International Journal of Biosciences | IJB |

ISSN: 2220-6655 (Print); 2222-5234 (Online)

Website: https://www.innspub.net Email contact: info@innspub.net

Vol. 27, Issue: 4, p. 57-68, 2025

RESEARCH PAPER

OPEN ACCESS

Flammability of tropical grasses: Towards a functional ecology of fire in savannas

Kouamé Fulgence Koffi^{*1}, Yao Anicet Gervais Kouamé¹, Tionhonkélé Drissa Soro², Koffi Prosper Kpangba³

Laboratoire de l'Amélioration de la Production Agricole (LAPA), UFR Agroforesterie,

Université Jean Lorougnon Guédé, BP 150 Daloa, Côte d'Ivoire

²Laboratoire des Milieux Naturels et Conservation de la Biodiversité, UFR Biosciences,

Université Felix Houphouët-Boigny, 22 BP 582 Abidjan 22, Côte d'Ivoire

*Laboratoire d'Ecologie et du Développement Durable (LEDD), UFR des Sciences de la Nature,

Station d'Ecologie de Lamto/CRE, Université Nangui Abrogoua, 02 BP 801 Abidjan 02, Côte d'Ivoire

Key words: Fire behavior, Fire management, Perennial grass flammability, Plant–fire interactions, Tropical savanna fuel traits

DOI: https://dx.doi.org/10.12692/ijb/27.4.57-68 Publi

Published: October 10, 2025

ABSTRACT

Fire is a key ecological process in tropical savannas, yet species-specific contributions to fuel flammability remain poorly understood in West Africa. Here, we present the first experimental assessment of flammability traits in the Lamto humid savanna (Côte d'Ivoire), focusing on five dominant perennial grasses, litter, and realistic mixtures. We quantified four plant flammability traits (ignitibility, combustibility, sustainability, consumability) and six fire behavior parameters (flame height, fuel consumption, and maximum temperatures at three heights). Our results show that ignitibility varied strongly among species, with Hyparrhenia diplandra and Loudetia simplex igniting more rapidly than others. In contrast, combustibility, sustainability, and consumability were relatively consistent across fuel types. Fire behaviour also varied: complete combustion occurred in some mixtures, whereas Andropogon schirensis and litter-containing mixtures left significant unburned material, likely due to lower fuel porosity. Importantly, mixture flammability was nonadditive: mixtures did not reflect the sum of their components but instead approximated the average flammability of constituent species. Principal Component Analysis and hierarchical clustering identified three functional flammability groups: (i) highly flammable fuels (Imperata cylindrica, L. simplex, litter), (ii) moderately flammable fuels (A. schirensis, H. diplandra, mixture 3), and (iii) poorly flammable fuels (A. canaliculatus and mixtures 1, 2, 4). These findings highlight the non-additive and species-specific nature of savanna fuel flammability, with direct implications for fire intensity, severity, and management. This traitbased approach provides a foundation for predicting fire behavior in West African savannas and for integrating species-level flammability into conservation-oriented fire management.

*Corresponding author: Kouamé Fulgence Koffi M maheswaritvr1@gmail.com

INTRODUCTION

Fire is one of the most influential ecological disturbances shaping tropical savannas, governing not only vegetation structure and species composition but also the evolutionary trajectories of many plant species (Bond and Keeley, 2005; Pausas et al., 2017). In these fire-prone systems, recurrent burning maintains open habitats and suppresses woody encroachment, allowing grasses and other herbaceous species to dominate (Beckage et al., 2009; Case and Staver, 2017). Understanding the mechanisms that govern fire behavior is fundamental to both ecological theory and effective conservation. Among these mechanisms, the flammability of plant material plays a critical role. Plant flammability (the ability of plant material to ignite and sustain combustion) is now recognised as a functional trait that can influence, and be influenced by, fire regimes (Anderson, 1970; Pausas et al., 2017). It encompasses four interrelated components: ignitibility (how easily a plant catches fire), sustainability (how long combustibility (how fast it burns), and consumability (how completely it burns) (Gill and Zylstra, 2005; White and Zipperer, 2010). These flammability traits can vary across species due to differences in tissue chemistry (e.g., terpenes, essential oils), morphology (e.g., bulk density, surface area), and moisture content (Alessio et al., 2008; Cornwell et al., 2015; Alam et al., 2020). Increasingly, flammability is viewed as a functional trait (analogous to leaf area or seed size) shaped by evolutionary pressures in fireprone environments (Bowman et al., 2014; Pausas et al., 2017). This perspective has fostered a new discipline: the functional ecology of fire, which explores how species-level traits influence, and are influenced by, fire regimes (Midgley, 2013; Cornwell et al., 2015).

However, empirical data on flammability traits in tropical ecosystems remain heavily biased toward regions such as Australia, North America, and South Africa (Clarke *et al.*, 2014; Calitz *et al.*, 2015; Simpson *et al.*, 2016). West Africa, despite hosting some of the most frequently burned savannas globally (Osborne *et al.*, 2014), has been largely overlooked. A rare

exception is the study by Cardoso *et al.* (2018) in Gabon, which highlighted the importance of species-specific flammability over biomass quantity in determining fire behavior. The lack of data from other parts of West Africa constitutes a major gap in our understanding of how fire operates in these ecosystems.

