
Singh et al.                                                Int. J. Biosci. | 2025 

 

 

 

 

 

 

 

RESEARCH PAPER OPEN ACCESS 
 
 

Epithelial cell adhesion molecule-centered, bioinformatics and machine 

learning-based meta-analysis for the identification of pan-cancer 

epithelial-mesenchymal markers for circulating tumor cells 

 

Shubham Singh1, GR Brindha2, Nagarajan Rajendra Prasad*1 

 
1Department of Biochemistry and Biotechnology, Annamalai University, Chidambaram, Tamil Nadu, India 

2School of Computing, SASTRA Deemed University, Thanjavur, Tamil Nadu, India 

 

Key words: Epithelial cell adhesion molecule, Machine learning, Meta-analysis, 

Epithelial-mesenchymal transition, Circulating tumor cell 

 

DOI: https://dx.doi.org/10.12692/ijb/27.3.145-157 Published: September 18, 2025 
 
ABSTRACT 
 

Advances in bioinformatics have greatly contributed to the discovery of epithelial–mesenchymal transition 

(EMT) markers, such as epithelial cell adhesion molecule (EPCAM). This study aimed to conduct an EPCAM-

centered meta-analyses of previously RNA-sequencing data for identifying pan-cancer EMT markers in 

circulating tumor cells (CTCs) utilizing bioinformatics- and machine learning (ML)-based approaches. In this 

study, the RNA sequencing data of seven different cancer types from two datasets, namely GSE273023 and 

GSE274442, were analyzed. Gene–gene correlation among included cancer samples and EPCAM-centered gene–

gene correlation analysis were performed. The data were subjected to ML-based pathway and gene clustering 

analysis. Notably, the results showed that most of the cancers presented similar gene expression profile, albeit 

with some differences, which were primarily attributed to differences in mitochondrial gene expression. 

Furthermore, gene–gene correlation analysis revealed multiple genes with significantly altered expression, 

including CBWD2, MED23, QRSL1, ZNF568, and INTU. Similarly, TRPS1 was found to be significantly 

correlated with EPCAM. Overall, the findings of this study reveal the association between EPCAM–TRPS1 and 

CBWD2-associated MED23–QRSL1–ZNF568–INTU axes, thereby showing their potential as co-markers and for 

the development of multiplexed immunoassay for a robust pan-cancer CTC detection approach. 
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INTRODUCTION 

Cancer is a complex, multifactorial disease that 

significantly burdens the public health worldwide 

(Ferlay et al., 2024). Additionally, processes such as 

metastasis further exacerbate cancer, causing the 

disease to progress to more advanced and aggressive 

stages and other locations, thereby significantly 

increasing disease severity. Metastasis refers to the 

process that instigates the spread of cancer cells from 

the primary tumor to distant organs or tissues to 

forming secondary tumors, and epithelial–

mesenchymal transition (EMT) is a crucial part of this 

process (Dongre and Weinberg, 2019; Gerstberger et 

al., 2023; Yeung and Yang, 2017).  

 

Circulating tumor cells (CTCs) have been critically 

implicated in metastasis, as these cells travel from the 

primary tumor following EMT to colonize the other 

body parts through entry into the bloodstream or 

lymphatic system (Dongre and Weinberg, 2019). For 

CTCs to generate following EMT, cancer cells lose 

their cell–cell adhesion properties and structural 

polarity, thereby exhibiting increased motility and 

invasiveness. This transformation allows them to 

detach from the primary tumor mass, penetrate 

surrounding tissues, and enter circulation as CTCs 

(Garg, 2013; Lamouille et al., 2014). Owing to this, 

CTCs have been associated with the early tumor 

development stage and the complex process of 

metastasis. 

 

Meta-analysis is a well-recognized approach for 

exploring and identifying novel markers and 

pathways for disease prognosis, and various studies 

have employed meta-analysis for reporting prognostic 

factors for different cancer types (Borenstein et al., 

2021; Groot Koerkamp et al., 2013; Guven et al., 

2022; Lv et al., 2016). For instance, in a meta-

analysis of 18 independent EMT gene expression 

studies (both cell line and treatment-based), a core 

set of consistently up- and down-regulated genes 

were identified. These genes were overlapped with 

known EMT markers to reveal novel candidates, some 

of which were associated with poor therapeutic 

response in breast cancer (Gröger et al., 2012). 

Similarly, in bladder cancer, analysis of integrated 

networks revealed CORO1C and TMPRSS4 as hub 

genes, and they were associated with EMT and poor 

prognosis through bioinformatics approach (Wang et 

al., 2020). Overall, meta-analysis and bioinformatics-

based approaches offer notable advantages in the 

analysis of gene expression data for the exploration of 

novel marker sets.  

 

In recent times, machine learning (ML) has become a 

powerful tool in studies on metastasis, facilitating risk 

prediction, biomarker identification, and 

understanding of mechanisms. For instance, in a 

study on colorectal cancer, ML was employed along 

with experimental validation to screen for metastasis 

biomarkers, and genes that distinguished primary 

tumor and liver metastasis were identified 

(Ahmadieh-Yazdi et al., 2023). Similarly, Random 

Forest models were used on clinical/demographic 

data of the patients with thyroid cancer to predict 

bone metastasis (Liu et al., 2021). Such studies 

highlight the applicability of ML in meta-analysis for 

a robust identification of disease markers. 

 

Hence, this study aimed to conduct an epithelial cell 

adhesion molecule (EPCAM)-centered meta-analysis 

of RNA-sequencing (RNA-seq) data of multiple 

cancers for identifying pan-cancer EMT markers in 

CTCs utilizing bioinformatics- and ML-based 

approaches.  

