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ABSTRACT 
 

The microplastics and pharmaceuticals and personal care products (PPCPs) interaction is a serious 

environmental problem that has higher impactson both the ecosystems and human health. The presence of 

microplastics within various environments and the widespread use of PPCPs, leads to complex that make the 

toxic compounds more persistent and bioavailable. The large surface area, hydrophobicity, and chemical 

additives of the microplastics, make them effectively adsorb PPCPs. The PPCPs bioaccumulate in aquatic species 

as a result, which suppresses the contaminants' natural breakdown processes. Bioaccumulation can increase the 

possibility of biomagnification through food webs, which increases the concerns about chronic toxicity. These 

microplastic-PPCP complexes facilitate wide transportation across aquatic, terrestrial, and atmospheric pathways 

and therefore contaminate the ecosystems. Persistent pollutants cause harm to biodiversity, disrupt necessary 

ecosystem services, and affect health through contaminated food and water supplies. Thus, studies have 

evidenced that microplastics ingested by marine biota result in the desorption of adsorbed PPCPs under diverse 

environmental conditions and also increase exposure level to harmful products. Furthermore, the use of 

contaminated aquatic products and contaminated drinking water are likely to also affect human beings, such 

impacts include: importing ARGs within the gut, which might imply the antibiotic resistance. This study reviews 

the interaction and the mechanisms that cause long term complexity of microplastic-PPCPs in the environment, 

emphasizing the necessity to reduce their impact on ecosystems and public health through advanced solutions 

and policies. Advances in multidisciplinary research and waste management practices are needed to conserve 

ecosystems and bring in a sustainable future. 
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INTRODUCTION 

Microplastics (MPs) are plastic particles under 5mm in 

size. They have emerged as persistent pollutants in the 

environment, capable of interacting with a wide range of 

contaminants, including heavy metals and PPCPs. These 

interactions can alter the chemical fate of PPCPs by 

increasing their persistence and bioavailability in aquatic 

and terrestrial environments.  

 

According to recent studies, microplastics serve as 

vectors for the transmission of PPCPs, which causes 

risks to human health and the environment (Zhang et 

al., 2023; Tumwesigye et al., 2023). 

 

Knowledge gaps and study objectives 

Despite extensive study on microplastic 

contamination, little is known about the nature of 

interactions between microplastics and PPCPs. While 

some studies reveal synergistic effects, others 

demonstrate limited or varying results. In particular, 

the mechanisms of adsorption and desorption in 

diverse environmental conditions require more 

investigation. Moreover, it is unclear how the shape of 

microplastics such as fibres vs fragments affects the 

retention and transit of PPCPs. Microplastic-PPCP 

complexes’ potential in stimulating antimicrobial 

resistance (AMR) is another emerging concern that 

requires further research. 

 

The objectives of this study are examining the 

processes underlying PPCP adsorption on 

microplastics, evaluate environmental variables that 

affect their mobility and bioavailability, examine 

possible toxicity routes, including AMR hazards, and 

provide mitigating techniques and policy suggestions. 

 

Microplastics as carriers for PPCPs 

Microplastics can adsorb PPCPs from surrounding 

environments, especially in aquatic systems. This is 

due to their large surface area, hydrophobic 

properties, and the presence of functional groups that 

interact with chemical contaminants. 

 

Microplastics have been found to adsorb a wide range 

of PPCPs, with the extent of sorption determined by 

both the compound's physicochemical features (e.g., 

hydrophobicity, charge, functional groups) and the 

polymer type. Table 1 summarises some instances of 

PPCPs that have been experimentally shown to bind 

to various types of microplastics. These interactions 

indicate how, in a variety of environmental 

conditions, microplastics may behave as carriers of 

antibiotics, endocrine disruptors, antimicrobials, and 

other therapeutic substances. 

 

Mechanisms of adsorption: PPCPs such as antibiotics, 

hormones, and synthetic fragrances bind to 

microplastics through van der Waals forces, hydrogen 

bonding, and electrostatic interactions. Fig. 1 shows the 

different types interface interactions between the 

pharmaceutical compounds and microplastic surfaces. 

 

Surface properties of microplastics 

High surface area 

Microplastics, especially those with irregular shapes 

or porous surfaces, provide a large area for PPCP 

adsorption. The increased surface area of these 

adsorbents allows greater interactions with the 

pollutant molecules leading to improved adsorption 

processes (Isaeva et al., 2021; Honarmandrad et al., 

2023). Certain microplastics which have irregular 

shapes have been shown to have better adsorption 

due to their geometric forms. In comparison 

microbeads which have smooth and round surfaces 

are not too effective in adsorption whereas 

microplastics with a lot of irregularities on their 

surface are capable of capturing pollutants easily 

(Honarmandrad et al., 2023). This increase in the 

complexity of the particles also increases the surface area 

that is available for adsorption, thus, increasing chances 

of adsorption with active interactions such as van der 

Waals and hydrogen bonding, which are fundamental to 

the adsorption phenomena (Liu et al., 2017). 