The Lamto Reserve in Côte d'Ivoire represents a model site for studying fire-vegetation interactions. Situated at the ecotone between semi-deciduous forest and humid savanna, it has been managed through prescribed burning since the 1960s (Abbadie et al., 2006). Yet, the selection of fire regimes in Lamto has been historically guided by empirical observation rather than by a mechanistic understanding of fuel flammability. Perennial grasses, which dominate the herbaceous layer and serve as the primary fuel, vary in morphology and abundance, but their flammability traits remain undocumented. Such knowledge is crucial for at least three reasons. First, it can inform fire management decisions aimed at biodiversity conservation, carbon storage, and the prevention of woody encroachment (Archer et al., 2017; N'Dri et al., 2021). Second, it can shed light on the role of fire as an evolutionary filter, selecting for traits that either promote or resist combustion (Pausas et al., 2012; Cui et al., 2020). Third, understanding how different species contribute to community-level flammability can help predict fire behavior under shifting climatic conditions (Dayamba et al., 2010; Guerrero et al., 2021).

In this study, we provide the first quantitative analysis of plant flammability in the Lamto savanna. We assess four flammability traits and six fire behavior parameters across five dominant perennial grass species, litter, and their realistic mixtures. We specifically asked whether flammability traits differ among dominant fuels, whether mixture flammability is predictable from species identity, how fuels can be functionally classified, and what this means for fire intensity and management. By addressing these questions, we aim to contribute not only to the fire ecology of West African savannas but also to broader theories of functional ecology and

evolutionary adaptation to disturbance. In doing so, we offer a framework for integrating species traits into fire management practices and for understanding the eco-evolutionary dynamics of flammability in tropical systems.

MATERIALS AND METHODS

Study site description

This study was conducted in the Lamto Reserve, located at the southern edge of the Guinean savanna zone in Côte d'Ivoire (6° 9′-6° 18′ N; 5° 15′-4° 57′ W). This area represents a transitional zone between semi-deciduous forest in the south and humid savanna in the north. The average annual rainfall is approximately 1200 mm and the mean temperature is around 27°C (Tiemoko *et al.*, 2020). The vegetation forms a mosaic of forest and savanna patches with varying tree and shrub densities. The herbaceous layer is dominated by perennial grasses (Menaut and Abbadie, 2006), with approximately ten coexisting species, most of which belong to the tribe Andropogoneae Dumort (Poaceae) (Abbadie *et al.*, 2006).

This study focused on litter and the five dominant perennial grass species in the savanna: four C4 tussock species (Andropogon canaliculatus Schumach., Andropogon schirensis Hochst. ex A. Rich., Hyparrhenia diplandra (Hack.) Stapf, and Loudetia simplex (Nees) C.E. (Hubbard) and one rhizomatous species, Imperata cylindrica (L.) P. Beauv. The tussock species constitute the bulk of fire fuel, whereas I. cylindrica, considered one of the world's 100 most harmful invasive species (Lowe et al., 2007), has become dominant in certain areas of the Lamto savanna that have experienced repeated late dry-season fires over the past decade (Koffi et al., 2019, 2022; N'Dri et al., 2021).

Fuel sampling and preparation

Sampling was conducted at three shrub savanna sites where all target species were abundant in the herbaceous layer and litter was sufficiently present. This resulted in three litter samples and three samples per species. For each tussock species, ten individuals were randomly selected per site in

October 2020, at the end of their annual growth cycle, to ensure sufficient biomass. Their aerial parts, including live and dead tillers, leaves, and inflorescences, were collected. For the rhizomatous species $I.\ cylindrica$, leaves were sampled from ten 1 m \times 1 m quadrats per site. Litter was also collected from the same quadrats.

All samples were oven-dried at 60°C to constant weight to ensure full moisture removal. To evaluate the contribution of each species and litter to overall fuel flammability, each species was tested individually, and four mixtures were created to simulate realistic field conditions based on the dominant species. In areas dominated by *I. cylindrica*, the three main species are *I. cylindrica*, *A. canaliculatus*, and *H. diplandra*. Where *I. cylindrica* is absent, *A. canaliculatus* is the most abundant, followed by *H. diplandra* and *L. simplex* (Koffi, 2019).

Mixtures were composed as follows: Mixture 1: A. canaliculatus + H. diplandra + L. simplex; Mixture 2: Mixture 1 + litter; Mixture 3: A. canaliculatus + H. diplandra + I. cylindrica; Mixture 4: Mixture 3 + litter. Mixtures 1 and 2 correspond to the general composition of the savanna, while Mixtures 3 and 4 reflect areas where I. cylindrica is dominant. All samples were cut into small pieces for easier handling and uniformity. For each mixture and fuel type, 100 g of biomass from each component was homogenised in a tank, and five 100 g subsamples were prepared for experiments.

Flammability experiment

Flammability testing followed protocols adapted from Plucinski and Anderson (2008) and Prior (2017). Each 100 g sample (cut into twig-sized pieces) was placed in a circular pan with a fiber cement base and wire mesh sides and ignited under ambient conditions. The pan was enclosed in a three-sided box to minimize airflow.

A lit matchstick was placed at the center of the fuel to initiate combustion. Three stopwatches were used: one to record ignition time (ignitability), one to measure the time until the flame reached the pan's

edge (used to calculate combustibility), and one to record total burning time (sustainability). Combustibility was calculated by dividing the radius of the pan by the time to reach the edge. Consumability was calculated as the ratio of the amount of fuel burned to the combustion duration.

Fire behavior parameter measurement

To measure flame height, a plywood panel marked in centimeters was fixed vertically behind the pan inside the three-sided box. Flame height was assessed using video recordings of the combustion process, with still images extracted at three-second intervals.

Three thermocouples were positioned at 5 cm, 15 cm, and 30 cm above the sample to record flame temperatures at one-second intervals. At the end of combustion, the remaining unburned material was weighed after sieving out the ash using a precision electronic scale, allowing estimation of the quantity of fuel consumed.

Data analyses

Flammability traits (ignitability, combustibility, sustainability, and consumability) and fire behavior parameters were compared among fuel types (species, litter, and mixtures) using one-way ANOVA. To assess the contribution of each fuel type to the overall flammability of mixtures, we compared, for each

parameter, the mixture values to the sum and the average of the individual components using one-way ANOVA. Tukey's HSD test was used for post hoc comparisons.

