INNSPUB

International Journal of Biosciences | IJB |

ISSN: 2220-6655 (Print); 2222-5234 (Online)

Website: https://www.innspub.net

Email contact: info@innspub.net Vol. 27, Issue: 4, p. 19-33, 2025

RESEARCH PAPER

OPEN ACCESS

Fire spread control for management purpose: Fuel moisture critical threshold in annually burned dry savanna of west Africa

Tionhonkélé Drissa Soro*1, Jean-Luc Kouassi², Bareremna Afelu³, Amara Ouattara⁴, Moussa Koné⁵

Laboratoire des milieux naturels et conservation de la biodiversité, UFR Biosciences, Université Félix Houphouët-Boigny, Abidjan 22, Côte d'Ivoire

²UMRI Sciences Agronomiques et Procédés de Transformation, Institut National Polytechnique Félix Houphouët-Boigny (INP-HB), Yamoussoukro, Côte d'Ivoire

³Laboratoire de recherche forestière, Département de botanique, Faculté des sciences,

Université de Lomé, Lomé, Togo

*Service de Suivi Écologique et Système d'Information Géographique, Direction de Zone Nord-Est (DZNE), Office Ivoirien des parcs et Réserves (OIPR), Bouna, Côte d'Ivoire

⁵Laboratoire d'Écologie et de Développement Durable (LEDD), UFR Sciences de la Nature, Université Nangui Abrogoua, Abidjan 02, Côte d'Ivoire

Key words: Fire management, Fire spread, Fuel moisture, Critical threshold, Savanna, West Africa

DOI: https://dx.doi.org/10.12692/ijb/27.4.19-33 Published: October 07, 2025

ABSTRACT

Fire serves as management tool in protected areas in savanna ecosystems, particularly for biodiversity conservation and tourism purposes. However, selecting the appropriate burning periods that align with management objectives remains a major challenge for managers. For fire spreading, taking into account soil and fuel moisture levels, which vary throughout the season, is essential. This study aimed to identify the moisture content controlling fire spread and to determine its critical threshold. Through monthly experimental burnings on 90 plots in Comoé National Park's savanna ecosystems, we measured soil and fuel moisture contents throughout a complete dry season spanning from October 2023 to March 2024. The results showed that soil moisture (p < 0.001) and fuel moisture (p < 0.001) and fuel moisture (p < 0.001) decreased as the season progressed. Regarding fire spread, the rate of spread increased when soil moisture (p < 0.001) and fuel moisture (p < 0.001) decreased. On the other hand, the distance traveled by flames that was indicating continuous fire spread, was exclusively influenced by fuel moisture content (p < 0.001). Fire spreading risk mapping revealed the fuel moisture critical threshold of $30.35 \pm 2.35\%$ from December. Above this threshold, fuel moisture limits fire spread by its dominant influence. But below it, the probability of continuous fire spread was high and almost certain, because fuel moisture ceases to be a limiting factor. This quantitative threshold provides park managers with an objective tool for timing prescribed burns according to specific fire management objectives.

*Corresponding author: Tionhonkélé Drissa Soro 🖂 soro.drissa122@gmail.com

Soro et al.

int. J. Biosci. | 2025

INTRODUCTION

In the ecological functioning of savannas, fire is a key factor that shapes savanna structure, composition and dynamics globally (Sankaran et al., 2005; Laris et al., 2020). It maintains the grass-tree balance by regulating the vegetation distribution and structure, preventing woody encroachment, and creating habitat heterogeneity (McLauchlan et al., 2020). However, its use varies according to the location and period in which it is lit, which should depend on the desired objective (Afelu et al., 2025). Burnings can occur for a variety of causes, including economic, social, or landscape management (Eriksen, 2007; Lopez-Moreino et al., 2009). Thus, in rural areas of Africa, fires are mainly used for land preparation in agriculture, pastoralism, hunting, firebreaks, charcoal burning, or customary reasons (Kouassi et al., 2020; Amoako and Gambiza, 2022; Soro et al., 2025). Considered as a primary determinant of savanna ecology and distribution (Bond et al., 2005; Li et al., 2023), fires are also part of protected area management policies in savanna zones where they play a crucial role in maintaining the dynamic equilibrium between plant components (Yao et al., 2010). Thus, early fires that are less severe and burn at lower intensities, are typically recommended for protected area management to reduce tree mortality while maintaining open habitats (Savadogo et al., 2007). Controlled burning enhances wildlife viewing by keeping landscapes open, generating tourism revenue that supports conservation efforts, while also facilitating surveillance patrols through reduced vegetation density.

Despite regular burnings, woody encroachment continues across many regions of the world and particularly in African savannas (Gautier, 1990; Heubes *et al.*, 2011). This trend threatens savanna conservation values, as these ecosystems support disproportionate megafauna diversity globally (Fritz, 1997; Gray and Bond, 2013). An increase in woody encroachment would negatively impact the conservation and observation of savanna fauna, reducing the number of visitors and therefore, the economy of these protected areas (Gray and Bond,

2013). Like many other countries, this phenomenon of woody encroachment is also observed in Côte d'Ivoire. This occurs in the Lamto scientific reserve located in the Guinean (humid) savanna zone despite annual burnings, several sub-adults resisting to fire (N'Dri et al., 2022). Furthermore, although located in the Sudanian savanna zone (dry savanna), the Comoé National Park (CNP) is also subject to that phenomenon. These patterns indicate that fire is not always destructive in savanna, especially if it occurs at the right time taking into account the area conditions. This justifies the use of fire as a management tool in CNP, a UNESCO World Heritage Site and Biosphere Reserve, and underscores the importance of updating of its fire management strategy to safeguard this protected area of high national and global importance.

The Ivorian Office of Parks and Reserves (OIPR) faces challenges updating CNP's fire management strategy due to the lack of experimental data to determine the optimal burning periods for the different sectors of the park. In this context, this work was undertaken to address the lack of scientific data to decide on appropriate burning periods according to area and management objectives. This requires the monitoring, throughout the dry season, of parameters likely to influence fire behavior, including fuel characteristics, soil moisture, climatic parameters, among others (Savadogo et al., 2007; Rissi et al., 2017; Laris et al., 2020; Wilson and Yebra, 2023). While climate parameters have an indirect link to fire activity (Soro et al., 2021), it is well known that soil and fuel have a direct link, especially through seasonal moisture contents (N'Dri et al., 2018; Yurkonis et al., 2019). Thus, moisture contents are key elements that vary depending on the season and can have a direct influence on fire spread (Govender et al., 2006).