 

Various types of microplastics such as nurdles, fibers, 

microbeads, and fragments exhibit different 

adsorption capacities based on their shapes and sizes, 

influencing their effectiveness as adsorbents for 

contaminants in aquatic environments (Sulaiman et 

al., 2023; Talukdar et al., 2024). 
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Table 1. Examples of PPCPs adsorbed on microplastics 

Type of compound PPCP compound adsorbed Microplastic type Reference 

Antibiotics Ciprofloxacin Polyethylene (PE) Atugoda et al., 2020 

Sulfamethoxazole Polystyrene (PS) Lu et al., 2022 
Endocrine disruptors 17α-ethinylestradiol Polypropylene (PP), Polyethylene 

(PE), Polystyrene (PS). 
Leng et al., 2023 

Bisphenol A Polyvinyl Chloride (PVC) Chen et al., 2024 
Antimicrobials Triclosan Polyethylene Castaño-Ortiz et al., 2024 

Anti-inflammatory drug Diclofenac Polystyrene (PS) Li et al. 2022 
Antidepressants Fluoxetine Polyamide (PA) Arienzoand Donadio, 2023 

Antiepileptics Carbamazepine Polyethylene Terephthalate (PET) Zhang et al., 2023 

 

 

Fig. 1. Various interface interactions between the 

pharmaceutical compounds and microplastic surfaces 

 

The surface structure of microplastics also governs 

biofouling. These processes result in the 

accumulation of microorganisms on the surface of 

microplastics. The presence of irregular shapes in the 

particles usually promotes the growth of biofilm 

which promotes the retention of pollutants through 

biological means. For instance, it has been noted that 

films and fragments are seen to favor higher biofilm 

growth than spherical microplastics, thereby 

increasing their overall pollutant adsorption capacity 

(Rai et al., 2022; Rozman et al., 2023). 

 

Hydrophobicity  

Many microplastics, such as polyethylene and 

polypropylene, are hydrophobic, making them ideal 

for binding non-polar PPCPs due to their affinity 

(Bhagwat et al., 2024). In aquatic environments, the 

hydrophilic nature of substances may attract water 

molecules and counteract adsorption by non-polar 

compounds. Hydrophobic microplastics minimize 

this competition, allowing for PPCPs to bind more 

efficiently. Once adsorbed onto hydrophobic surfaces, 

non-polar PPCPs are retained more effectively due to 

the stabilizing hydrophobic interactions (Zheng et al., 

2024). This retention may lead to longer exposure 

time of aquatic organisms to these pollutants, which 

raises concerns about bioaccumulation and toxicity. 

 

Electrostatic interactions 

Electrostatic interactions occur when charged PPCPs 

interact with the functional groups present on the 

surfaces of microplastics. The positively or negatively 

charged PPCPs, such as ionic medications, adsorb on 

microplastics with oppositely charged functional 

groups. These interactions are heavily influenced by 

surface properties of MPs, including their zeta 

potential and pH-dependent charge distribution. 

According to study, functionalized surface 

microplastics, such as those with hydroxyl or carboxyl 

functional groups, exhibit stronger electrostatic 

attraction to polar PPCPs (Hashem et al., 2024). 

 

π-π interactions 

Adsorption of PPCPs on microplastic surfaces involves 

π-π interactions and hydrogen bonding. Aromatic 

PPCPs (such as antibiotics and hormone disrupting 

chemicals) can interact with the aromatic rings in 

microplastics through π-π stacking (Liu et al., 2024).  

 

Hydrogen bonding is observed, mainly inPPCPs with 

oxygen and nitrogen molecules which allowsits 

binding to the polar surface groups of microplastics. 

These interactions enhance the environmental 

persistence of PPCPs. 

 

Van der Waals forces 

Van der Waals force plays an important role in the 

weak molecular attraction between microplastics and 

PPCPs. These non-covalent interactions have a short 
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range and alter the initial adherence of PPCPs to 

microplastics. Although van der Waals forces are less 

than hydrophobic and electrostatic interactions, they 

still retainthe PPCPs to the rough surfaced-

microplastics. 

