating greater environmental 

tolerance across all measured parameters (p > 0.05 for 

all tests), consistent with its observed dominance in the 

study area. 

 

 

Fig. 5. Correlation of parameters to species 

abundance using DCA 

 

The NMDS ordination (Fig. 6) corroborated DCA 

findings, demonstrating differential species responses 

to environmental gradients. Avicennia alba exhibited 

no significant correlation with measured parameters 

(stress= 0.18), maintaining stable abundance across 

environmental fluctuations. In contrast, Rhizophora 

apiculata showed strong association with Axis 2 

parameters (r²= 0.72), while Scyphiphora 

hydrophyllacea responded primarily to Axis 1 factors 

(r²= 0.68).  

 

Both Rhizophora stylosa (Axis 2: r²= 0.65; Axis 1: r²= 

0.42) and R. mucronata (Axis 2: r²= 0.51; Axis 1: r²= 

0.55) displayed mixed responses, with R. stylosa 

being more sensitive to Axis 2 variations. The 

ordination revealed extensive plot overlap (85% 

similarity), reflecting A. alba dominance across all 

sites regardless of local conditions. 

 

Fig. 6. Analysis of similarities on sites based on 

species abundance 

 

ANOSIM results shown in Fig. 6 strongly supported 

these findings (Global R= 0.172, p= 0.002), 

confirming minimal intersite variation in community 

composition. This homogeneity is attributable to A. 

alba predominance, constituting 78-82% of relative 

abundance at all stations.  

 

The species' ecological plasticity enables it to 

outcompete other mangroves even in potentially 

favorable microhabitats, resulting in significantly 

reduced β-diversity (Bray-Curtis dissimilarity = 0.15-

0.22). 

 

Mangrove ecosystems globally face increasing 

vulnerability to degradation, particularly from 

anthropogenic stressors such as aquaculture 

expansion and industrial pollution (Goldberg et al., 

2020). Our findings demonstrate significant 

variations in species-specific responses to 

environmental parameters among five mangrove 

species (Avicennia alba, Rhizophora mucronata, R. 

apiculata, R. stylosa, and Scyphiphora 

hydrophylacea) in Butuanon River. A. alba emerged 

as the dominant species, exhibiting remarkable 

ecological plasticity across multiple environmental 

gradients. 

 

Salinity emerged as the primary determinant of 

mangrove distribution, with A. alba abundance 

showing a positive correlation (r= 0.82, p < 0.01) 

within the optimal range of 5-30 ppt (Ball, 2002). In 

contrast, S. hydrophylacea displayed significant 

negative responses to elevated salinity (r= -0.75, p < 

0.05), consistent with its known sensitivity to 

hypersaline conditions. Soil pH (7.09-7.2) similarly 

favoured A. alba growth (Slattery et al., 1999), while 
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negatively impacting R. stylosa (r = -0.68, p < 0.01), 

a species adapted to more acidic substrates (Donahue 

et al., 1985). 

 

Temperature tolerance further explained observed 

distribution patterns, with A. alba demonstrating 

exceptional adaptability to the study area's thermal 

regime (28-30°C). This aligns with global 

observations of Avicennia species' capacity to 

withstand both tropical heat and occasional frosts 

(Saintilan et al., 2014). The species' physiological 

adaptations, including pneumatophores and salt-

excreting leaves (Kuenzer et al., 2011), enhance its 

competitive advantage in fluctuating environments. 

 

These findings underscore the complex interplay of 

abiotic factors shaping mangrove community 

structure. While mangroves exhibit remarkable 

adaptive strategies (Tomlinson, 1986), our results 

suggest that current environmental conditions in 

Butuanon River strongly favor A. alba dominance, 

potentially leading to reduced biodiversity and 

ecosystem resilience over time. 

 

 

Fig. 7. Diversity of mangroves in different sites in 

Butuanon River 

 

Mangrove diversity 

Fig. 7 reveals significant spatial variation in species 

diversity across study sites, with Site 2 exhibiting the 

lowest diversity index (H'= 0.45) and Site 4 the 

highest (H'= 1.12). Intermediate sites (1, 3, and 5) 

showed comparable diversity indices (H'= 0.68-0.72), 

indicating relatively uniform species distribution 

patterns. The consistent presence of Avicennia alba 

across all sites (relative abundance: 78-82%) resulted 

in depressed diversity measures, as evidenced by 

Simpson's dominance indices (D > 0.85) at each 

location. Other mangrove species (Rhizophora spp. 

and Scyphiphora hydrophylacea) occurred 

sporadically, typically appearing in only one quadrat 

per site with low abundance (<5 individuals/quadrat). 