We hypothesized that moisture content (soil or fuel) exhibits threshold effects on fire spread, with a critical value below which continuous spread becomes highly probable regardless of other factors. Therefore, the objective is to identify the moisture content that controls fire spread and its critical threshold. To

achieve this objective, the following questions were addressed:

- 1. How do soil and fuel moisture contents vary throughout the dry season?
- 2. Which moisture content controls fire spread?
- 3. What is the critical moisture threshold for continuous fire spread?

MATERIALS AND METHODS

Study area

The study was carried out in Comoé National Park (CNP) extending from 8°30' to 9°37' N and from 3°7' to 4°25' W, in the northeast of Côte d'Ivoire (West Africa). Located at approximately 570 km from Abidjan, it extends over five prefectures including Bouna, Nassian and Téhini (in the Bounkani region), Dabakala (in the Hambol region) and Kong (in the Tchologo region). This park is subdivided into five management sectors whose command offices are located in the five prefectures (i.e Bouna, Dabakala, Kong, Nassian and Téhini sectors). The study covered all these sectors with sites in each (Fig. 1).

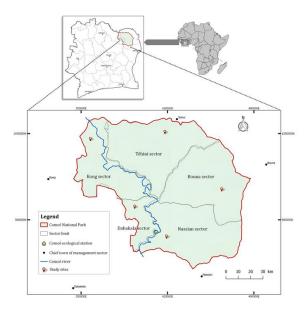


Fig. 1. Location of study area and experimental sites

Covering an area of 1,148,756 hectares, the CNP is the largest protected area in Côte d'Ivoire and one of the largest of West African parks, listed as a Biosphere Reserve (in 1982) and a UNESCO World Heritage Site since 1983. Thus, it is a biodiversity conservation site

highly recognized for its ecological, cultural, and social values. This protected area is crossed by one of Ivorian's main rivers, the Comoé, from which it takes its name.

The CNP experiences a subhumid tropical (transitional Sudanian) climate (Guillaumet and Adjanohoun, 1971). As in all of West Africa, the climate of this northeastern part of Côte d'Ivoire is influenced by the migration of the Inter-Tropical Convergence Zone (ITCZ), the confluence zone between the northern continental trade wind (Harmattan) and the southern oceanic trade wind (Monsoon), leading to alternation between dry and wet seasons. The dry season can last up to six or eight months, from October. Rainfall is unimodal and the maximum is recorded between August and September (Tie et al., 2007). Average annual rainfall is around 800 mm. However, the annual water deficit due to dry season can reach 700 to 800 mm. The coldest month is January (with an average daily minimum of 15°C) and the warmest month is March (with an average daily maximum of 37°C).

The vegetation of CNP belongs to Sudanian and sub-Sudanian savanna zones, which are dry savannas that are annually burned. The park is also located in one of the three main fire hotspots of Côte d'Ivoire (Soro et al., 2021). More than 80% of its surface area is dominated by savannas (Poilecot, Representing approximately 72% of the park, shrub and woody savannas are the most abundant. Their woody cover varies between 5 and 40%, but can reach up to 80% (Lauginie, 2007). Thus, for the maintenance of this ecosystem, which plays a fundamental role in the survival of herbivorous wildlife and for ecotourism, regular burnings are necessary during the dry seasons.

Experimental set-up

Experimental burnings and data collection were carried out monthly throughout the dry season from October 2023 to March 2024. The site selection was based on three criteria: savanna type, accessibility and the possibility of making replicates for statistical reasons. In all five sectors of CNP (Bouna, Dabakala,

Kong, Nassian and Téhini), the experimental design (Fig. 2) was installed in shrub savanna, as the park is dominated by this savanna type. In each sector, the design included a block of 190m x 30m, replicated on three sites. On each site, six plots of 20m x 10m were installed. They were separated from each other by 10m and surrounded by 10m of firebreak to protect them from accidental fires. To minimize the influence of slope, sites were located on flat ground. Among the six plots of each site, one was sampled and burned each month. Thus, three plots were burned per sector and fifteen for all five sectors per month. On the whole, the experiments were conducted on eighteen plots per sector and 90 for the five sectors of the park, during the six months of the dry season.

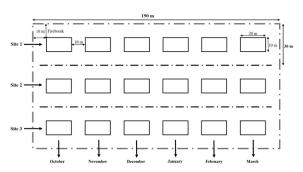


Fig. 2. Experimental set-up of controlled burnings

Data collection

Soil moisture

To assess soil moisture content, five soil samples per plot were randomly taken using an auger up to 5 cm depth, as grass (main fuel) roots are generally superficial, and fire impact is negligible below 5 cm (Miranda *et al.*, 1993). Each month, before burning, fifteen samples were collected from the three sites per sector and 75 in total for all the five sectors of the park. Over the six months of the study period, a total of 450 soil samples were collected overall. Using laboratory electronic scale (precision = 0.01g), samples were immediately weighed *in situ* for fresh masses, while dry masses were determined after oven drying until constant mass.

Fuel moisture

Fuel was mainly composed of grass (live fuel) and litter (dead fuel). Before burning, fuel was collected in five 1 m² quadrats (Fig. 3A) randomly installed on each plot within which measurements were made (Fig. 3B). In each quadrat, grass was first cut to ground level, tied, and immediately weighed to obtain the fresh mass (kg), using digital hanging scale (precision = 0.01kg)). The litter was then collected in a bag and also weighed on site with laboratory electronic scale (precision = 0.01g). These samples were oven-dried to a constant mass and reweighed to determine the dry mass. Each month, fifteen samples were collected per sector and 75 for all five sectors. A total of 450 fuel samples were collected as part of this study.

Fig. 3. Fire experiments in the Comoé National Park A: Set up of a 1m² quadrat; B: Measurements on a plot; C: Spreading fire; D: A plot of 20m x 10m after burning

Soil and fuel moisture contents were calculated using the following formula:

$$M_c = \frac{W_m - D_m}{W_m} \times 100$$

Where M_c is the moisture content (%), W_m is the fresh mass (kg), and D_m is the dry mass (kg).