 

Covalent bonding 

Covalent bonding is another possible mechanism of 

interaction when microplastics have chemically 

reactive functional groups (such as amine, carboxyl 

and hydroxyl), they can form persistent covalent 

bonds with reactive PPCPs (Arienzoand Donaldo, 

2023). 

 

Surface entrapment and pore diffusion 

The porous-structured microplastics such as 

microbeads or polystyrene can retain PPCPs on the 

surfaces. Micro-scale and nano-scale pores in 

microplastics allow small sized PPCPs to get 

entrapped in the polymer matrix (Matei et al., 2022). 

This mechanism slows PPCP release and is most 

likely responsible for their long-term persistent in the 

environment. 

 

Chemical additives  

Additives in plastics, like plasticizers, can enhance the 

affinity for certain PPCPs, altering adsorption dynamics. 

Additives may add new functional groups or modify 

existing ones on the microplastic surface, which can 

facilitate various kinds of interactions with PPCPs (Han 

et al., 2021). Chemical additives, such as plasticizers, 

modify the surface properties of microplastics. This 

thereby increases the hydrophobicity of the microplastic 

surfaces which further enhances their potential to 

adsorb non-polar PPCPs. For instance, the existence of 

plasticizers has been demonstrated to enhance 

lipophilicity in microplastics which facilitates more 

effective binding with hydrophobic contaminants (Hai et 

al., 2020; Joo et al., 2021). 

 

Factors influencing microplastic-PPCP interactions 

PPCP Characteristics 

The characteristics of pharmaceuticals and personal 

care products (PPCPs) play a significant role in 

influencing their interactions with microplastics. 

Chemical structure 

Hydrophobic PPCPs, such as triclosan (log Kow ≈ 

4.8), have higher adsorption to microplastic surfaces 

than hydrophilic compounds. Cortés-Arriagada et al. 

(2023) and Yu et al. (2024) observed triclosan 

distribution coefficients (Kd) ranging from 10³ to 10⁴ 

L/kg, indicating strong physisorption. On the other 

hand, more hydrophilic substances like 

carbamazepine (log Kow ≈ 2.5) and sulfamethoxazole 

(log Kow ≈ 0.9) typically exhibit significantly lower 

adsorption (Kd < 10² L/kg) (Das et al., 2017). 

Microplastic ageing improves triclosan uptake by 

increasing surface roughness and oxygen-containing 

functional groups, resulting in increased sorption 

efficiency. 

 

The structural properties of microplastics, including 

their crystallinity and surface morphology, 

significantly influence their adsorption capacities. For 

instance, different types of microplastics, such as 

polyethylene (PE), polypropylene (PP), promote the 

diffusion and sorption of hydrophobic PPCPs like 

triclosan. Higher crystallinity polymers, such as PLA 

and polylactic acid, on the other hand, typically have 

more tight molecular packing, which can limit 

adsorption by reducing sorption sites.  Similarly, 

hydrophilic surfaces may preferentially interact with 

ionisable or polar PPCPs by hydrogen bonding or 

electrostatic forces, while hydrophobic polymers (PE, 

PP) adsorb hydrophobic PPCPs more effectively than 

hydrophilic polymers. For example, Zhang et al. 

(2024) highlighted the combined effects of surface 

and crystallinity by reporting triclosan adsorption 

coefficients that were roughly 2-3 times greater on PE 

and PP than on PLA. 

 

Polarity and charge 

Polar PPCPs, like antibiotics, may interact with 

microplastics via ionic bonding, depending on 

environmental conditions. Some polar PPCPs are also 

influenced by pH or salinity.  

 

Research indicates that the adsorption capacity of 

antibiotics on microplastics varies significantly as 

environmental conditions change. For example, the 
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environment influences the ionic forms in which 

tetracycline (TC) occurs with varying pH levels. 

Depending on the pH level, TC can become positively 

charged and thus readily interacts with negatively 

charged microplastic surfaces (Li et al., 2018; Zhou et 

al., 2024).  

 

Environmental factors  

Environmental factors such as pH, salinity, and 

temperature also regulate the interactions between 

PPCPs and microplastics, significantly influencing 

adsorption dynamics, mobility, and bioavailability of 

PPCPs in aquatic environments. 

 

pH 

Adsorption efficiency varies with pH, which can 

influence the charge of PPCPs and the surface 

chemistry of microplastics. Many PPCPs have pH-

dependent ionization states.  

 

Studies show that the adsorption of several 

harmful chemicals, such as sulfamethoxazole and 

diclofenac, depends significantly on pH, in which 

increasing the pH tends to improve the adsorption 

of some organic pollutants by microplastics but 

deter others at different ionic forms (Zhao et al., 

2022; Liang et al., 2023). 