We also used Principal Component Analysis (PCA) to explore covariation patterns and characterise fuel types. A hierarchical ascending classification (cluster analysis) based on the PCA components was conducted to categorise fuel types into low, medium, and high flammability classes. All statistical analyses were performed using R software (R Core Team, 2021) with a significance threshold of $\alpha = 0.05$.

RESULTS

Flammability of the different fuel types

Ignitability differed significantly among fuel types (F = 4.13; df = 9; p < 0.001). The highest ignitability values were observed in litter (1.83 s) and mixture 4 (1.85 s), whereas the lowest values were recorded for H. diplandra (0.26 s) and L. simplex (0.45 s). Among the fire behavior parameters, only the amount of burned biomass varied significantly between fuel types (F = 3.43; df = 9; p < 0.01). The maximum burned biomass was found in mixture 1 (100 g), while the lowest values were recorded for A. schirensis (97.4 g) and mixture 4 (97.4 g). Other fire behavior parameters showed no significant variation among fuel types (Table 1).

Table 1. Comparison of the different fuel types based on their flammability traits and fire behavior parameters

Parameters	Litter	Ac	As	Hd	Ic	Ls	Mixture			F-	<i>p</i> -value,	
							1	2	3	4	stastistic	df
Ignitability (s)	1.8a	1.5 ^{ab}	o.8ab	0.3^{b}	1.0 ^{ab}	0.5^{b}	1.5 ^{ab}	1.3 ^{ab}	1.3 ^{ab}	1.9ª	4.1	< 0.001, 9
Combustibility (cm.s ⁻¹)	0.5	0.4	0.6	0.5	0.6	0.6	0.5	0.5	0.6	0.5	1.7	0.118, 9
Sustainability (s)	72.4	113.4	83.7	81.3	68.3	72.7	99.2	93.5	90.5	94.7	1.7	0.131, 9
Consumability (g.s ⁻¹)	1.4	1.0	1.2	1.24	1.5	1.5	1.1	1.1	1.2	1.1	1.7	0.122, 9
Burned biomass (g)	99.6ab	99.8ab	97.4 ^b	98.6ab	99 ^{ab}	98.6ab	100a	99.8ab	99.8ab	97.4 ^b	3.4	< 0.01, 9
AFH (cm)	63.8	52.3	49.2	54.7	66.6	65.4	53.4	51.7	59.0	56.2	1.2	0.303, 9
MFH (cm)	122.4	98	97.8	92.4	107.4	122.4	91.4	102.6	101.8	103.4	1.5	0.192, 9
Max. T° 5cm (°C)	524.8	528.7	458.6	489.5	529.8	522.7	526.8	504.2	500.9	501.6	0.6	0.802, 9
Max. To 15cm (oC)	468.6	415.0	384.2	496.3	467.1	344.4	412.6	535.0	462.7	420.7	1.6	0.146, 9
Max. To 30cm (oC)	274.4	250.0	204.3	229.4	257.3	269.8	289.3	273.7	260.7	145.3	0.9	0.529, 9

Values sharing the same superscripts are not significantly different under the Tukey's HSD test. Species are: Ac: Andropogon canaliculatus, As: Andropogon schirensis, Hd: Hyparrhenia diplandra, Ic: Imperata cylindrica, Ls: Loudetia simplex. Mixtures are: Mixture 1= A. canaliculatus + H. diplandra + L. simplex, Mixture 2= Mixture 1 + litter, Mixture 3= A. canaliculatus + H. diplandra + I. cylindrica, Mixture 4= Mixture 3 + litter. The fire behavior parameters are: AFH: average flame height; MFH: maximum flame height; Max. T°: Maximum temperature at 5, 15 and 30 cm height.

Contribution of each species to the flammability of the mixtures

The values of flammability traits and fire behavior parameters observed for the mixtures were significantly lower than the sum of their component values (ANOVA, df = 2; p < 0.001). However, they were not significantly different from the averages of the individual components (Table 2), suggesting that mixture flammability cannot be predicted by a simple additive model.

Table 2. Comparison of the sum and the mean of the mixture components, to the corresponding mixtures, based on the flammability traits and the fire behavior parameters