Fire rate of spread

On each 20m x 10m plot, fire was always lit on one of the widths. While fire was spreading (Fig. 3C), the travel time of the flames was recorded at 5m intervals along the lengths, using stopwatches. Thus, four time records were made on each length, that's to say eight measurements per plot. Each month, 24 measurements were therefore recorded per sector and 120 measurements for the entire park. Overall, 720 measurements were recorded

over the entire study period. After plot burning (Fig. 3D), the distance traveled by flames before going out was assessed.

Finally, the fire rate of spread (m/s) was deduced from the travel times and distances as follows:

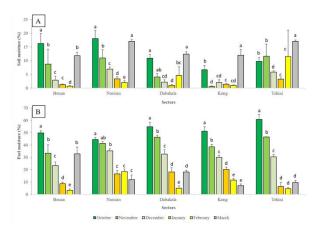
$$R = \frac{d}{t}$$

Where R = rate of spread (m/s), d = distance traveled by flames (m), and t = flame travel time (s).

From the distance traveled by the flames, the probability of continuous spread was calculated:

$$p_{fire} = \frac{d_{ij}}{d_f}$$

Where p_{fire} is the fire spreading probability, d_{ij} is the distance traveled by flames (m) in sector i for month j, and d_f is the full distance to travel (m), i.e the length of a plot.


Data processing and statistical analysis

The statistical tests were performed using the version 4.4.0 of R software (R Core Team, 2024) at 5% threshold. Data normality was assessed using Shapiro-Wilk test, and homoscedasticity using Bartlett's test. When variances were homogeneous, the one-way Anova test was applied for mean comparisons according to months or sectors. Then, pairwise comparisons were performed using the Tukey HSD test. Contrariwise, the non-parametric Kruskal-Wallis test was used for comparison of means, the variances not being homogeneous. Subsequently, the Wilcoxon rank sum test was applied for pairwise comparisons. To illustrate the influence on fire spread, linear regressions were performed showing the variation of the fire rate of spread and the distance traveled by flames according to moisture contents. Using 'ggplot2' package (Wickham, 2016), regression charts were established by 'Loess' method expressing fire rate of spread according to soil and fuel moisture contents. Finally, the Excel software was used for spreading risk mapping that plots the fire spreading probability according to fuel moisture throughout dry season.

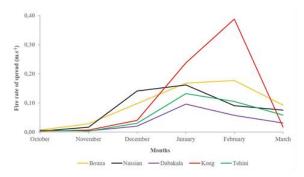
RESULTS

Soil and fuel moisture contents in sectors

In all park sectors, both soil and fuel moisture contents showed significant variations depending on months (p < 0.001). Indeed, a decrease in these moisture contents was observed as dry season progressed (Fig. 4). In the case of soil moisture, the variation was regular in the Bouna and Nassian sectors, excluding value of March. Thus, soil moisture decreased from 16.26 ± 3.71% (in October) to 0.71 ± 0.21% (in February) in Bouna sector and from 18.10 \pm 2.96% (in October) to 2.04 ± 0.64% (in February) in Nassian sector. In the other three sectors, the variation in soil moisture was more or less irregular, probably due to variations in local conditions. However, in all sectors soil moisture was high at the beginning of dry season (October-November) and at the end in March (Fig. 4A).

Fig. 4. Variation of soil (A) and fuel (B) moisture contents in sectors throughout dry season

In each sector, values with the same letter were not significantly different.


The decline in fuel moisture contents was fairly regular throughout the dry season in all sectors, except Bouna and Dabakala where a significant increase was observed at the end of the season in March (Fig. 4B). The rain occurred before March's sampling was probably more abundant in these two sectors. Fuel moisture ranged from $49.79 \pm 1.78\%$ (in October) to $3.19 \pm 1.20\%$ (in February) in Bouna sector, from $54.85 \pm 3.66\%$ (in October) to $4.96 \pm 1.16\%$ (in February) in Dabakala, and from

60.79 \pm 2.87% (in October) to 4.58 \pm 1.20% (in February) in Tehini. In the two other sectors, the decline in fuel moisture was continuous until the end of dry season. In fact, it ranged from 44.48 \pm 1.68% (October) to 11.91 \pm 3.85% (March) in Nassian and from 51.24 \pm 3.91% (October) to 7.01 \pm 1.50% (March) in Kong.

Fire spread in sectors

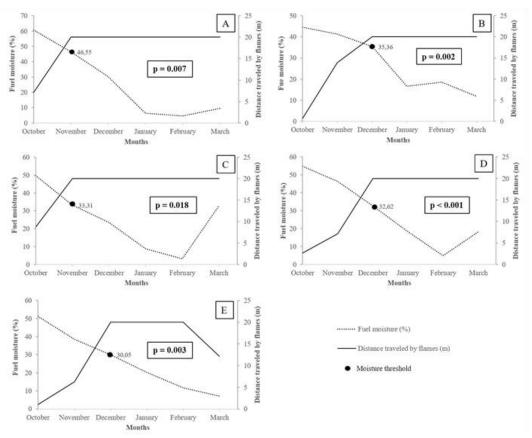
Fire rate of spread in sectors

Fire rate of spread showed a significant variation according to months in all sectors, namely Bouna (F= 4.71; p= 0.013), Nassian (χ^2 = 13.94; p= 0.016), Dabakala ($\chi^2 = 14.29$; p = 0.013), Kong ($\chi^2 = 15.54$; p = 0.008) and Téhini ($\chi^2 = 12.84$; p = 0.025). Indeed, the rate of spread increased each month until reaching a peak in January for Nassian (0.161 \pm 0.042 m.s⁻¹), Dabakala (0.096 \pm 0.034 m.s⁻¹) and Téhini (0.132 \pm 0.071 m.s⁻¹) sectors or in February for Bouna (0.178 \pm 0.035 m.s⁻¹) and Kong (0.388 \pm 0.191 m.s⁻¹) sectors, before decreasing at the end of dry season (Fig. 5). Furthermore, fire rate of spread was found to be dependent on fuel moisture in all sectors: Bouna (F = 13.10; p = 0.002), Nassian (F = 6.10; p = 0.025), Dabakala (F = 8.66; p = 0.009), Kong (F = 5.39; p = 0.034) and Téhini (F = 9.71; p= 0.007). The less humid the fuel, the faster the fire.