 

MATERIALS AND METHODS 

Study selection 

In the present study, the Gene Expression Omnibus 

(GEO) database 

(https://www.ncbi.nlm.nih.gov/geo/) was screened 

for datasets using the following terms and their 

combinations: ―epithelial–mesenchymal transition,‖ 

―RNA sequencing,‖ ―RNA-seq,‖ ―metastasis,‖ 

―circulating tumor cell,‖ and ―cancer,‖ and the species 

was set to ―Homo sapiens.‖ Ultimately, GEO datasets 

GSE273023 (Liao and Zhou, 2025a) and GSE274442 

(Liao and Zhou, 2025b), containing RNA-seq data for 

lung adenocarcinoma (LUAD), skin cutaneous 

melanoma (SKCM), liver hepatocellular carcinoma 
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(LIHC), thymoma (THYM), breast invasive carcinoma 

(BRCA), prostate adenocarcinoma (PRAD), and 

sarcoma (SARC), were selected for further analysis. 

 

Pan-cancer gene expression analysis for EMT-

driver genes  

To identify pan-cancer-specific driver genes among 

the included datasets, a core set of EMT-associated 

genes was curated from the GeneCards database 

(https://www.genecards.org/) (Table 1), and the 

genes were grouped in mesenchymal-like (such as 

vimentin [VIM] and N-cadherin) and epithelial-like 

(namely E-cadherin [CDH1] and EPCAM) gene sets.  

 

The EMT score represented the up- and 

downregulation of mesenchymal and epithelial 

components, as follows: 

                                

                                                           (Eq. 1) 

 

where mesenchymal and epithelial components were 

the means of z-scores for mesenchymal markers (such 

as VIM, FN1, and ZEB1) and epithelial markers (such 

as CDH1 and EPCAM), respectively. 

 

To scale differences robustly, z-scoring was 

performed, with positive EMT denoting more 

mesenchymal-like characteristic, whereas negative 

EMT denoting more epithelial-like characteristic.  

 

The z-score standardized gene expression for fair 

comparison, regardless of the absolute levels of 

different genes, showing the distance of a value is 

from the mean in units of standard deviation (Shah 

and Parveen, 2025). 

     
       

  
                                       (Eq. 2) 

 

where x(g,s) denotes the raw expression of gene g in 

sample s; μ(g) is the mean expression of gene g across 

all samples. Σ(g) denotes the standard deviation of 

gene g across all samples. The z-scoring was evaluated 

as follows: z=0: exactly average; if z>0, EMT higher 

than the average; and z<0, EMT lower than the 

average. 

False discovery rate (FDR) 

The FDR denotes the proportion of false positives 

among the genes declared significant in the gene 

clusters, controlling ―how many mistakes you tolerate‖ 

in large-scale testing. It is employed with summarizing 

pathway-level activity from multiple genes. The p-values 

were ranked as follows:  p(1) ≤ p(2) ≤ …≤ p(m), and q-

values were adjusted to ensure their monotonic increase 

with rank (Rosati et al., 2024).  

 

The Benjamini–Hochberg equation was used for 

calculating the q-value: 

     
      

 
                                     (Eq. 3) 

 

where m is the total number of tests (genes) and q(i) 

is the FDR-adjusted p-value (q-value).  

 

If FDR = 0.05, of all ―significant‖ genes, 

approximately 5% may be false positives. The results 

were shown as a graph, and each point represented 

one cancer sample, plotted by its EMT score from 

Byers and Creighton EMT-scoring scoring systems. 

The line represented the best-fit linear regression.  

 

Gene–gene correlation analysis 

In the present study, gene–gene correlation analysis was 

performed to quantify the variation in the expression of 

two genes across samples or time through Pearson 

correlation analysis (r range: −1, perfect anti-correlation, 

to +1, perfect co-expression). Based on the per-gene z-

scored expression for the top-40 EMT-driving 

candidates across samples, hub genes that represented 

strongest positive and negative gene–gene pairs were 

identified within the correlation networks.   

 

EPCAM-centered gene–gene correlation 

analysis 

Following the identification of the top 40 EMT-

related genes across the cancer types included in this 

study, the gene–gene association of EMT- and 

metastasis-related markers (Tables 1–2) in regards to 

EPCAM was analyzed. Based on this analysis, the top 

10 positively and and negatively EPCAM-correlated 

markers were identified.  
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K-Means clustering of gene expression data 

and boxplot analysis 

The K-Means clustering algorithm was applied to the 

obtained low-dimensional clusters to identify inherent 

groupings within the data (Hussain et al., 2024). 

Notably, the optimal number of clusters was determined 

using internal validation techniques such as the 

silhouette score, and the clustered data was visualized in 

the Uniform Manifold Approximation and Projection 

(UMAP) 2D space and as scatterplots to facilitate 

identifying separate clusters and underlying patterns in 

the dataset. Additionally, boxplot analysis was 

performed to evaluate the variability in distributional 

characteristics of gene expression in different cancer 

types and identify the central tendency (median, Inter 

Quartile Range [IQR]) across all cancer groups.  

 

Pathway-guided weighted distance (PGWD) K-

means analysis for gene expression data 

Pathway-guided clustering, an unsupervised machine 

learning technique that utilizes route information to 

guide the clustering process, was employed to classify 

genes based on their activity in pre-established 

biological pathways. Notably, gene expression data 

were first converted into pathway activity profiles, 

which were then clustered to capture coordinated 

biological processes. To cluster genes contributing to 

comparable pathways, the algorithm iteratively 

assigned genes to clusters and updated centroids 

based on weighted pathway activity. PGWD K-Means 

analysis reveals biologically meaningful genes by 

weighting features using pathway knowledge, 

following which, standard K-means is run in a re-

weighted feature space (equivalent to Euclidean 

distance after feature scaling) (Malla et al., 2024; Sun 

et al., 2023; Yousef et al., 2023). Proposed Algorithm 

PGWD–K-Means (including parameters X, A, K, α, β, 

λ, τ, and q) is discussed below. 

 

For preprocessing, X[:, g] was standardized for each 

gene g to zero-mean, unit-variance, and low-variance 

genes were filtered. To determine pathway relevance 

(r_p), r_p was computed for each pathway p using 

either unsupervised variance of pathway activity, 

supervised enrichment/t-score/area under the 

reciever operating curve if labels exist, and prior 

knowledge score. Notably, r_p ← r_p/(median_p 

r_p) was normalized, and r_p was clipped at the 

upper percentile q to avoid domination. Gene 

Centrality c_{g,p} (uniform, network, or stability-

based) was computed for for each (g, p) with A[g,p] = 

1. The value was normalized within the pathway as 

follows: c_{g,p} ← c_{g,p}/(mean_{g∈G_p} c_{g,p}). 