Mixtures	Statistic parameters	Ignit. (s)	Comb. (cm.s ⁻¹)	Sust. (s)	Cons. (g.s ⁻¹)	AFH (cm)	MFH (cm)	Max. T° 5cm (°C)	Max. T°	Max. T° 30cm (°C)
Mixture 1	Sum	2.2 ^a	1.5ª	267.3ª	3.7ª	172.4ª	312.8a	1540.9 ^a	1255.7ª	749.1 ^a
	Mean	0.7 ^a	0.5 ^b	89.1 ^b	1.2 ^b	57.5 ^b	104.3 ^b	513.6b	418.6b	249.7 ^b
	Mixture	1.5a	0.5^{b}	99.2 ^b	1.1 ^b	53.4 ^b	91.4 ^b	526.8b	412.6b	289.3 ^b
F-value;df	•	3.4; 2	43.3; 2	26.7; 2	34.6; 2	161.9; 2	273.9; 2	153.6; 2	47.5; 2	14.9; 2
<i>p</i> -value		0.069	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Mixture 2	Sum	4.0 ^a	2.0 ^a	339.8ª	5.1 ^a	236.3ª	435.2 ^a	2065.7ª	1724.3 ^a	1023.4ª
	Mean	1.0 ^b	0.5^{b}	84.9 ^b	1.3^{b}	59.1 ^b	108.8b	516.4 ^b	431.1 ^b	255.9 ^b
	Mixture	1.3^{b}	0.5^{b}	93.5^{b}	1.1 ^b	$51.7^{ m b}$	$102.6^{\rm b}$	504.2 ^b	$535.0^{ m b}$	$273.7^{\rm b}$
F-value; d	f	14.6; 2	363.7; 2	69.5; 2	102.5; 2	467.5; 2	692.4; 2	347.1; 2	123.8; 2	64.1; 2
<i>p</i> -value		<0.001	<0.001	< 0.001	< 0.001	< 0.001	<0.001	<0.001	<0.001	< 0.001
Mixture 3	Sum	2.8a	1.6a	263.0a	3.7 ^a	173.6ª	297.8a	1548.0 ^a	1378.4ª	736.6ª
	Mean	0.9^{b}	0.5^{b}	$87.7^{\rm b}$	1.2 ^b	57.9 ^b	99.3 ^b	516.0 ^b	459.5 ^b	245.5^{b}
	Mixture	1.3^{b}	0.6 ^b	90.5^{b}	1.2 ^b	59.0 ^b	101.8b	500.9 ^b	$462.7^{\rm b}$	260.7 ^b
F-value; d	f	13.4; 2	106.9; 2	47.8; 2	105.1; 2	243.4; 2	158.6; 2	287.2; 2	112.5; 2	76.7; 2
<i>p</i> -value		< 0.001	<0.001	< 0.001	< 0.001	< 0.001	<0.001	<0.001	< 0.001	<0.001
Mixture 4	Sum	4.6a	2.1 ^a	335.4 ^a	5.1 ^a	237.4 ^a	420.2a	2072.8a	1847.0 ^a	1011.0 ^a
	Mean	1.1 ^b	0.5^{b}	$83.8^{\rm b}$	1.3^{b}	59.4 ^b	105.1 ^b	518.2 ^b	461.7 ^b	$252.8^{\rm b}$
	Mixture	1.9 ^b	0.5^{b}	94.7 ^b	1.1 ^b	56.3 ^b	103.4 ^b	501.6 ^b	420.7 ^b	$145.3^{ m b}$
F-value; d	f	16.5; 2	1110; 2	106.8; 2	261.2; 2	374.3; 2	655.8; 2	481.7; 2	372.6; 2	348.2; 2
<i>p</i> -value	•	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001

The flammability traits: Ignit.: ignitability, Comb.: combustibility, Sust.: sustainability, Cons.: consumability. The fire behavior parameters: AFH: average flame height, MFH: maximum flame height and Max. T° : maximum temperatures at 5cm, 15cm and 30cm height. The composition of the mixtures: Mixture 1 = A. canaliculatus + H. diplandra + L. simplex, Mixture 2 = Mixture 1 + litter, Mixture 3 = A. canaliculatus + H. diplandra + L. cylindrica, Mixture 4 = Mixture 3 + litter. The values with the same superscripts are not significantly different.

Characteristics of the fuels

Principal Component Analysis (PCA) was used to investigate patterns of covariance flammability traits and fire behavior parameters. The first two principal components explained 67.7% of the total variance (Axis 1 = 39.4%; Axis 2 = 28.3%). These axes exceeded the 95th percentile of the null distribution (60.88%), indicating that they contained meaningful ecological information. Axis 1 was strongly associated with combustibility (cor = 0.71; p< 0.001), sustainability (cor = -0.94; p < 0.001), consumability (cor = 0.98; p < 0.001), average flame height (cor = 0.84; p < 0.001), and maximum flame height (cor = 0.74; p < 0.001). This axis effectively separated fast-burning fuels (I. cylindrica, L. simplex, and litter), characterized by high combustibility and low sustainability, from slow-burning fuels (A. canaliculatus, mixtures 1, 2, and 4), which exhibited greater sustainability. Axis 2 was primarily correlated with consumability (cor = 0.88; p < 0.001), maximum temperature at 5 cm (cor = 0.88; p < 0.001), and maximum temperature at 30 cm (cor = 0.74; p = 0.012). This axis differentiated fuels with higher near-surface flame temperatures (A. canaliculatus, I. cylindrica, litter, mixtures 1 and 2) from fuels with lower temperatures (A. schirensis, H. diplandra, and mixture 4). Variables such as ignitability and flame temperature at 15 cm did not load strongly on either axis and were therefore excluded from interpretation (Fig. 1).

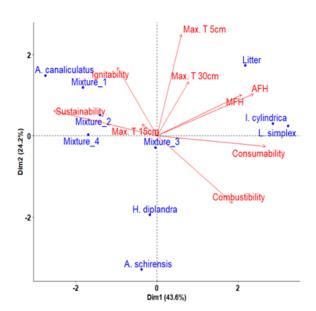
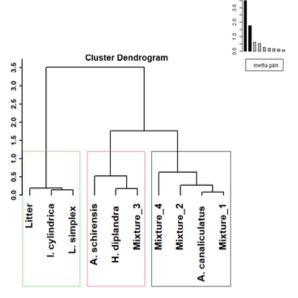



Fig. 1. Principal component analysis showing the characteristics of the fuel types based on the flammability traits and the fire behavior parameters The fuel types are: the litter, the grass species (Andropogon canaliculatus, Andropogon schirensis, Hyparrhenia diplandra, Imperata cylindrica, Loudetia simplex) and the following mixtures: Mixture 1 = A. canaliculatus + H. diplandra + L. simplex, Mixture 2 = Mixture 1 + litter, Mixture 3 = A. canaliculatus + H. diplandra+ *I. cylindrica*, Mixture 4 = Mixture 3 + litter. The fire behavior parameters are: AFH: average flame height; MFH: maximum flame height; Max. T 5cm, Max. T 15cm and Max. T 30cm: Maximum temperature at respectively 5, 15 and 30 cm above the fuel.