Fig. 5. Fire rate of spread according to months in sectors

Distance traveled by flames in sectors

The distance traveled by flames varied significantly according to months in Nassian ($\chi^2 = 14.78$; p = 0.011), Kong ($\chi^2 = 13.01$; p = 0.023), and Dabakala ($\chi^2 = 16.16$; p = 0.006) sectors. Indeed, flames only

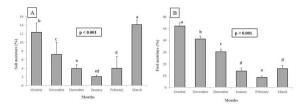

traveled short distances at the beginning of the season in October $(0.67 \pm 0.17 \text{ m}, 1.00 \pm 0.25 \text{ m},$ and $2.62 \pm 1.37 \text{ m}$ in the Nassian, Kong, and Dabakala sectors, respectively). These distances gradually increased until reaching the maximum from December when, in those three sectors, fire was spreading along the entire length of experimental plots (20 m) without going out. On the other hand, in Bouna and Tehini sectors, the distances traveled by flames did not show any significant variation depending on months. This is explained by the fact that these distances were maximal, and therefore constant from November onwards (Fig. 6).

The distance traveled by flames was influenced by fuel moisture content in all sectors of the park, namely Tehini (F= 9.21; p = 0.007), Nassian (F = 13.58; p = 0.002), Bouna (F= 6.98; p = 0.018), Dabakala (F= 34.27; p < 0.001) and Kong (F = 11.85; p = 0.003). Indeed, fire traveled the shortest distance when fuel moisture was the highest, especially at the beginning of dry season in October (Fig. 6). This distance increased in the following months whereas fuel moisture was decreasing. However, once the distance traveled by flames reached the maximum (20 m corresponding to the entire length of a plot), no decrease in fuel moisture was influencing it. On the other hand, a further increase in fuel moisture immediately caused a decrease in the distance traveled by flames. This was the case in Kong sector in March. These results suggest the existence of sectorspecific fuel moisture thresholds. Thus, from the moment the entire length of the plots (20 m) was traveled by flames in each sector, fuel moisture was $46.55 \pm 0.20\%$ in Tehini (Fig. 6A), $35.36 \pm 1.60\%$ in Nassian (Fig. 6B), $33.31 \pm 7.00\%$ in Bouna (Fig. 6C), 32.62 ± 3.46% in Dabakala (Fig. 6D), and $30.05 \pm 1.67\%$ in Kong (Fig. 6E). Below these thresholds, fuel moisture was no longer a limiting factor for fire spread in the concerned sector.

Particularly, both the distance traveled by the flames (F = 5.63; p = 0.03) and fire rate of spread (F = 6.39;

p= 0.022) were influenced by soil moisture in Nassian sector solely. Flames were slower and traveled a short distance when soil was wetter, especially at the beginning of dry season. This result

could be explained by the fact that Nassian is located in the southern part of the park, and is therefore a little wetter. It is probably why the highest soil moisture was observed in this sector (18.10 \pm 2.96%).


Fig. 6. Variation of the distance traveled by flames according to fuel moisture in sectors A: Téhini; B: Nassian; C: Bouna; D: Dabakala; E: Kong

Average soil and fuel moisture contents in the park

The average soil moisture content of the entire park varied significantly according to months (χ^2 = 198; p < 0.001). Indeed, soil moisture was decreasing along dry season (Fig. 7A), particularly from October (12.33 ± 2.18%) to January (2.07 ± 0.36%). The same was true for the average fuel moisture content depending on months (χ^2 = 333.86; p < 0.001), decreasing from 52.23 ± 2.78% in October to 8.58 ± 1.29% in February (Fig. 7B). However, both soil moisture and fuel moisture increased at the end of the season in March. This is explained by the sampling of this month occurring the day after rainfall occurrence in all sectors of the park, as previously stated. Indeed, significant correlations were observed between soil moisture and the moisture

contents of total fuel load (r = 0.26; p < 0.001), grass (r = 0.19; p < 0.001) and litter (r = 0.58; p < 0.001). This means that the more it rains, the wetter the soil and the wetter the fuel. However, although the correlations are statistically significant, the correlation coefficients that attest those relations are low, with the exception of that between soil moisture and litter moisture.

Importantly, overall, the average moisture content of the total fuel (grass + litter) did not vary significantly between sectors for a given month. That's to say for the same month, fuel moisture content did not differ from one sector to another within the park. These results demonstrate a certain homogeneity between the shrub savanna sites that hosted experiments in the different sectors, reinforcing the findings.

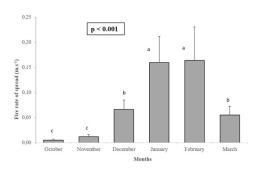


Fig. 7. Average soil (A) and fuel (B) moisture contents according to months in dry season

Fire spread in the park

Average fire rate of spread

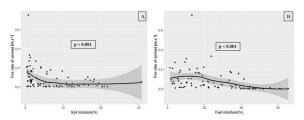

The average fire rate of spread showed significant variation according to months ($\chi^2 = 60.42$; p < 0.001). Indeed, early burnings were slow at the beginning of dry season (0.005 ± 0.002 m.s⁻¹ in October). As in sectors, the rate of spread went increasingly the following months until reaching the peak in February (0.164 ± 0.066 m.s⁻¹) which was not significantly different from the value of January (0.159 ± 0.052 m.s⁻¹). At the end of dry season in March, a decrease in the average fire rate of spread was observed (Fig. 8).

Fig. 8. Average fire rate of spread according to months in dry season

Moreover, the decrease in average fire rate of spread at the end of dry season could be explained by average soil and fuel moisture contents, which increased significantly in March. Indeed, fire rate of spread was significantly influenced by soil (F = 11.78; p < 0.001) and fuel (F = 20.79; p < 0.001) moisture contents. During burnings, flames were faster when the soil (Fig. 9A) and fuel (Fig. 9B) were less humid. These overall results confirm the influence of moisture contents on fire behavior, already observed in the different sectors. Obviously, the Fig. 9 reveals that above 10% soil moisture and 30% fuel moisture,

almost all the points were within the 95% confidence interval (see gray area around the curves). This means that soil and fuel moisture contents significantly influence the fire rate of spread only above the indicated thresholds (10% and 30% for soil and fuel, respectively). However, below these thresholds, the most points were outside the confidence interval. This expresses an absence of influence or a weak influence of moisture contents. Thus, the results suggest that fuel and soil moisture contents influence the capacity of the park's sectors to burn at a given period, depending on their desiccation level.