 

To aggregate gene weights for each gene g, the 

following process was employed: 

s_g ← Σ_{p} A[g,p] · r_p^α · c_{g,p}^β 

w_g_raw ← s_g / (1 + τ · (degree_g - 1)), where 

overlap penalty was (degree_g=Σ_p A[g,p]) 

 

Shrinkage/regularization was performed as follows: 

w_g ← (1 - λ)·w_g_raw + λ, where λ ∈ [0,1] keeps 

minimum weight > 0 

Next, weights were rescaled and clipped at upper 

percentile q: 

w_g ← w_g / median_g(w_g). 

 

Weighted Feature Space was presented as Construct 

X_w, where X_w[:, g] ← X[:, g] · √w_g. 

For analyzing K-Means in Weighted Space, μ_k (k-

means++ on X_w) was initialized and the process was 

repeated until convergence: 

Assignment: z_i ← argmin_k || X_w[i, :] - μ_k 

||_2^2 

Update: μ_k ← mean of assigned X_w rows in cluster 

k 

Return z, w. 

 

For two samples      , distance induced by PGWD 

was calculated as follows: 

 

     (     ) ∑            
  

   
                       (Eq. 4)

   

which is exactly Euclidean distance after scaling each 

feature by √  . 

 

Hyperparameters included [0.5,2] denoting 

pathway relevance emphasis, [0,1] denoting 

centrality emphasis, [0,0.3] for weight shrinkage 
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for stability, [0,0.5] for the overlap penalty for 

multi-pathway genes, and q[0.90,0.99] denoting 

clipping percentile to prevent domination. Owing to 

prevalence of overlapping pathways, the overlap 

penalty () was induced to prevent inflated weights 

for hub genes. This process included top-weighted 

pathways and genes, and ablation of , ,  to show 

robustness. 

RESULTS 

Identification of EMT-driving genes 

In the present study, expression patterns of the genes 

were evaluated to identify EMT-driver genes. For 

each cancer, the top five overexpressed mesenchymal 

and suppressed epithelial markers were identified 

(Table 1). Overexpression meant higher-than-normal 

gene activity; suppression meant lower activity.  

 

Table 1. Summary of markers and each cancer type 

Cancer type Top mesenchymal driver(s) Top suppressed epithelial 
marker(s) 

Hypothesized EMT mechanism 

Lung 
adenocarcinoma 

VIM, FN1, SNAI2, ZEB1, 
MMP9 

CDH1, OCLN, EPCAM, DSP, 
S100A9 

SNAI2-mediated suppression of 
adhesion for invasion. 

Skin cutaneous 
melanoma 

VIM, CDH2, ZEB2, TWIST1, 
MMP2 

CDH1, OCLN, DSP, EPCAM, 
S100A9 

ZEB2-driven neural crest traits for 
melanocyte dissemination. 

Thymoma FN1, SNAI1, ZEB1, VIM, 
MMP9 

CDH1, OCLN, DSP, EPCAM, 
S100A9 

SNAI1-induced dedifferentiation 
in thymic stroma. 

Liver 
hepatocellular 
carcinoma 

VIM, SNAI1, TWIST1, ZEB1, 
MMP9 

CDH1, OCLN, DSP, EPCAM, 
S100A9 

TWIST1-TGFβ axis for matrix 
remodeling and vascular invasion. 

Breast invasive 
carcinoma 

VIM, SNAI1, ZEB1, FN1, 
MMP2 

CDH1, OCLN, DSP, EPCAM, 
S100A9 

SNAI1-ZEB1 repression of 
adhesion for stemness. 

Sarcoma VIM, FN1, CDH2, TWIST2, 
MMP2 

CDH1, OCLN, DSP, EPCAM, 
S100A9 

Inherent mesenchymal state with 
FN1-matrix deposition. 

Prostate 
adenocarcinoma 

VIM, SNAI2, ZEB2, FN1, 
MMP9 

CDH1, OCLN, DSP, EPCAM, 
S100A9 

SNAI2-androgen independence for 
bone tropism. 

EMT, epithelial–mesenchymal transition. 

 

A moderate-to-strong positive correlation was found 

between the Byers and Creighton EMT-scoring methods, 

suggesting that both approaches broadly agree on which 

samples are epithelial-like and mesenchymal-like. 

However, the spread around the regression line showed 

notable variability, indicating that some samples scored 

differently depending on the method.  

 

Overall, this agreement validates EMT scoring as a 

reproducible concept across algorithms, with the 

scatter emphasizing that while EMT is a robust 

program, methodological differences may shift 

individual sample classifications (Fig. 1). 

 

Gene-gene correlation analysis 

The results of gene–gene correlation showed that per-

gene z-scored expression were used to identify the 

top-40 EMT-driving markers across all samples, 

revealing a strong epithelial module (Fig. 2A). 