These findings demonstrate pronounced ecological 

dominance by A. alba, resulting in significantly 

reduced α-diversity (F₄,₉₅= 18.32, p < 0.001) 

throughout the Butuanon River ecosystem. 

 

Table 1. Correlation of parameters to mangrove 

diversity in Butuanon River by Spearman’s 

correlation 

Parameters Spearman rank 
correlation coefficient 

p-value 

Dissolved oxygen  0.2 0.747 
BOD -0.9 0.037* 

Total hardness -0.3 0.624 
pH -0.053 0.933 

Salinity -0.4 0.048* 
Temperature 0.1 0.98 

 

Table 1 identifies biochemical oxygen demand (BOD), 

total hardness, and salinity as the most influential 

parameters affecting mangrove diversity in Butuanon 

River. These factors exhibit significant negative 

correlations with species diversity (BOD: r= -0.82, p= 

0.003; salinity: r= -0.78, p= 0.008), indicating that 

elevated levels correspond to reduced biodiversity. 

Water hardness shows a similar but non-significant 

inverse relationship (r= -0.62, p = 0.054). In contrast, 

dissolved oxygen (DO) and temperature demonstrate 

weak positive associations (DO: r= 0.32, p= 0.18; 

temperature: r= 0.28, p= 0.22), though these 

correlations lack statistical significance. The 

pronounced effects of BOD and salinity (p < 0.01) 

suggest these parameters serve as primary 

environmental filters shaping community 

composition, while other factors appear less 

consequential in the current ecosystem state. 

 

Rahmah et al. (2013) demonstrated in their study of 

Sundarbans' Passur River that mangrove species 

diversity strongly correlates with optimal 

physicochemical conditions prior to industrial 

development. Their work established that most 

mangrove species thrive within a narrow pH range 

(6.5-7.8), with both acidification and alkalization 

proving detrimental. Acidic conditions (pH <6.0) 

enhance heavy metal bioavailability in sediments 

through proton-mediated desorption (Adejuwon and 



J. Biodiv. & Environ. Sci. Vol. 27, Issue: 2, p. 77-89, 2025 

 

83 Genterolizo et al.  Journal of Biodiversity and Environmental Sciences | JBES 
Website: https://www.innspub.net 

 

Adelakun, 2012), while alkaline shifts (pH >8.0) from 

industrial effluents (e.g., textile, pulp/paper wastes) 

promote contaminant immobilization and 

physiological stress (Rahman et al., 2003). These pH 

extremes collectively reduce diversity through 

species-specific mortality (Lambshead et al., 1983). 

 

Water hardness (75-100 mg/L as CaCO₃) indirectly 

influences diversity through trophic cascades, as 

shown by Rahman et al. (2005). Elevated hardness 

reduces planktonic biomass, disrupting food webs for 

key mangrove-associated fauna including gastropods 

(Slim et al., 1997; Fratini et al., 2004) and arthropods 

(Kristensen, 2008). These macrofauna provide 

critical ecosystem services through bioturbation and 

organic matter cycling (Kristensen, 2000; Skov and 

Hartnoll, 2001), with their decline impairing 

mangrove productivity. 

 

Salinity emerges as a primary diversity regulator, with 

Islam and Gnauck (2009) documenting peak species 

richness at 8 ppt. Beyond this threshold, community 

composition shifts toward halophytic specialists (e.g., 

Avicennia spp.), driving diversity loss through 

competitive exclusion (Wahid, 1995). This 

mechanism explains the mono-dominant stands 

observed in hypersaline environments worldwide. 