 

Concentration rate in freshwater and marine 

The concentration of microplastics is often more 

pronounced in freshwater ecosystems than in 

marine environments, influenced by various 

inherent properties of microplastics and 

environmental factors. Inherent properties 

ofmicroplastics, such as size, shape, and density, 

play a crucial role in their movement (Arienzo et 

al., 2023; Pan et al., 2023). High-density 

microplastics have a greater tendency to settle and 

accumulate in sediments of freshwater and marine 

ecosystems. This process can cause sedimentation, 

and hence, result in localized microplastic 

pollution hotspots in benthic environments, where 

they might interact with organisms dwelling on the 

sediment (Darabi et al., 2021). Lightweight 

microplastics such as polyethylene and 

polypropylene float on the surface of water bodies, 

whereas heavier materials such as polystyrene and 

polyvinyl chloride settle at the bottom of water 

bodies (Gani et al., 2024).  

 

Salinity and temperature 

Higher salinity in marine environments can enhance 

adsorption by reducing PPCP solubility in water. A 

study reported that salinity increase enhanced the 

adsorption efficiency of tetracycline on PVC 

microplastics by enhancing interactions through ionic 

bonding mechanisms (Liang et al., 2023). However, 

salt concentrations may also influence electrostatic 

interactions between charged PPCPs and microplastic 

surfaces. Precisely, divalent cations such as Ca²⁺ and 

Mg²⁺ may promote adsorption through the bridging 

between negatively charged sites on microplastics 

with anionic forms of PPCPs (Joo, 2021).  

 

Temperature variations can influence the solubility of 

PPCPs and their strength of interaction with 

microplastics. Some studies have reported that under 

water warming, the solubility of tetracycline and 

some other antibiotics such as amoxicillin, diclofenac 

increases at the same time as they increase desorption 

from microplastic surfaces through certain conditions 

(Mei et al., 2020; Liang et al., 2023). 

 

Impacts of microplastic-PPCP complexes 

Enhanced persistence 

PPCPs adsorbed onto microplastics are shielded from 

degradation processes such as photolysis and 

microbial activity. These contaminants tend to persist 

in the environment for long stretches of time by 

acting as a reservoir in microplastics.  A study 

reported that there was a significant lower 

degradation rate of tetracycline adsorbed onto PVC 

microplastics compared to tetracycline molecules 

present in the aqueous phase. This is due to the 

formation of a protective barrier around the antibiotic 

which limits exposure to degrading agents in the 

environment. This protective effect may lead to 

prolonged persistence of tetracycline in aquatic 

systems with unknown ecological impacts 

(Zahmatkesh et al., 2023). 
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Bioavailability and desorption-ingestion by 

organisms  

Aquatic organisms can ingest microplastic-PPCP 

complexes, leading to internal desorption in acidic or 

enzymatic environments, increasing toxicity. Studies 

have shown that when fish ingest microplastics 

adsorbed with antibiotics such as tetracycline, the 

acidic conditions of the stomach result in the 

desorption of such contaminants (Wang et al., 2024). 

This increases the organism's bioavailability of the 

desorbed antibiotics, which increases the possibility 

of antibiotic resistance as well as their harmful effects 

(Dick et al., 2024).  

 

Environmental desorption 

Changes in pH, salinity, or temperature can release 

PPCPs back into the water, creating localized 

pollution hotspots. This desorption may 

significantly impact water quality and ecosystem 

health. A study noted that the pH variations may 

enhance the desorption of tetracycline from PVC 

microplastics into the water again. The experiment 

found that at lower pH, the microplastics exhibited 

reduced adsorption capacity because of 

electrostatic repulsion between the negatively 

charged microplastics and the anionic forms of 

tetracycline. This implies that fluctuations in 

environmental pH might play a very crucial role in 

the mobility of tetracycline in aquatic ecosystems 

(Liang et al., 2023; Stapleton et al., 2023). 

 

Toxicological synergy 

Microplastics carrying PPCPs can amplify toxic effects 

in organisms, combining physical blockages caused 

by plastics with chemical toxicity from PPCPs. This 

synergistic effect can cause a multiplicative health 

impact on aquatic organisms. Recent studies 

demonstrated that microplastics with adsorbed 

antibiotics not only caused physical injury through 

physical blocking of digestive tracts but also 

contributed to chemical toxicity that can reduce 

growth and reproduction in aquatic organisms. The 

interactions were even demonstrated to be more 

detrimental than exposure to either stressor alone 

(Han et al., 2021; Du et al., 2024). 