 

Epithelial hub genes CBWD2, MED23, ZNF568, 

NBPF11, FAM120B, INTU, QRSL1, ZSCAN30, and 

ZNF443 formed a strong association, with high 

expression in PRAD/THYM and low in LUAD1. In 

contrast, mesenchymal/immune cluster such as 

SERPINI2/RASA3/MGAT1/FKBP11/FOLR2 showed 

relative elevation in mesenchymal samples, with 

CYB561D2 standing out as higher in mesenchymal-high 

versus epithelial-low, consistent with the 

abovementioned findings of this study. Many epithelial-

hub genes exhibited large differences between 

mesenchymal and epithelial endpoints (≈2–3 z-units), 

visually evident as deep cool versus warm blocks 

between LUAD1-like and PRAD/THYM columns, which 

supported a coordinated switch-off of the epithelial 

program during EMT. However, these results only 

emphasize effect sizes and co-expression modules, with 

n = 10 and approximately 50k tests, none of the single 

genes crossed FDR < 0.05. 
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Fig. 1. (A) Statistical summary of gene versus EMT 

messenger RNA-based score. (B) Byers versus 

Creighton EMT scores. EMT, epithelial–mesenchymal 

transition 

 

 

Fig. 2. (A) Top 40 EMT-candidate genes across 

cancer types. (B) Pearson correlation matrix of top 40 

EMT-candidate genes. EMT, epithelial–mesenchymal 

transition 

The matrix (Fig. 2B) visualized pairwise Pearson 

correlations among the top-40 EMT-tracking 

genes, showing that linear co-variation of two 

genes across samples: r≈1  indicated lockstep co-

expression, r≈0 independence, and r<0 anti-phasic 

expression. Module blocks appeared as contiguous 

high-r regions, while cross-shaped negative bands 

marked genes that oppose an entire block. Hub 

genes showed uniformly high correlations across a 

row/column and had high mean absolute r to 

others, summarizing module behavior and often 

being anchor biological programs such as epithelial 

modules in EMT. Hub metrics placed CBWD2 at 

the center of the epithelial module, with 

MED23/QRSL1/ZNF568/INTU close behind. This 

explained the strong block structure and model 

where an epithelial program switched off 

coherently as EMT increases while 

mesenchymal/immune activation is more 

heterogeneous. 

 

EPCAM-centered gene–gene analysis 

In the present study, an EPCAM-centered analysis 

was performed considering its established role as 

an epithelial and CTC marker in the context of 

EMT and metastasis. Notably, the top 10 most 

positively and negatively correlated genes with 

EPCAM were extracted. Furthermore, an EPCAM-

centered hub-and-spoke network was visualized, 

correlating EPCAM and other markers (Table 2). 

 

Table 2. Top 10 mesenchymal- and epithelial-like genes 

Mesenchymal-like Epithelial-like 

Gene Pearson 
correlation (r) 

FDR Gene Pearson 
correlation (r) 

FDR 

SERPINI2 0.905 0.232 CBWD2 -0.971 0.103 
RASA3 0.898 0.232 MED23 -0.967 0.103 
FKBP11 0.887 0.232 ZNF568 -0.962 0.106 

MGAT1 0.879 0.232 NBPF11 -0.960 0.106 
MATK 0.872 0.232 FAM120B -0.955 0.145 

FOLR2 0.866 0.232 INTU -0.951 0.155 
KCNH3 0.866 0.232 IPP -0.949 0.155 

SNAPC2 0.852 0.232 QRSL1 -0.945 0.155 
CD300C 0.849 0.232 ZSCAN30 -0.944 0.155 

RNH1 0.845 0.232 ZNF443 -0.944 0.155 

FDR, false-discovery rate. 

 

Consistent with its role as an epithelial marker, 

EPCAM was found to be among the top downregulated 

genes across multiple tumor types in this study and 

strongly positively correlated with epithelial-associated 

markers and both negatively correlated with canonical 

EMT/metastasis markers. The EPCAM-centered 
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network visualization (Fig. 3A) illustrates this 

relationship, emphasizing its utility as a CTC marker 

and its regulatory placement within the EMT spectrum. 

 

 

Fig. 3.  (A) EPCAM-centered correlation network. 

Solid lines, positive correlation; dotted lines, negative 

correlation. (B) Heat map with EPCAM as the hub 

gene. EPCAM, epithelial cell adhesion molecule 

 

Notably, EPCAM displayed strong bidirectional 

correlations with EMT- and metastasis-related 

genes across different cancer types. Among the 

positively correlated genes, the strongest 

associations were observed with TRPS1 (r = 0.975), 

KLRG2 (r = 0.963), and HCRTR2 (r = 0.963), 

followed by AARD (r = 0.960) and BRINP1 (r = 

0.958). These genes represent epithelial or 

epithelial-like signatures that reinforce the 

canonical role of EPCAM as an epithelial marker. 

In contrast, the negatively correlated genes 

included LEFTY1 (r = −0.954), HSF5 (r = −0.954), 

TSACC (r = −0.953), ST6GAL1 (r = −0.950), and 

TACR1 (r = −0.947). These markers are consistent 

with mesenchymal or EMT-associated programs 

(Fig. 3B; Table 3).  

 

Table 3. Top 10 positively and negatively correlated 

genes with epithelial cell adhesion molecule 

Gene Positive 
correlation (r) 

Gene Negative 
correlation (r) 

TRPS1 0.974 LEFTY1 -0.523 
KLRG2 0.963 HSF5 -0.499 

HCRTR2 0.962 TSACC -0.488 
AARD 0.958 ST6GAL1 -0.484 

BRINP1 0.957 TACR1 -0.478 
ATP6V1B1 0.957 LAIR2 -0.472 
ZG16B 0.956 MATN1 -0.471 

SERTAD4 0.955 CD19 -0.469 
TRPM8 0.954 LINC00471 -0.466 

SHROOM3 0.954 CNR2 -0.465 
 

K-Means clustering of gene expression data 

and boxplot analysis 

In the present study, the cancer type data were 

clustered into the groups of two, three, and four (k=2, 

3, and 4, respectively). In column-wise k=4 

clustering, four main clusters were formed, as follows: 

Cluster 0, LUAD3, LUAD4, PRAD, and SARC; Cluster 

1, LUAD2; Cluster 2, LUAD1; and Cluster 3, BRCA, 

THYM, SKCM, and LIHC (Fig. 4A–C). The results 

suggested that data in Cluster 0 and 3 showed 

considerable intra-cluster similarities, whereas 

LUAD1 and LUAD2, which were present at distinct 

points, indicated their significantly different variance 

patterns. In k=3 clustering, Cluster 0 absorbed 

LUAD2, resulting in LUAD1 to be a consistent outlier 

cluster. In k=2 clustering, Cluster 0 included all 

samples except LUAD1, which comprised a separate 

Cluster 1, indicating its significantly varying 

expression profile, even compared with those of the 

same cancer type (namely LUAD2–4). 