Classification of the fuels

Hierarchical cluster analysis based on flammability traits and fire behavior parameters identified three distinct fuel groups. The first group, composed of *A. canaliculatus*, mixtures 1, 2, and 4, showed low flammability, burning slowly and incompletely due to low consumability and high sustainability. The second group, consisting of *A. schirensis*, *H. diplandra*, and mixture 3, exhibited moderate flammability, characterized by complete but slower combustion. The third group included *I. cylindrica*, *L. simplex*, and litter, which were highly flammable and burned rapidly and completely (Fig. 2).

Fig. 2. Dendrogram showing the hierarchical classification of the fuel types based on the flammability traits and the fire behavior parameters The fuel types are: the litter, the grass species (Andropogon canaliculatus, Andropogon schirensis, Hyparrhenia diplandra, Imperata cylindrica, Loudetia simplex) and the following mixtures: Mixture 1 = A. canaliculatus + H. diplandra + L. simplex, Mixture 2 = Mixture 1 + litter, Mixture 3 = A. canaliculatus + H. diplandra + I. cylindrica, Mixture 4 = Mixture 3 + litter.

DISCUSSION

Variation in fuel flammability

The results showed that only one of the four flammability traits (i.e. ignitability) varied between fuels, with faster ignition observed for H. diplandra and L. simplex. Among the factors that influence plant fuel flammability, anatomical structure, plant material size, and the presence of flammable chemical compounds in plant tissues are typically those that explain differences in ignitability (Schwilk and Ackerly, 2001; Alessio et al., 2008; Bowman et al., 2014). Since the anatomical structure and size of plant materials were similar across all species, all species and mixtures without litter were expected to exhibit high ignitability. This is because they consist of fine fuels, which are known to increase ignitability (Davies and Legg, 2011; Santana and Marrs, 2014; Burger and Bond, 2015). However, this was not the case, suggesting that the only factor likely to explain the observed differences in ignitability among species is the presence of flammable chemical compounds, which are species-specific (Alessio et al., 2008; Guerrero et al., 2021, 2022). This suggests that species such as H. diplandra and L. simplex, which exhibited higher ignitability, likely contain a greater quantity or higher quality of flammable chemical compounds. In addition to this probable chemical difference, the variation in flammability observed in fuel mixtures containing litter may also be due to the physical structure of the litter. Since the litter was not sorted, it included a variety of plant parts such as leaves and woody twigs, which are generally more difficult to ignite (Burger and Bond, 2015; Alam et al., 2020; Kraaij et al., 2022, 2024).

The other flammability traits (combustibility, sustainability, and consumability) did not vary significantly between fuel types. This suggests that overall flammability is relatively consistent among the perennial grass species of the Lamto savanna and between these species and the litter. However, savannas dominated by *H. diplandra* and *L. simplex* are likely to ignite more rapidly than others.

Differences between fuel types were also observed in fire behavior parameters. Only the amount of burned differed significantly, with complete material combustion observed in mixture 1, and the lowest combustion levels found in A. schirensis and mixture 4. Fuel porosity (also known as void volume fraction) likely explains this variation, as it directly affects the availability of oxygen for combustion (Saura-Mas et al., 2010; Santoni et al., 2014; Burger and Bond, 2015). Mixture 4 contained less porous litter. Similarly, A. schirensis has a dense, silky indumentum, which results in lower fuel porosity. As a result, these two fuels burned less completely than mixture 1, which consisted of species that are generally less hairy and more porous. This was evident during the experiment, as large amounts of smoke and unburned material were observed for mixture 4 and A. schirensis.

Contribution of fuel components to overall fuel flammability

Results show that flammability is not an additive function, but rather reflects the average flammability of the species making up the fuel. This is shown by the fact that, for all parameters, there was no significant difference between the mean values of the mixture's components and the mixture itself. In contrast, in nearly all cases, the mixtures differed from the sums of the components. The three highly flammable fuels (I. cylindrica, L. simplex, and litter) were included in the mixtures tested. Yet, none of the mixtures were classified as highly flammable. This confirms that the flammability characteristics of the components are non-additive. Therefore, coexistence of perennial grass species in the Lamto savanna does not imply an increase in the overall flammability of the savanna. In other words, there is no synergistic effect between these species. Synergy would imply that the overall flammability is greater than, or at least equal to, the sum of the individual species (Zhang and Liu, 2015).

More precisely, the interaction among these species can be seen as a redundant functional relationship (Biggs *et al.*, 2020; Fischer and De Bello, 2023), where the contributions of each species, although highly flammable, do not combine to enhance overall flammability. One might also consider the idea of collaborative neutrality (Allaerts, 2023), where species have neither a positive nor negative effect on the flammability of the mixture. All this may reflect a lack of complementarity in flammability traits or suboptimal coordination (Gross *et al.*, 2007), which limits the flammability of the mixtures.

Flammability characteristics of fuels

No fuel type perfectly met our criteria of highly flammable fuel (low ignitability, low sustainability, high combustibility and high consumability), but some fuel types satisfied the conditions for three of the four flammability traits. These fuels had low sustainability and high combustibility and consumability. This was the case for *I. cylindrica*, *L. simplex*, and the litter, which were classified as highly

flammable fuels by hierarchical cluster analysis. On the contrary, A. canaliculatus, Mixture 1, Mixture 2, and Mixture 4 were classified as poorly flammable fuels, with high sustainability and low flame height, making them potentially easier to manage. The moderately flammable fuel group includes A. shirensis, H. diplandra, and Mixture 3, characterised by the highest maximum temperatures at 5 cm height. These results provide a trait-based approach to prescribe fire regimes in West African savannas. Identifying less flammable species could inform buffer zones around human installations.