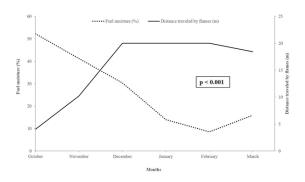


Fig. 9. Regression of average fire rate of spread according to soil (A) and fuel moisture (B)

Average distance traveled by flames

Regardless of their rate of spread, the distance traveled by flames before going out can provide an overall idea on fuel flammability and the possibility of ignition. Globally, the average distance traveled by flames differed according to months overall (χ^2 = 52.91; p < 0.001). It was low in October (4.04 ± 2.81 m) where flames did not travel a quarter of plot length (20 m) before going out, and this, in almost all sectors. Results showed that the distance traveled by flames depended solely on fuel moisture (F = 51.38; p< 0.001). On the other hand, soil humidity did not show a significant influence on this distance. Probably because average soil moisture contents were below 10% for most months, since the Fig. 9 showed that below this threshold, soil moisture does not significantly influence fire spread. Therefore, among these two moisture contents, the study reveals that it is fuel moisture that most controls fire spread in dry savannas of the CNP.

During the first three months of dry season (October, November and December), the average distance traveled by flames was increasing as fuel moisture decreased (Fig. 10). From December onwards, when this distance reached the 20m length of the plots at once in all sectors, illustrating the possibility of continuous fire spread, fuel moisture was 30.35 ± 2.35% on average. Thus, this moisture content constitutes the critical threshold below which continuous fire spread was possible. Above it, continuous fire spread was compromised. Between December and February, the distance traveled by flames remained maximum regardless of the decline in fuel moisture. At the end of dry season, when this moisture increased following the resumption of rains, the distance traveled by flames experienced a slight decrease in March (Fig. 10). This decrease would be particularly linked to the increase in the moisture content of litter covering the ground, itself quite humid, conditioning fuel flammability and thus, fire spread.

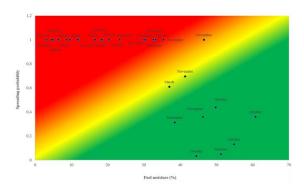


Fig. 10. Evolution of the distance traveled by flames according to fuel moisture throughout dry season

Critical threshold of fuel moisture and fire spreading probability

The mapping of continuous fire spread risk highlighted fuel moisture thresholds and fire spreading probability in relation to burning periods during dry season (Fig. 11). Three intervals can be distinguished on the map. Firstly, below the critical threshold of 30% fuel moisture, the probability of continuous fire spread was high and almost certain. This level of risk was observed from December. Secondly, between 30 and 45% fuel moisture, the probability of continuous fire spread was low, medium, or high. Low risk was observed between October and November, with medium and high risks occurring in November or often in March. Finally,

above 45% fuel moisture, the probability of continuous fire spread was exclusively low. This implies a low risk exclusively observed in October, and rarely in November.

Fig. 11. Mapping of fire spreading risk in dry season according to fuel moisture

DISCUSSION

Moisture contents according to season

The monitoring of soil and fuel moisture contents throughout dry season helps understanding their evolution and their influence on fire spread. The moisture contents were decreasing as the dry season progressed. The high soil and fuel moisture values observed at the beginning of dry season can be explained by the climate of this area. Indeed, with unimodal rainfall (Tie *et al.*, 2007), August and September experience the maximum rainfall of wet season there. Accordingly, soil and fuel are still quite wet in October and November, corresponding to the beginning the dry season. This explains why previous studies recorded low fire occurrence during this period (Soro *et al.*, 2020).

After decline along the season, the sudden increase in moisture contents observed in March was due to rainfall occurring on the eve of the sampling in that month, while measurements were planned on predefined dates each month. This rainfall led to a direct increase in soil moisture and an indirect increase in fuel moisture, their effects on moisture contents being recognized, contributing to the limitation of fire frequency (Archibald *et al.*, 2009; Wilson and Yebra, 2023). The positive and significant correlation between soil and litter moisture contents confirmed that soil moisture has a greater impact on

litter moisture as the primary component of fuel that covers the soil. Since most fires are surface fires (Werner, 2010), its role in fire spread becomes decisive. This certainly explains why it has an influence on fire behavior (Rissi *et al.*, 2017).

Fire rate of spread according to season and moisture contents

Fire behavior strongly depends on its spread. Since the beginning of dry season, fire spread increased each month, peaking in January and February according to sectors. Thus, those peaks reveal when fires are the fastest and could therefore be uncontrollable, even if they are initially carried out under controlled conditions as part of park management or scientific experiments. This probably explains the fact that Brou et al. (2025) observed experimental fires that crossed firebreaks in this same park and during the same months (January and February). While fire occurrence generally peaked in December in the Northeast (N'Datchoh et al., 2015; Soro et al., 2021), this study records the peak of rates of spread in January and February. Indeed, these months correspond to the peak of dry season in the area. Biomass burning is made more favorable by faster winds and low air relative humidity levels, this area being under the influence of the Harmattan. This affects fuel state, making it increasingly dry, due to decline in moisture. Moreover, fire spread was influenced by fuel moisture content. In this dry savanna where experiments occurred, this confirms that fire behavior is also influenced seasonality through the state of fuel, as elsewhere in humid savanna (N'Dri et al., 2018) or grassland (Yurkonis et al., 2019).

However, the higher rate of spread recorded in February, particularly in Kong sector, suggests the influence of other factors such as fuel load. Indeed, at the beginning of dry season (October) when fuel moisture contents were high (> 40%), fuel loads were most abundant for each sector, but fire rate of spread remained low all over the sectors. On the other hand, although fuel moisture contents were low (<20%) in all sectors in February, Kong sector experienced the

highest fire rate of spread. Importantly, because its fuel load was the most abundant for this month. If the influence of fuel moisture (Williams *et al.*, 1998; Govender *et al.*, 2006) and that of fuel load (N'Dri *et al.*, 2012; Rissi *et al.*, 2017) are recognized on fire behavior, our results suggest the existence of a fuel moisture threshold below which the influence of fuel load becomes dominant. This threshold would be between 20 and 40%, based on observations.