 

 

Fig. 4. K-means column-wise sample clustering 

results at (A) k=2; (B) k=3; (C) k=4. K-means gene 

clustering results at (D) k=2; (E) k=3; (F) k=4. PC, 

PC, principal component 

 

Regarding the clustering of genes, k=2, 3, and 4 

clustering analyses revealed notable separation 

between nuclear and mitochondrial gene set (Fig. 

4D–F). In k=4 clustering, Cluster 0 contained most 

genes (including all nuclear) and was densely packed 

near the origin. In contrast, Clusters 1, 2, and 3 

contained various mitochondrial genes, suggesting 

that functional grouping of mitochondrial genes 

separated them from nuclear gene expression. In k=3 

clustering, Cluster 0 still retained most nuclear genes, 

and Clusters 1 and 2 comprised the distinct 

mitochondrial set. Overall, mitochondrial genes were 
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broadly split as follows: ND-type genes (ND1–ND5 + 

CYB) and CO/ATP-type genes (CO1–CO3 + ATP8 + 

ND4/ND4L).  

 

In k=2 clustering, some mitochondrial genes were 

absorbed in Cluster 0; however, they were still 

considered the major contributor of the expression 

heterogeneity. 

 

 

Fig. 5. (A) Uniform Manifold Approximation and 

Projection 2D plot with K-means clusters. (B) Boxplot 

analysis result encompassing all features across 

multiple cancer types and showing pronounced 

variability in distributional characteristics 

 

The UMAP 2D projection of clustering results 

suggested that the dataset exhibited both well-

defined and loosely structured groups (Fig. 5A). 

The dense central cluster likely represented the 

dominant patterns or majority class, whereas the 

isolated peripheral clusters denoted niche or 

outlier groups. The elongated and curved cluster 

shapes further indicated that the data is non-

linearly separable in its original feature space, 

which UMAP effectively captured in this 2D 

representation. The overlapping regions between 

clusters implied certain similarity or shared 

characteristics across those data points, potentially 

signaling gradual transitions rather than sharp 

boundaries. This insight may be crucial for 

downstream tasks such as classification, 

segmentation, or anomaly detection, to ultimately 

reveal complex relationships within the dataset 

that a simple linear model might not capture. 

 

The boxplot effectively encompassed all features 

across multiple cancer types (Fig. 5B), 

demonstrating pronounced variability in 

distributional characteristics. Notably, cancers 

such as LUAD and BRCA exhibited higher medians 

and broader IQRs, suggesting heterogeneous gene 

expression landscapes. In contrast, cancers such as 

THYM and PRAD exhibited narrower distributions, 

which indicated greater uniformity across samples. 

These differences highlight the diverse molecular 

architectures of the cancers under study, with some 

showing significant within-group variability while 

others remain relatively stable. 

 

ML-based pathway-guided clustering of gene 

expression data 

Notably, two GEO datasets GSE273023 and 

GSE274442, containing RNA-seq data for LUAD 

(LUAD1–4), SKCM, LIHC, THYM, BRCA, PRAD, and 

SARC, were included in this study. The results of 

pathway-guided clustering of gene expression data 

revealed that most cancer samples (namely LUAD, 

BRCA, LIHC, THYM, PRAD, and SARC) were 

grouped under Cluster 0, suggesting overlapping gene 

expression patterns—driven by shared oncogenic 

pathways—among these cancers (Fig. 6A). 

Interestingly, LUAD4 (Cluster 1) and SKCM (Cluster 

2) were positioned separately from most samples, 

reflecting differences in pathway-level expression and 

transcriptional activity compared with the other 

cancers. These results highlighted that pathway-

guided clustering can detect both common and 

unique signatures across different cancer types. 

 

 

Fig. 6. (A) PCA plot of pathway-guided sample 

clustering. (B) PCA plot of pathway-guided clustering 

by cancer type. PCA, principal component analysis; 

PC, principal component 

 

In clustering based on cancer type, most cancers 

(namely LUAD, BRCA, LIHC, THYM, PRAD, and 

SARC) remained closely grouped, indicating the 

presence of shared molecular characteristics (Fig. 

6B). Consistent with the results of pathway-based 

clustering, SKCM and LUAD4 were observed to be 

placed differently from the major cluster, further 
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validating their different transcriptional program. 

Overall, these alignments of clustering with known 

cancer types demonstrated the biological 

interpretability of the pathway-weighted approach. 

 

DISCUSSION 

This study conducted an EPCAM-centered meta-

analyses of RNA-seq data derived from GEO datasets 

GSE273023 and GSE274442 (Liao and Zhou, 2025a, 

2025b) for identifying pan-cancer EMT markers in 

CTCs utilizing bioinformatics- and ML-based 

approaches. The integration of pathway-guided 

clustering, ML approaches, and EMT-focused gene 

expression profiling showed notable similarities 

between different cancer types. In the present study, 

most cancers showed overlapping pathway-level 

expression signatures, with LUAD subsets and SKCM 

diverging as distinct clusters with unique 

transcriptional activity. Moreover, mitochondrial 

gene expression played a significant role in shaping 

clustering outcomes. Additionally, EPCAM-centered 

correlations provided an array of positively and 

negatively correlated markers.  

 

The pathway-guided clustering results revealed the 

involvement of shared oncogenic pathways regarding 

similarities across different cancer types. LUAD, 

BRCA, LIHC, THYM, PRAD, and SARC were largely 

grouped into a single dominant cluster, indicating the 

presence of core transcriptional programs related to 

proliferation, metabolic reprogramming, and cell 

survival (Hung et al., 2015; Zhang et al., 2014). 

Interestingly, LUAD4 and SKCM diverged from the 

dominant cluster, indicating differences in tissue-

specific and subtype-specific transcriptional activity. 