Influence of fuel types on fire intensity and severity

The litter, I. cylindrica and L. simplex are expected to contribute most to the intensity and severity of savanna fires. These fuels were the most flammable in our results. They burn relatively quickly, leading to a faster flame spread, an important factor in determining fire intensity (Byram, 1959). As a result, fires involving these fuels are likely to be more intense. In addition, although not significantly different from other fuel types, these three fuels produced the tallest flame heights (e.g. average: 63-67 cm; maximum: 107-123 cm). Such flame heights may cause more damage to fire-sensitive woody species, and potentially affect some arboreal animal species. However, the rapid flame spread might reduce damage to certain plants. The shorter residence time could spare some plant parts, such as bark or grass culms, thereby reducing fire severity. Therefore, these fuel types deserve special attention from savanna managers and farmers, particularly during periods of severe drought.

In areas dominated by A. canaliculatus, Mixture 1, Mixture 2, or Mixture 4, fires may be easier to control. Their impact on tall vegetation, such as trees and shrubs, could also be lower. These are the least flammable fuels and tend to burn more slowly, which may reduce fire intensity. One might assume that such fuels are less useful in controlling woody encroachment. However, their slower burning leads to longer residence times, which can increase the mortality of woody species, especially at the seedling or resprouting stage (Kpangba et al., 2022). This can also harm some plant communities, such as perennial grasses. Prolonged burning within a tussock increases the likelihood of tiller death, potentially leading to the death or fragmentation of the tussock. This supports findings by Koffi et al. (2019, 2022), who reported A. canaliculatus as the most fragmented perennial grass species in the Lamto savanna.

The influence of moderately flammable fuels (A. shirensis, H. diplandra, and Mixture 3) may be more evident in fire severity. These fuels combine moderate flame spread, residence time, and flame temperature. This balance can have a stronger impact on a wide range of plant species. The average flame temperature recorded in this study was above the lethal threshold for plant cells, which is 60°C (Dayamba et al., 2010; Kelsey and Westlind, 2017). This is sufficient to kill exposed seedlings and saplings if the exposure is sustained. Therefore, these fuels may be highly effective in controlling woody encroachment. They can suppress seed germination and keep saplings and juvenile trees locked in a prolonged regrowth cycle.

Potential for future research

This study highlights several promising areas for future research, especially in understanding the broader ecological and management implications of fire behaviour in savanna ecosystems. One key direction for further investigation is how different types influence ecosystem resilience degradation following fire. While this study focused on flammability traits, it is also essential to understand the post-fire recovery of different plant species and fuel mixtures. This knowledge is crucial for developing effective fire management strategies.

Future research could also examine the long-term effects of repeated fire exposure on fuel composition and flammability traits. In particular, investigating how successive fires alter the structural and chemical properties of fuels may provide insights into fireadaptive traits and the evolution of flammability in perennial grasses. Studies might explore possible changes in plant physiology or anatomy in response to frequent fires.

CONCLUSION

This study offers insights into the complex dynamics of flammability and fire behaviour in the West African humid savanna of Lamto. By examining the interactions between different fuel types (including perennial grasses and litter) and their flammability traits (ignitability, combustibility, sustainability, and consumability), we highlight the significant variation in fire behaviour linked to fuel composition. Fuels differ in their flammability, suggesting differences in the quantity and/or quality of chemical compounds within species. We also show that flammability is not an additive function of individual species traits, but rather the result of interactions among fuel components, producing an average outcome. The classification of fuel types into highly flammable, moderately flammable, and poorly flammable categories underscores the variability in behaviour among species, an important factor to consider in fire management strategies. This study sets the basis for integrating trait-based flammability into fire management models in tropical Africa.

ACKNOWLEDGMENTS

This publication was made possible thanks to the International Foundation for Sciences (IFS) grant provided to K. F. Koffi for the field experiments. We also thank the Lamto Reserve staff for logistical support.

REFERENCES

Abbadie L, Gignoux J, Le Roux X, Lepage M. 2006. Lamto: structure, functioning and dynamics of a savanna ecosystem. New York: Springer. http://www.documentation.ird.fr/hor/fdi:010039255

Alam AMD, Wyse SV, Buckley HL, Perry GLW, Sullivan JJ, Mason NWH, Buxton R, Richardson SJ, Curran TJ. 2020. Shoot flammability is decoupled from leaf flammability, but controlled by leaf functional traits. Journal of Ecology 108(2), 641–653. https://doi.org/10.1111/1365-2745.13289

Alessio GA, Peñuelas J, De Lillis M, Llusià J. 2008. Implications of foliar terpene content and hydration on leaf flammability of *Quercus ilex* and *Pinus halepensis*. Plant Biology **10**(1), 123–128.

https://doi.org/10.1111/j.1438-8677.2007.00011.x

Allaerts W. 2023. The unified neutral theory of biodiversity and biogeography revisited. Advances in Earth and Environmental Science **4**(2), 1–10.

https://doi.org/10.47485/2766-2624.1032

Anderson HE. 1970. Forest fuel ignitibility. Fire Technology **6**(4), 312–319.

https://doi.org/10.1007/BF02588932

Archer SR, Andersen EM, Predick KI, Schwinning S, Steidl RJ, Woods SR. 2017. Woody plant encroachment: causes and consequences. In: Briske DD, editor. Rangeland systems: processes, management and challenges. Cham: Springer International Publishing., p. 25–84. https://doi.org/10.1007/978-3-319-46709-2_2

Beckage B, Platt WJ, Gross LJ. 2009. Vegetation, fire, and feedbacks: a disturbance-mediated model of savannas. The American Naturalist **174**(6), 805–818. https://doi.org/10.1086/648458