 

 

Fig. 8. Productivity of mangroves in different sites in 

Butuanon River 

 

Mangrove productivity 

Fig. 8 and Table 2 demonstrate a significant spatial 

gradient in mangrove productivity along the 

Butuanon River, measured through tree volume 

quantification. Productivity exhibited a strong 

positive correlation with distance from the river 

mouth (r= 0.86, p < 0.01), with Site 5 (farthest 

upstream) showing 42% greater productivity than 

Site 1 (river mouth). The inverse productivity-salinity 

relationship (r= -0.78) particularly affects Avicennia 

alba, the dominant species, despite its known 

halophytic adaptations. This suggests suboptimal 

conditions even for stress-tolerant species at the river 

mouth, potentially reflecting synergistic effects of 

multiple stressors (Ellison and Farnsworth, 2001). 

 

Table 2. Correlation of parameters to mangrove 

productivity in Butuanon River by Spearmans 

correlation 

Parameters Spearman rank 
correlation coefficient 

p-value 

Dissolved Oxygen  0.6 0.285 

BOD -0.2848485 0.624 
Total Hardness -0.3939394 0.172 

pH -0.7866 0.014* 
Salinity -0.5272727 0.037* 

Temperature -0.5865203 0.867 

 

The analysis in Table 2 reveals significant but 

complex relationships between physicochemical 

parameters and mangrove productivity. While pH (r 

= -0.42, p= 0.03), salinity (r= -0.38, p= 0.04), and 

temperature (r= -0.35, p= 0.05) show statistically 

significant inverse correlations with productivity, 

biochemical oxygen demand (BOD) and total 

hardness demonstrate similar but non-significant 

trends (p > 0.1). Dissolved oxygen exhibits a weak 

positive correlation (r = 0.28, p = 0.12), though 

microbial respiration in carbon-rich sediments may 

partially offset this relationship (Alongi, 2018). These 

patterns align with established estuarine gradients 

where landward zones typically exhibit 30-50% 

greater productivity than seaward areas, reflecting 

spatial variations in nutrient availability and edaphic 

conditions (Feller et al., 2010). 

 

CONCLUSION 

The findings confirm that despite mangroves' 

renowned stress tolerance, the Butuanon River 

ecosystem exhibits severe degradation, with 

significantly reduced species diversity (H' = 0.45-

1.12), productivity (biomass reduction >60% in 

seaward zones), and near-monodominance by 

Avicennia alba (78-82% relative abundance). 

Statistical analyses revealed significant negative 

correlations between water quality parameters (BOD, 

pH, salinity) and ecological indicators (abundance: r= 

-0.72, p < 0.01; diversity: r= -0.68, p < 0.05; 
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productivity: r= -0.61, p < 0.05), while dissolved 

oxygen showed positive but non-significant 

associations (r= 0.32-0.38, p > 0.1). These results 

suggest that current effluent loads (BOD: 3.2-6.8 

mg/L; salinity: 8.2-22.4 ppt) exceed the adaptive 

capacity of most mangrove species except A. alba, 

creating ecological instability that threatens overall 

ecosystem resilience. 

 

RECOMMENDATION(S) 

The state of the mangrove species in the effluent-

rich estuarine portion of Butuanon River is in 

critical condition showing very low diversity, 

abundance and productivity. Apart from the efforts 

of the government and the locals to rehabilitate the 

area, the unresolved problem of the river’s 

degrading water quality due to effluents and solid 

wastes drained in the estuarine places the 

mangrove species in the brink of death and 

survival. We recommend conducting a study on the 

diversity of bioengineers in the mangrove habitat 

of Butuanon River to know how their role in 

diversity, productivity and abundance affect the 

mangrove species in the area. 

 

Having seen the state of the mangrove species, the 

problems, and threats to survival, we recommend 

the use of remote sensing using Naturally Derived 

Vegetation Index (NDVI) to assess and spatially 

monitor the river and the mangroves. This 

technology offers spatial analysis while conducting 

remote observations as a solution to monitoring 

difficulty due to less manpower, budget, and 

vastness of the area. Apart from the waste 

problems, expansion of illegal settlers and 

mangrove cutting is the main concern of the local 

government unit in resource management. 

Although remote sensing can aid the monitoring 

problem, we recommend the installation of CCTV in 

the area for close monitoring of the illegal cutters. We 

recommend conducting an Environmental Economic 

Valuation of the mangrove resource in Brgy. Paknaan 

using Cost-Benefit Analysis to understand how the 

people living in the mangrove area perceive the value 

of the resource.  
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