For instance, SKCM was shown to be driven by 

melanocyte lineage programs and immune evasion 

mechanisms, whereas deviations in LUAD4 reflected 

genomic alterations or microenvironmental 

influences unique to that sample set. These results of 

clustering patterns were consistent with those of 

pathway-weighted approaches, which accounted for 

raw expression variance and higher-level functional 

context. Overall, these results signified the use of 

pathway-guided models in the analysis of 

heterogeneous cancers owing to their advantages of 

comprehensive analysis. 

 

K-means clustering revealed intra-type heterogeneity 

and mitochondrial contributions, complementing 

pathway-guided findings, particularly within LUAD. 

LUAD1 consistently emerged as an outlier, suggesting 

a different molecular subset in their transcriptional 

programs. Similarly, the divergence of LUAD2 

suggested that even cancers classified under the same 

histological type may harbor distinct transcriptomic 

landscapes (Allison and Sledge, 2014; Roggli et al., 

1985; Wu et al., 2021). 

 

Furthermore, the consistent separation of mitochondrial 

and nuclear genes was observed. The clustering of ND- 

and CO/ATP-type mitochondrial genes into distinct 

groups represented important sources of heterogeneity 

across tumors. Moreover, UMAP projections 

underscored the non-linear structure of the data, 

highlighting that gene expression heterogeneity in 

cancer cannot be captured by simple linear boundaries, 

and thus, further justifying the application of advanced 

dimensionality reduction and ML-based clustering 

approaches (Lee et al., 2021; Lee et al., 2022; Vera-

Yunca et al., 2020). The findings of boxplot analysis 

provided a complementary distributional perspective, 

highlighting that cancers showed both converging 

mechanisms and tissue-specific uniqueness across 

different types. 

 

The gene–gene correlation analysis identified robust 

epithelial modules (e.g., CBWD2, MED23, ZNF568), 

which demonstrated strong positive correlations and 

hub-like architecture, suggesting that epithelial 

programs are tightly regulated and switch off in a 

coordinated fashion during EMT. The EPCAM-centered 

analysis contextualizes EMT in terms of a well-known 

epithelial marker with clinical relevance in CTC 

detection. EPCAM strongly correlated with epithelial-

associated markers such as TRPS1, KLRG2, and 

BRINP1, along with its negative correlations with 

EMT/mesenchymal-associated genes such as LEFTY1 

and ST6GAL1, highlighting its regulatory opposition to 

EMT programs. 
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TRPS1 expression has been reported to influence the 

progression in different tumors, indicating its 

prognostic role regarding CTCs and EMT (Hong et al., 

2013; Stinson et al., 2011). Similarly, studies have 

implicated the expression of CBWD2, MED23 (Shi et 

al., 2014), QRSL1 (Dursun et al., 2022; Wang et al., 

2023), ZNF568 (Han et al., 2024; Wang et al., 2020), 

and INTU (Chan and Chen, 2022) in tumor 

progression and associated processes across different 

cancer types. Overall, these studies indicate the 

involvements of aforementioned genes in various 

tumors. Combining with the results of the present 

study, which highlight the significant correlations 

among these genes, the findings suggest that these 

genes may serve as prognostic markers while offering 

a robust prognostic efficacy when combined with 

EPCAM for metastasis evaluation and CTC detection. 

 

Altogether, these results highlight the potential of 

EPCAM–TRPS1 and CBWD2-associated MED23–

QRSL1–ZNF568–INTU axes as potential biomarkers, 

along with underscoring the importance of hybrid EMT 

states and the prognostic superiority of ML-based 

scoring methods. Furthermore, the findings provide a 

research basis for the future studies on the proposed 

axes for the development of robust CTC detection 

methods such as multiplexed immunoassays. 

 

ACKNOWLEDGEMENTS 

This study was financially supported by the DST-

INSPIRE fellowship, Department of Science and 

Technology, Government of India, India [Grant 

number DST/INSPIRE/03/2021/002275]. 

 

REFERENCES 

Ahmadieh-Yazdi A, Mahdavinezhad A, Tapak 

L, Nouri F, Taherkhani A, Afshar S. 2023. Using 

machine learning approach for screening metastatic 

biomarkers in colorectal cancer and predictive 

modeling with experimental validation. Scientific 

Reports 13, 19426. https://doi.org/10.1038/s41598-

023-46633-8 

 

Allison KH, Sledge GW. 2014. Heterogeneity and 

cancer. Oncology (Williston Park) 28, 772–778. 

Borenstein M, Hedges LV, Higgins JPT, 

Rothstein HR. 2021. Introduction to meta-analysis 

(2nd ed.). John Wiley & Sons. 

 

Chan HYE, Chen ZS. 2022. Multifaceted 

investigation underlies diverse mechanisms contributing 

to the downregulation of Hedgehog pathway-associated 

genes INTU and IFT88 in lung adenocarcinoma and 

uterine corpus endometrial carcinoma. Aging 14, 7794–

7823. 

https://doi.org/10.18632/aging.204262 

 

Dongre A, Weinberg RA. 2019. New insights into the 

mechanisms of epithelial–mesenchymal transition and 

implications for cancer. Nature Reviews Molecular Cell 

Biology 20, 69–84. 

https://doi.org/10.1038/s41580-018-0080-4 

 

Dursun F, Genc HM, Mine Yılmaz A, Tas I, Eser 

M, Pehlivanoglu C, Yilmaz BK, Guran T. 2022. 

Primary adrenal insufficiency in a patient with biallelic 

QRSL1 mutations. European Journal of Endocrinology 

187, K27–K32. 

https://doi.org/10.1530/EJE-22-0233 

 

Ferlay J, Ervik M, Lam F, Laversanne M, 

Colombet M, Mery L, Piñeros M, Znaor A, 

Soerjomataram I, Bray F. 2024. Global Cancer 

Observatory: Cancer today. Lyon, France: International 

Agency for Research on Cancer. 

https://gco.iarc.who.int/today 

 

Garg M. 2013. Epithelial-mesenchymal transition-

activating transcription factors: Multifunctional 

regulators in cancer. World Journal of Stem Cells 5, 

188.https://doi.org/10.4252/wjsc.v5.i4.188 

 

Gerstberger S, Jiang Q, Ganesh K. 2023. 