Biggs CR, Yeager LA, Bolser DG, Bonsell C, Dichiera AM, Hou Z, Keyser SR, Khursigara AJ, Lu K, Muth AF, Negrete B, Erisman BE. 2020. Does functional redundancy affect ecological stability and resilience? A review and meta-analysis. Ecosphere 11(7), e03184.

https://doi.org/10.1002/ecs2.3184

Bond W, Keeley J. 2005. Fire as a global 'herbivore': the ecology and evolution of flammable ecosystems. Trends in Ecology and Evolution **20**(7), 387–394.

https://doi.org/10.1016/j.tree.2005.04.025

Bowman DMJS, French BJ, Prior LD. 2014. Have plants evolved to self-immolate? Front Plant Sci **5**, 590. https://doi.org/10.3389/fpls.2014.00590

Burger N, Bond WJ. 2015. Flammability traits of Cape shrubland species with different post-fire recruitment strategies. South African Journal of Botany **101**, 40–48.

https://doi.org/10.1016/j.sajb.2015.05.026

Byram GM. 1959. Combustion of forest fuels. In: Davi KP, editor. Forest fire: control and use. New York, NY, USA: McGraw-Hill. p. 61–89

Calitz W, Potts AJ, Cowling RM. 2015. Investigating species-level flammability across five biomes in the Eastern Cape, South Africa. South African Journal of Botany **101**, 32–39.

https://doi.org/10.1016/j.sajb.2015.07.005

Cardoso AW, Oliveras I, Abernethy KA, Jeffery KJ, Lehmann D, Edzang Ndong J, McGregor I, Belcher CM, Bond WJ, Malhi YS. 2018. Grass species flammability, not biomass, drives changes in fire behavior at tropical forest-savanna transitions. Frontiers in Forests and Global Change 1(6), 1–14.

https://www.frontiersin.org/articles/10.3389/ffgc.20 18.00006

Case MF, Staver AC. 2017. Fire prevents woody encroachment only at higher-than-historical frequencies in a South African savanna. Journal of Applied Ecology **54**(3), 955–962.

https://doi.org/10.1111/1365-2664.12805

Clarke PJ, Prior LD, French BJ, Vincent B, Knox KJE, Bowman DMJS. 2014. Using a rainforest-flame forest mosaic to test the hypothesis that leaf and litter fuel flammability is under natural selection. Oecologia 176(4), 1123–1133.

https://doi.org/10.1007/s00442-014-3071-y

Cornwell WK, Elvira A, van Kempen L, van Logtestijn RSP, Aptroot A, Cornelissen JHC. 2015. Flammability across the gymnosperm phylogeny: the importance of litter particle size. New Phytologist **206**(2), 672–681.

https://doi.org/10.1111/nph.13317

Cui X, Paterson AM, Wyse SV, Alam MA, Maurin KJL, Pieper R, Padullés Cubino J, O'Connell DM, Donkers D, Bréda J, Buckley HL, Perry GLW, Curran TJ. 2020. Shoot flammability of vascular plants is phylogenetically conserved and related to habitat fire-proneness and growth form. Nat Plants 6(4), 355–359.

https://doi.org/10.1038/s41477-020-0635-1

Davies GM, Legg CJ. 2011. Fuel moisture thresholds in the flammability of *Calluna vulgaris*. Fire Technology **47**(2), 421–436.

https://doi.org/10.1007/s10694-010-0162-0

Dayamba SD, Savadogo P, Zida D, Sawadogo L, Tiveau D, Oden PC. 2010. Fire temperature and residence time during dry season burning in a Sudanian savanna-woodland of West Africa with implication for seed germination. Journal of Forestry Research **21**(4), 445–450.

https://doi.org/10.1007/s11676-010-0095-y

Fischer FM, De Bello F. 2023. On the uniqueness of functional redundancy. npj biodiversity **2**(1), 23. https://doi.org/10.1038/s44185-023-00029-z

Gill AM, Zylstra P. 2005. Flammability of Australian forests. Australian Forestry **68**(2), 87–93. https://doi.org/10.1080/00049158.2005.10674951

Gross N, Suding KN, Lavorel S, Roumet C. 2007. Complementarity as a mechanism of coexistence between functional groups of grasses. Journal of Ecology **95**(6), 1296–1305.

https://doi.org/10.1111/j.1365-2745.2007.01303.x

Guerrero F, Carmona C, Hernández C, Toledo M, Arriagada A, Espinoza L, Bergmann J, Taborga L, Yañez K, Carrasco Y, Muñoz AA. 2022. Drivers of flammability of *Eucalyptus globulus* labill leaves: terpenes, essential oils, and moisture content. Forests 13(6), 908.

https://doi.org/10.3390/f13060908

Guerrero F, Hernández C, Toledo M, Espinoza L, Carrasco Y, Arriagada A, Muñoz A, Taborga L, Bergmann J, Carmona C. 2021. Leaf thermal and chemical properties as natural drivers of plant flammability of native and exotic tree species of the Valparaíso Region, Chile. International Journal of Environmental Research and Public Health 18(13), 7191. https://doi.org/10.3390/ijerph18137191

Kelsey RG, Westlind DJ. 2017. Physiological stress and ethanol accumulation in tree stems and woody tissues at sublethal temperatures from fire. BioScience **67**(5), 443-451.

https://doi.org/10.1093/biosci/bix037

Koffi KF, N'Dri AB, Konaré S, Srikanthasamy T, Lata J-C, Konaté S, Konan M, Barot S. 2022. Demography of the dominant perennial grass species of a humid African savanna. Acta Oecologica 114, 103816. https://doi.org/10.1016/j.actao.2022.103816

Koffi KF, N'Dri AB, Lata J-C, Konaté S, Srikanthasamy T, Konaré S, Konan M, Barot S. 2019. Effect of fire regimes on the demographic parameters of the perennial tussock grasses of a humid savanna. Journal of Vegetation Science 30(5), 950-962. https://doi.org/10.1111/jvs.12788