Furthermore, it was revealed that above the critical thresholds of 10% soil moisture and 30% fuel moisture, soil and fuel moisture contents influenced the average fire rate of spread. Below these thresholds however, they did not limit fire spread. In the last case, the influence of other factors such as fuel load, air relative humidity or wind speed (Savadogo *et al.*, 2007; Archibald *et al.*, 2009) would become dominant on fire spread.

Distance traveled by flames according to season and moisture contents

The distance traveled by flames was crucial in determining the critical fuel moisture threshold. Over all, the fact that fire traveled the entire length of a plot without extinguishing on its own was considered continuous spread. This meant that, without natural barrier such as watercourse or green firebreak (Curran *et al.*, 2018), fire would spread throughout the area.

The distance traveled by flames was exclusively influenced by fuel moisture content. This means that this distance varied regardless of soil moisture content. These results can be explained by the levels of soil moisture in this dry savanna. Indeed, all soil moisture contents were below 10%. As previously stated, soil moisture below this threshold did not influence fire spread. This influence may be indirect. For instance, if the spread and frequency of fires are influenced by rainfall through moisture contents (Soro *et al.*, 2021; Wilson and Yebra, 2023), rains act more quickly on soil moisture, which is able to influence them in return (Koné *et al.*, 2022). Once high, soil moisture positively influences fuel moisture

which, in turn, negatively influences fire spread as observed in March. The more humid the soil, the more humid the fuel and the less the fire spreads. Using the variation of average distance traveled by flames, 30% fuel moisture was identified again as the critical threshold below which continuous fire spread was possible, the influence of fuel moisture being negligible. On the other hand, above this threshold, continuous fire spread was limited by fuel moisture influence, which would dominate that of fuel load (Govender *et al.*, 2006) and other factors.

While the distance traveled by flames increased gradually to reach the maximum from December in all sectors, Bouna and Téhini sectors experienced this maximum since November. Further, early in October, fire was traveling almost half the length of plots in these two sectors. Moreover, from the first experiments at the beginning of dry season (October), these last two sectors were the only ones where burning covered the entire length (20 m) of at least one plot. Although all experiments occurred in a park located in the same climatic zone, these results could be due to the particular location of Bouna and Téhini sectors in the eastern part. As a result, they are more exposed to the winds and the drying front from the Intertropical Convergence Zone (ITCZ), of which the Northeast of the country is a gateway. Seasonal changes induced by this ITCZ controlling biomass burning in the West African zone in general (Swap et al., 2002; N'Datchoh et al., 2015).

Even if continuous fire spread was observed very early in Tehini and Bouna sectors, their specific fuel moisture thresholds were high, comparatively to the other sectors. This indicates that fuel moisture is not the only factor that explains fire spread. In fact, fire behavior in a given area is influenced by a number of factors, including fuel characteristics, climatic parameters, and topography (N'Dri *et al.*, 2018; Yurkonis *et al.*, 2019; Laris *et al.*, 2020; Wilson and Yebra, 2023). However, some factors may have a dominant influence at a given time, such as seasonal fuel moisture (Govender *et al.*, 2006).

Critical moisture thresholds and fire spread risk

To sum up, the mapping of continuous fire spread risk provides an overview on fuel moisture thresholds and their spreading probabilities. This map identified three main intervals in fuel moisture. The first one includes values below the critical threshold of 30%. Within this interval, continuous fire spread was certain. This level of risk was observed from December. This means that a fire started at this time can spread continuously without difficulty. Well-done or severe burnings may be recommended for this period, particularly for areas whose objective is ecotourism in protected areas of savanna ecosystems (Gray and Bond, 2013). However, maximum vigilance is required, as fires can easily become uncontrollable and even cross firebreaks (Brou et al., 2025). At this time, fire behavior is mostly controlled by air relative humidity and wind speed (Laris et al., 2020).

The second interval runs from 30 to 45% fuel moisture, wherein the continuous fire spread is mitigate, as the probability can be low, medium, or high. While, low risk was observed between October and November, medium and high risks was experienced in November or often in March. During this period, both fuel moisture and climate factors control fire behavior, which is generally influenced by a combination of factors (N'Dri *et al.*, 2018; Yurkonis *et al.*, 2019). The level of risk would depend on the importance of other factors. Moderate burning may be recommended.

Finally, the third interval includes all values above 45% fuel moisture. Observed in October, and rarely in November, the probability of continuous fire spread was exclusively low, indicating a lower risk. Thus, since fuel moisture is high, its influence becomes dominant and limits fire spread (Govender *et al.*, 2006). Early ignitions during this period would cause incomplete burnings and contribute to an increase in woody plant density at long term (Heubes *et al.*, 2011; N'Dri *et al.*, 2022).

CNP's managers, which is high importance protected area for biodiversity conservation, now have data-based insights at their disposal to update their fire ignition plans, choosing the appropriate burning periods according to management objectives. Nevertheless, some limitations of this study should be acknowledged. First, our study was conducted during a single dry season, limiting temporal generalizability. Second, we focused on shrub savanna. Results may differ in other savanna types.

CONCLUSION

Protected areas in savanna ecosystems need fire as a management tool. Therefore, the choice of appropriate burning period and the control of fire spread become essential for targeted management. This study dealt with fire spreading control for management purpose in dry savanna ecosystems. The monthly monitoring of fuel and soil moisture contents showed a decline over dry season. Between the two types of moisture, the findings revealed that fuel moisture content was the determining factor that controls fire spread during biomass burning in savannas of the CNP. However, its influence worked above a certain threshold. This study provides the first quantitative determination of fuel moisture thresholds for fire management in Ivorian savannas for the first time. Using fire spreading probability, the map of fire spreading risk according to fuel moisture content helped identifying the critical threshold above which fuel moisture controls fire spread, and below which it doesn't have significant effect. In the last case, continuous fire spread was possible. Thus, scientific data-based findings are provided to CNP managers to update their fire management strategy as requested. Furthermore, these insights may be useful for all managers of protected areas and other areas of interest in savanna ecosystems for targeted burning according to management objectives. The monitoring of fuel moisture will be necessary as the critical threshold may vary according to savanna type and local climate conditions.