Metastasis. Cell 186, 1564–1579. 

https://doi.org/10.1016/j.cell.2023.03.003 

 

Gröger CJ, Grubinger M, Waldhör T, Vierlinger 

K, Mikulits W. 2012. Meta-analysis of gene expression 

signatures defining the epithelial to mesenchymal 

transition during cancer progression. PLoS ONE 7, 

e51136. 

https://doi.org/10.1371/journal.pone.0051136 

 



 

 

155  Singh et al. International Journal of Biosciences | IJB 

Website: https://www.innspub.net 

 

Vol. 27, Issue: 3, p. 145-157, 2025 

 
Int. J. Biosci. 

 
Groot Koerkamp B, Rahbari NN, Büchler MW, 

Koch M, Weitz J. 2013. Circulating tumor cells and 

prognosis of patients with resectable colorectal liver 

metastases or widespread metastatic colorectal cancer: A 

meta-analysis. Annals of Surgical Oncology 20, 2156–

2165. 

https://doi.org/10.1245/s10434-013-2907-8 

 

Guven DC, Sahin TK, Erul E, Kilickap S, 

Gambichler T, Aksoy S. 2022. The association 

between the pan-immune-inflammation value and 

cancer prognosis: A systematic review and meta-

analysis. Cancers 14, 2675. 

https://doi.org/10.3390/cancers14112675 

 

Han CW, Jeong MS, Jang SB. 2024. Influence of the 

interaction between p53 and ZNF568 on mitochondrial 

oxidative phosphorylation. International Journal of 

Biological Macromolecules 275, 133314. 

https://doi.org/10.1016/j.ijbiomac.2024.133314 

 

Hong J, Sun J, Huang T. 2013. Increased expression 

of TRPS1 affects tumor progression and correlates with 

patients’ prognosis of colon cancer. BioMed Research 

International 2013, 1–6. 

https://doi.org/10.1155/2013/454085 

 

Hung RJ, Ulrich CM, Goode EL, Brhane Y, Muir 

K, Chan AT, Marchand LLe, Schildkraut J, Witte 

JS, Eeles R, Boffetta P, Spitz MR, Poirier JG, 

Rider DN, Fridley BL, Chen Z, Haiman C, 

Schumacher F, Easton DF, Landi MT, Brennan 

P, Houlston R, Christiani DC, Field JK, 

Bickeböller H, Risch A, Kote-Jarai Z, Wiklund F, 

Grönberg H, Chanock S, Berndt SI, Kraft P, 

Lindström S, Al Olama AA, Song H, Phelan C, 

Wentzensen N, Peters U, Slattery ML; GECCO; 

Sellers TA; FOCI; Casey G, Gruber SB; CORECT; 

Hunter DJ; DRIVE; Amos CI, Henderson B; 

GAME-ON Network. 2015. Cross cancer genomic 

investigation of inflammation pathway for five common 

cancers: Lung, ovary, prostate, breast, and colorectal 

cancer. Journal of the National Cancer Institute 107, 

djv246. 

https://doi.org/10.1093/jnci/djv246 

Hussain I, Nataliani Y, Ali M, Hussain A, Mujlid 

HM, Almaliki FA, Rahimi NM. 2024. Weighted 

multiview K-means clustering with L2 regularization. 

Symmetry 16, 1646. 

https://doi.org/10.3390/sym16121646 

 

Lamouille S, Xu J, Derynck R. 2014. Molecular 

mechanisms of epithelial–mesenchymal transition. 

Nature Reviews Molecular Cell Biology 15, 178–196. 

https://doi.org/10.1038/nrm3758 

 

Lee D, Park Y, Kim S. 2021. Towards multi-omics 

characterization of tumor heterogeneity: A 

comprehensive review of statistical and machine 

learning approaches. Briefings in Bioinformatics 22, 

bbaa188. https://doi.org/10.1093/bib/bbaa188 

 

Lee JY, Lee K, Seo BK, Cho KR, Woo OH, Song 

SE, Kim E-K, Lee HY, Kim JS, Cha J. 2022. 

Radiomic machine learning for predicting prognostic 

biomarkers and molecular subtypes of breast cancer 

using tumor heterogeneity and angiogenesis properties 

on MRI. European Radiology 32, 650–660. 

https://doi.org/10.1007/s00330-021-08146-8 

 

Liao Z, Zhou W. 2025a. RNA-seq of vertebral 

metastatic tumor samples from pan-cancer primary 

tumors. Gene Expression Omnibus (GEO) database 

(Accession Number GSE273023). 

 

Liao Z, Zhou W. 2025b. RNA-seq of vertebral 

metastatic tumor samples from pan-cancer primary 

tumors II. Gene Expression Omnibus (GEO) database 

(Accession Number GSE274442). 

 

Liu W, Li Z, Luo Z, Liao W, Liu Z, Liu J. 2021. 

Machine learning for the prediction of bone metastasis 

in patients with newly diagnosed thyroid cancer. Cancer 

Medicine 10, 2802–2811. 

https://doi.org/10.1002/cam4.3776 

 

Lv Q, Gong L, Zhang T, Ye J, Chai L, Ni C, Mao Y. 

2016. Prognostic value of circulating tumor cells in 

metastatic breast cancer: A systemic review and meta-

analysis. Clinical and Translational Oncology 18, 322–

330. https://doi.org/10.1007/s12094-015-1372-1 

 



 

 

156  Singh et al. International Journal of Biosciences | IJB 

Website: https://www.innspub.net 

 

Vol. 27, Issue: 3, p. 145-157, 2025 

 
Int. J. Biosci. 