Koffi KF. 2019. Impact du feu sur la démographie des Graminées de savane. Ph.D. thesis, Sorbonne Université - Université Nangui Abrogoua, France-Côte d'Ivoire, p. 1-214.

http://www.documentation.ird.fr/hor/fdi:010075970

Kpangba KP, N'Dri AB, Bakayoko A. 2022. Capacité de germination des graines et résistance aux feux des plantules des principales espèces ligneuses en savane guinéenne (Afrique de l'Ouest). REB-PASRES 7(1), 61-73. www://rebpasres.org

Kraaij T, Msweli ST, Potts AJ. 2022. Fuel trait effects on flammability of native and invasive alien shrubs in coastal fynbos and thicket (Cape Floristic Region). PeerJ **10**, e13765.

https://doi.org/10.7717/peerj.13765

Kraaij T, Msweli ST, Potts AJ. 2024. Flammability of native and invasive alien plants common to the Cape Floristic Region and beyond: Fire risk in the wildland-urban interface. Trees, Forests and People **15**, 100513.

https://doi.org/10.1016/j.tfp.2024.100513

Lowe S, Browne M, Boudjelas M, De Poorter M. 2007. 100 of the world's worst invasive alien species: A selection from the Global Invasive Species Database. IUCN. New Zealand: Hollands Printing Ltd.

https://portals.iucn.org/library/node/8565

Menaut J-C, Abbadie L. 2006. Vegetation. In: Abbadie L, Gignoux J, Le Roux X, Lepage M, editors. Lamto. Vol. 179. Springer, New York. p. 63-74.

https://doi.org/10.1007/0-387-33857-8_5

Midgley JJ. 2013. Flammability is not selected for, it emerges. Australian Journal of Botany. **61**(2), 102-106. https://doi.org/10.1071/BT12289

N'Dri AB, Kpré AJ-N, Koffi KP, Soro DT, Koffi VK, Koffi KF, Kouamé YAG, Koffi AB, Konan NL. 2021. Experimental study of fire behavior in annually burned humid savanna of West Africa in the context of bush encroachment. In: Leal Filho W, Pretorius R, De Sousa LO, editors. Sustainable Development in Africa. Leal Filho, W., Pretorius, R., de Sousa, L.O. Cham, Switzerland: Springer, p. 491-505.

https://doi.org/10.1007/978-3-030-74693-3

Osborne CP, Salomaa A, Kluyver TA, Visser V, Kellogg EA, Morrone O, Vorontsova MS, Clayton WD, Simpson DA. 2014. A global database of C₄ photosynthesis in grasses. New Phytologist **204**(3), 441-446.

https://doi.org/10.1111/nph.12942

Pausas JG, Alessio GA, Moreira B, Corcobado G. 2012. Fire enhance flammability in *Ulex parviflorus*. New Phytologist 193,18-23.

Pausas JG, Keeley JE, Schwilk DW. 2017. Flammability as an ecological and evolutionary driver. Journal of Ecology **105**(2), 289-297. https://doi.org/10.1111/1365-2745.12691

Plucinski MP, Anderson WR. 2008. Laboratory determination of factors influencing successful point ignition in the litter layer of shrubland vegetation. International Journal of Wildland Fire **17**(5), 628-637. https://doi.org/10.1071/WF07046

Prior LD, Murphy BP, Williamson GJ, Cochrane MA, Jolly WM, Bowman DMJS. 2017. Does inherent flammability of grass and litter fuels contribute to continental patterns of landscape fire activity? Journal of Biogeography 44(6), 1225-1238. https://doi.org/10.1111/jbi.12889

R Core Team. 2021. R: A language and environment for statistical computing [Internet]. https://www.R-project.org/

Santana VM, Marrs RH. 2014. Flammability properties of British heathland and moorland vegetation: Models for predicting fire ignition. Journal of Environmental Management **139**, 88-96. https://doi.org/10.1016/j.jenvman.2014.02.027

Santoni PA, Bartoli P, Simeoni A, Torero JL. 2014. Bulk and particle properties of pine needle fuel beds- influence on combustion. International Journal of Wildland Fire **23**(8), 1076-1086. https://doi.org/10.1071/WF13079

Saura-Mas S, Paula S, Pausas JG, Lloret F. 2010. Fuel loading and flammability in the Mediterranean Basin woody species with different post-fire regenerative strategies. International Journal of Wildland Fire **19**(6), 783-794. https://doi.org/10.1071/WF09066

Schwilk DW, Ackerly DD. 2001. Flammability and serotiny as strategies: correlated evolution in pines. Oikos **94**(2), 326-336. https://doi.org/10.1034/j.1600-0706.2001.940213.x

Simpson KJ, Ripley BS, Christin P-A, Belcher CM, Lehmann CER, Thomas GH, Osborne CP. 2016. Determinants of flammability in savanna grass species. Journal of Ecology **104**(1), 138-148. https://doi.org/10.1111/1365-2745.12503

Tiemoko DT, Yoroba F, Diawara A, Kouadio K, Kouassi BK, Yapo ALM. 2020. Understanding the local carbon fluxes variations and their relationship to climate conditions in a sub-humid savannah-ecosystem during 2008-2015: case of Lamto in Cote d'Ivoire. Atmospheric and Climate Sciences 10(2), 186-205. https://doi.org/10.4236/acs.2020.102010

White RH, Zipperer WC. 2010. Testing and classification of individual plants for fire behaviour: plant selection for the wildland- Urban interface. International Journal of Wildland Fire 19(2), 213-227. https://doi.org/10.1071/WF07128

Zhang W, Liu G. 2015. Coevolution: A synergy in biology and ecology. Selforganizology. **2**(2), 35-38.