ACKNOWLEDGEMENTS

We acknowledge the OIPR for technical and logistic support to the project strengthening the Northeast Zone Directorate (DZNE) for the implementation of its fire management strategy in CNP, as part of the Phase II of the CNP Biodiversity protection project. Thanks to the German cooperation agency GIZ for financial support through the program for Governance and Sustainable Management of Natural Resources in Comoé and Taï areas of Côte d'Ivoire (Pro2GRN). Our gratitude to the former Director of the Ecological Research Center (CRE), Professor YEO Kolo (R.I.P), who supervised this project.

REFERENCES

Afelu B, Bimare K, Soro TD, Pilabina S, Dourma M, Edou K. 2025. Géostratégie et considérations écologiques pour la gestion des feux de végétation en Afrique de l'Ouest. VertigO-la revue électronique en sciences de l'environnement [online]. Accessed on 12/09/2025.

https://doi.org/10.4000/1431p

Amoako EE, Gambiza J. 2022. Fire use practices, knowledge and perceptions in a West African savanna parkland. PLoS One **17**(5), e0240271.

https://doi.org/10.1371/journal.pone.0240271

Archibald S, Roy DP, van Wilgen BW, Scholes RJ. 2009. What limits fire? An examination of drivers of burnt area in Southern Africa. Global Change Biology **15**, 613-630.

https://doi.org/10.1111/j.1365-2486.2008.01754.x

Bond WJ, Woodward FI, Midgley GF. 2005. The global distribution of ecosystems in a world without fire. New Phytologist **165**, 525-538.

https://doi.org/10.1111/j.1469-8137.2004.01252.x

Brou ADV, Soro TD, Yanga KKS. 2025. Critical threshold for crossing a firebreak: mathematical model and fire experiments. Comptes Rendus. Mécanique **353**, 673-686.

https://doi.org/10.5802/crmeca.299

Curran TJ, Perry GLW, Wyse SV, Alam MA. 2018. Managing Fire and Biodiversity in the Wildland-Urban Interface: A Role for Green Firebreaks. Fire 1(1), 3. https://doi.org/10.3390/fire1010003

Eriksen C. 2007. Why do they burn the "bush"? Fire, rural livelihoods, and conservation in Zambia. Geographical Journal **173**, 242-256.

https://doi.org/10.1111/j.1475-4959.2007.00239.x

Fritz H. 1997. Low ungulate biomass in West African savannas: primary production or missing megaherbivores or large predator species? Ecography **20**(4), 417-420.

https://doi.org/10.1111/j.1600-0587.1997.tb00387.x

Gautier L. 1990. Contact forêt-savane en Côte d'Ivoire centrale: évolution du recouvrement ligneux des savanes de la réserve de Lamto (sud du V baoulé). Candollea **45**(2), 627-641.

Govender N, Trollope WSW, Wilgen BWV. 2006. The effects of fire season, fire frequency, rainfall and management on fire intensity in savanna vegetation in South Africa. Journal of Applied Ecology 43, 748-758. https://doi.org/10.1111/j.1365-2664.2006.01184.x

Gray EF, Bond WJ. 2013. Will woody plant encroachment impact the visitor experience and economy of conservation areas? Koedoe **55**(1), Art.#1106. https://doi.org/10.4102/koedoe.v55i1.1106

Guillaumet JL, Adjanohoun E. 1971. La végétation de la Côte d'Ivoire. In: Avenard JM, Eldin M, Girard G, Sircoulon J, Touchebeuf P, Guillaumet J., Adjanohoun E. et Perraud A, Eds. Le milieu naturel de la Côte d'Ivoire. Paris : Mémoires ORTOM, 160-262.

Heubes J, Kühn I, König K, Wittig R, Zizka G, Hahn K. 2011. Modelling biome shifts and tree cover change for 2050 in West Africa. Journal of Biogeography **38**, 2248-2258.

https://doi.org/10.1111/j.1365-2699.2011.02560.x

Koné B, Diedhiou A, Diawara A, Anquetin S, Touré NE, Bamba A, Kobea AT. 2022. Influence of initial soil moisture in a regional climate modelstudy over West Africa – Part 1: Impact on the climate mean. Hydrology and Earth Systems Sciences **26**, 711-730.

https://doi.org/10.5194/hess-26-711-2022

Kouassi JL, Wandan N, Mbow C. 2020. Exploring Wildfire Occurrence: Local Farmers' Perceptions and Adaptation Strategies in Central Côte d'Ivoire, West Africa. Journal of Sustainable Forestry 41(2), 173-172.

https://doi.org/10.1080/10549811.2020.1845744

Laris P, Jacobs R, Koné M, Dembélé F, Rodrigue CM. 2020. Determinants of fire intensity in working landscapes of an African savanna. Fire Ecology 16, 20.

https://doi.org/10.1186/s42408-020-00085-x

Lauginie F. 2007. Conservation de la Nature et aires protégées en Côte d'Ivoire. Abidjan : NEI/Hachette et Afrique Nature, 668 p.

Li T, Cui L, Liu L, Chen Y, Liu H, Song X, Xu Z. 2023. Advances in the study of global forest wildfires. Journal of Soils Sediments **23**(7), 2654-2668. https://doi.org/10.1007/s11368-023-03533-8

López-Merino L, López-Sáez JA, Alba-Sánchez F, Pérez-Díaz S, Carrión JS. 2009. 2000 years of pastoralism and fire shaping high-altitude vegetation of Sierra de Gredos in central Spain. Review of Palaeobotany and Palynology **158**, 42-51.

https://doi.org/10.1016/j.revpalbo.2009.07.003

McLauchlan KK, Higuera PE, Miesel J, Rogers BM, Schweitzer J, Shuman JK, Tepley AJ, Varner JM, Veblen TT, Adalsteinsson SA. 2020. Fire as a fundamental ecological process: Research advances and frontiers. Journal of Ecology 108, 2047-2069.