 
Malla SB, Byrne RM, Lafarge MW, Corry SM, 

Fisher NC, Tsantoulis PK, Mills ML, Ridgway 

RA, Lannagan TRM, Najumudeen AK, Gilroy 

KL, Amirkhah R, Maguire SL, Mulholland EJ, 

Belnoue-Davis HL, Grassi E, Viviani M, Rogan 

E, Redmond KL, Sakhnevych S, McCooey AJ, 

Bull C, Hoey E, Sinevici N, Hall H, 

Ahmaderaghi B, Domingo E, Blake A, 

Richman SD, Isella C, Miller C, Bertotti A, 

Trusolino L, Loughrey MB, Kerr EM, Tejpar S; 

S:CORT consortium; Maughan TS, Lawler M, 

Campbell AD, Leedham SJ, Koelzer VH, 

Sansom OJ, Dunne PD. 2024. Pathway level 

subtyping identifies a slow-cycling biological 

phenotype associated with poor clinical outcomes in 

colorectal cancer. Nature Genetics 56, 458–472. 

https://doi.org/10.1038/s41588-024-01654-5 

 

Roggli VL, Vollmer RT, Greenberg SD, 

McGavran MH, Spjut HJ, Yesner R. 1985. Lung 

cancer heterogeneity: A blinded and randomized 

study of 100 consecutive cases. Human Pathology 16, 

569–579. 

https://doi.org/10.1016/S0046-8177(85)80106-4 

 

Rosati D, Palmieri M, Brunelli G, Morrione A, 

Iannelli F, Frullanti E, Giordano A. 2024. 

Differential gene expression analysis pipelines and 

bioinformatic tools for the identification of specific 

biomarkers: A review. Computational and Structural 

Biotechnology Journal 23, 1154–1168. 

https://doi.org/10.1016/j.csbj.2024.02.018 

 

Shah SNA, Parveen R. 2025. Differential gene 

expression analysis and machine learning identified 

structural, TFs, cytokine and glycoproteins, including 

SOX2, TOP2A, SPP1, COL1A1, and TIMP1 as potential 

drivers of lung cancer. Biomarkers 30, 200–215. 

https://doi.org/10.1080/1354750X.2025.2461698 

 

Shi J, Liu H, Yao F, Zhong C, Zhao H. 2014. 

Upregulation of mediator MED23 in non-small-cell 

lung cancer promotes the growth, migration, and 

metastasis of cancer cells. Tumor Biology 35, 12005–

12013. https://doi.org/10.1007/s13277-014-2499-3 

Stinson S, Lackner MR, Adai AT, Yu N, Kim H-

J, O’Brien C, Spoerke J, Jhunjhunwala S, 

Boyd Z, Januario T, Newman RJ, Yue P, 

Bourgon R, Modrusan Z, Stern HM, Warming 

S, de Sauvage FJ, Amler L, Yeh R-F, Dornan D. 

2011. TRPS1 targeting by miR-221/222 promotes the 

epithelial-to-mesenchymal transition in breast 

cancer. Science Signaling 4, ra41. 

https://doi.org/10.1126/scisignal.2001538 

 

Sun Z, Chung D, Neelon B, Millar‐Wilson A, 

Ethier SP, Xiao F, Zheng Y, Wallace K, 

Hardiman G. 2023. A Bayesian framework for 

pathway‐guided identification of cancer subgroups by 

integrating multiple types of genomic data. Statistics 

in Medicine 42, 5266–5284. 

https://doi.org/10.1002/sim.9911 

 

Vera-Yunca D, Girard P, Parra-Guillen ZP, 

Munafo A, Trocóniz IF, Terranova N. 2020. 

Machine learning analysis of individual tumor lesions 

in four metastatic colorectal cancer clinical studies: 

Linking tumor heterogeneity to overall survival. The 

AAPS Journal 22, 58. 

https://doi.org/10.1208/s12248-020-0434-7 

 

Wang C, Yang Y, Yin L, Wei N, Hong T, Sun Z, 

Yao J, Li Z, Liu T. 2020. Novel potential 

biomarkers associated with epithelial to mesenchymal 

transition and bladder cancer prognosis identified by 

integrated bioinformatic analysis. Frontiers in 

Oncology 10, 931. 

https://doi.org/10.3389/fonc.2020.00931 

 

Wang H, Shen L, Li Y, Lv J. 2020. Integrated 

characterisation of cancer genes identifies key 

molecular biomarkers in stomach adenocarcinoma. 

Journal of Clinical Pathology 73, 579–586. 

https://doi.org/10.1136/jclinpath-2019-206400 

 

Wang X, Li X, Jiang W. 2023. High expression of 

RTN4IP1 predicts adverse prognosis for patients with 

breast cancer. Translational Cancer Research 12, 

859–872. 

https://doi.org/10.21037/tcr-22-2350 



 

 

157  Singh et al. International Journal of Biosciences | IJB 

Website: https://www.innspub.net 

 

Vol. 27, Issue: 3, p. 145-157, 2025 

 
Int. J. Biosci. 

 
Wu F, Fan J, He Y, Xiong A, Yu J, Li Y, Zhang Y, 

Zhao W, Zhou F, Li W, Zhang J, Zhang X, Qiao 

M, Gao G, Chen S, Chen X, Li X, Hou L, Wu C, Su 

C, Ren S, Odenthal M, Buettner R, Fang N, Zhou 

C. 2021. Single-cell profiling of tumor heterogeneity and 

the microenvironment in advanced non-small cell lung 

cancer. Nature Communications 12, 2540. 

https://doi.org/10.1038/s41467-021-22801-0 

 

Yeung KT, Yang J. 2017. Epithelial–mesenchymal 

transition in tumor metastasis. Molecular Oncology 

11, 28–39. https://doi.org/10.1002/1878-0261.12017 

Yousef M, Ozdemir F, Jaber A, Allmer J, 

Bakir-Gungor B. 2023. PriPath: Identifying 

dysregulated pathways from differential gene 

expression via grouping, scoring, and modeling with 

an embedded feature selection approach. BMC 

Bioinformatics 24, 60. 

https://doi.org/10.1186/s12859-023-05187-2 

 

Zhang J, Wu L-Y, Zhang X-S, Zhang S. 2014. 

Discovery of co-occurring driver pathways in cancer. 

BMC Bioinformatics 15, 271. 

https://doi.org/10.1186/1471-2105-15-271 

 