https://doi.org/10.1111/1365-2745.13403

Miranda AC, Miranda HS, Dias I.dFO, Dias BFdS. 1993. Soil and air temperatures during prescribed cerated fires in Central Brazil. Journal of Tropical Ecology 9(3), 313-320.

https://doi.org/10.1017/s0266467400007367

N'Datchoh ET, Konaré A, Diedhiou A, Diawara A, Quansah E, Assamoi P. 2015. Effects of climate variability on savannah fire regimes in West Africa. Earth System Dynamics **6**(1), 161-174.

https://doi.org/10.5194/esd-6-161-2015

N'Dri AB, Gignoux J, Dembélé A, Konate S. 2012. Short term effects of fire intensity and fire regime on vegetation dynamic in a tropical humid savanna (Lamto, central Côte d'Ivoire). Natural Science 4 (12), 1056-1064.

https://doi.org/10.4236/ns.2012.412134

N'Dri AB, Kpangba KP, Koffi KF, Werner PA, Bakayoko A. 2022. The response of subadult savanna trees to six successive annual fires: An experimental field study on the role of fire season. Journal of Applied Ecology **oo**, 1-15. https://doi.org/10.1111/1365-2664.14149

N'Dri AB, Soro TD, Gignoux J, Dosso K, Koné M, Koné NA, N'Dri J, Barot S. 2018. Season affects fire behaviour in annually burned humid savanna of West Africa. Fire Ecology 14(2), 5. https://doi.org/10.1186/s42408-018-0005-9

Poilecot P. 1989. Ecologie des savanes soudanoguinéennes : interactions faune-flore dans le parc national de la Comoé (Côte d'Ivoire). Thèse de Doctorat, Université Pierre et Marie Curie, Paris, 305 p.

R Core Team. 2024. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/

Rissi MN, **Baeza MJ**, **Gorgone-Barbosa E**, **Zupo T**, **Fidelis A**. 2017. Does season affect fire behaviour in the Cerrado? International Journal of Wildland Fire **26**, 427-433. http://dx.doi.org/10.1071/WF14210

Sankaran M, Hanan NP, Scholes RJ, Ratnam J, Augustine DJ, Cade BS, Gignoux J, Higgins SI, Le Roux X, Ludwig F, Ardo J, Banyikwa F, Bronn A, Bucini G, Caylor KK, Coughenour MB, Diouf A, Ekaya W, Feral CJ, February EC, Frost PGH, Hiernaux P, Hrabar H, Metzger KL, Prins HHT, Ringrose S, Sea W, Tews J, Worden J, Zambatis N. 2005. Determinants of woody cover in African savannas. Nature 438(8), 846-849.

https://doi.org/10.1038/nature04070

Savadogo P, Zida D, Sawadogo L, Tiveau D, Tigabu M, Odén PC. 2007. Fuel and fire characteristics in savanna–woodland of West Africa in relation to grazing and dominant grass type. International Journal of Wildland Fire **16**, 531-539. https://doi.org/10.1071/WF07011

Soro TD, Koffi KF, N'Dri AB, Koné M, Soro D, Boraud NKM. 2025. Perception et pratiques des populations rurales sur les feux de végétation incontrôlés dans une région à très forte densité de feu (Nord-Est Côte d'Ivoire). International Journal of Biological and Chemical Sciences **19**(3), 1169-1187.

https://dx.doi.org/10.4314/ijbcs.v19i3.26

Soro TD, Koné M, N'Dri AB, N'Datchoh ET. 2021. Identified main fire hotspots and seasons in Côte d'Ivoire (West Africa) using MODIS fire data. South African Journal of Science **117**(1/2), Art.#7659. https://doi.org/10.17159/sajs.2021/7659

Soro TD, N'Dri AB., Dembélé BN, Kpré AJN, Kouassi KV, Kpangba KP, Kouamé YAG, Koné M. 2020. Périodes des feux de végétation en fonction des secteurs phytogéographiques de Côte d'Ivoire: approche par télédétection et perceptions des populations. Journal of Research in Environmental and Earth Science 6(4), 08-17.

http://www.questjournals.org/jrees/papers/vol6-issue4/B06040817.pdf

Swap RJ, Annegarn HJ, Suttles JT, Haywood J, Helmlinger MC, Hely C, Hobbs PV, Holben BN, Ji J, King MD, Landmann T, Maenhaut W, Otter L, Pak B, Piketh SJ, Platnick S, Privette J, Roy D, Thompson AM, Ward D, Yokelson R. 2002. The Southern African regional science initiative (SAFARI 2000): overview of the dry season field campaign. South African Journal of Science 98(3-4), 125-130.

Tie AGB, Konan B, Brou YT, Issiaka S, Fadika V, Srohourou B. 2007. Estimation des pluies exceptionnelles journalières en zone tropicale: cas de la Côte d'Ivoire par comparaison des lois Lognormale et de Gumbel. Hydrological Science Journal **52**(1), 49-67.

https://doi.org/10.1623/hysj.52.1.49

Werner PA. 2010. Fine-scale patchines of burns in a mesic eucalypt savanna differs with fire season and Sorghum abundance. Northern Territory Naturalist **22**, 31-44.

https://search.informit.com.au/documentSummary; dn=520624831539387;res=IELHSS **Wickham H.** 2016. ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag New York.

Williams RJ, Gill AM, Moore PHR. 1998. Seasonal Changes in Fire Behaviour in a Tropical Savanna in Northern Australia. International Journal of Wildland Fire 8(4), 227-239.

https://doi.org/10.1071/WF9980227

Wilson N, Yebra M. 2023. The Role of Climate in Ignition Frequency. Fire **6**(5), 195.

https://doi.org/10.3390/fire6050195

Yao N, Landmann T, Chmidt M, Konaté S, Dech S, Linsenmair KE. 2010. Le feu comme agent pour la structure végétale et la diversité. In: Konaté S, Kampmann D, Eds. Biodiversity Atlas of West Africa. Volume III: Côte d'Ivoire, Abidjan & Frankfurt/Main, 64–71.

Yurkonis KA, Dillon J, McGranahan DA, Toledo D, Goodwin BJ. 2019. Seasonality of prescribed fire weather windows and predicted fire behavior in the northern Great Plains, USA. Fire Ecology **15**(7). https://doi.org/10.1186/s42408-019-0027-y