Transport and bioavailability of microplastics and 

PPCPs 

When microplastics adsorb PPCPs, they serve as 

vectors, transporting these contaminants across 

different environments. The transport and 

bioavailability of microplastics and PPCPs are 

interconnected processes that have significant 

implications for ecosystem health and biodiversity. 

For instance, it has been found that polystyrene 

microplastics can adsorb pharmaceuticals including 

sulfamethoxazole and transport them across 

freshwater systems, altering their bioavailability (Sun 

et al., 2024). Their persistent and pervasive nature 

necessitates integrated approaches to mitigation, 

focusing on reducing sources, improving wastewater 

treatment, and providing bio-alternatives to plastics. 

 

The environmental transport and bioavailability of 

microplastics and pharmaceuticals and personal care 

products (PPCPs) are critical to understanding their 

ecological and health impacts. These pollutants are 

widely distributed across terrestrial, freshwater, and 

marine ecosystems due to their persistence, mobility, 

and interactions with environmental factors. 

 

Microplastics facilitate the movement of PPCPs 

across ecosystems 

Long-range transport and enhanced mobility 

Microplastics containing PPCPs can travel long 

distances via ocean currents or atmospheric 

pathways, depositing contaminants in previously 

unaffected regions and distributing pollutants to 

remote ecosystems. To increase ciprofloxacin's 

persistence and bioavailability, Atugoda et al. (2020) 

showed that polyethylene microplastics might adsorb 

the antibiotic and make it easier for it to move 

through freshwater systems. According to Li et al. 

(2022), polystyrene microplastics exhibited strong 

affinity and mobility potential as they absorbed 

sulfamethoxazole with partition coefficients as high as 

10⁴ L/kg. These results demonstrate that 

hydrophobic organic pollutants, such as PPCPs, can 

be efficiently transported by microplastics throughout 

aquatic ecosystems, increasing their ecological risk 

and long-range diffusion. 
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Increased bioavailability  

The sorbed PPCPs can desorb in specific conditions, 

releasing concentrated contaminants into organisms 

or environments. For example, acidic or enzymatic 

conditions in the digestive tracts of marine organisms 

can release PPCPs from ingested microplastics. A 

study on freshwater ecosystems highlighted the 

potential risks of microplastics from plankton to fish.  

 

It highlighted the ability of microplastics to transport 

PPCPs in food webs, causing them to get 

biomagnified from the planktons to larger predators 

feeding on the fish, their associated ecological risks 

and health effects on fish (Gao et al., 2025).  

 

A study showed that both polystyrene and 

polyethylene could adsorb PPCP contaminants, such 

as 17α-ethinylestradiol, chlorpyrifos, and 

benzo(α)pyrene from the water surrounding them. 

Once ingested in the fish, these microplastics help to 

transfer contaminants to the organisms, thus 

indicating that microplastics can be vectors for 

hazardous chemicals in aquatic ecosystems 

(Ašmonaitė et al., 2020). For instance, the tenfold 

enhancement of biomagnification was determined for 

fish that were exposed to venlafaxine along with PVC 

microplastics when compared to the fish that received 

only venlafaxine. Such bioavailability enhancements 

via microplastics might make accumulation of these 

particular pharmaceuticals into aquatic organisms a 

reality (Ribeiro et al., 2023). 

 

Transport mechanisms 

Microplastics and PPCPs are transported through a 

variety of pathways, influenced by their physical and 

chemical properties as well as environmental 

conditions. 

 

Aquatic systems 

Surface water  

Microplastics, due to their low density (e.g., 

polyethylene, polypropylene), often float and travel 

long distances via rivers and ocean currents. PPCPs 

that are dissolved in water or adsorbed onto 

microplastics can follow these currents, dispersing to 

remote areas.A study done in Kattegat/Skagerrak 

region in Denmark found out the existence of 

microplastics throughout a water column, from the 

upper surface to bottom depth and their 

concentrations varied at different depths. High 

density polymers of high density occurred with a 

proportionally high magnitude which could influence 

their vertical displacement. This gradient means that 

fish in various regions may be exposed to different 

concentrations of microplastics depending on their 

depth and density (Lenaker et al., 2019; Gunaalan et 

al., 2024). The various sources of microplastics and 

PPCPs and the route of entry of these contaminants in 

the environment is shown in Fig. 2. 

 

 

Fig. 2. Transport of PPCPs and microplastics in 

terrestrial and aquatic environments 

 

Sedimentation 

Heavier microplastic-PPCP complexes may settle in 

sediments, creating reservoirs of pollutants that can 

re-enter the environment under changing 

conditions. Denser microplastics (e.g., polyvinyl 

chloride) or those aggregated with biofilms and 

sediments can sink, depositing in riverbeds, lakes, 

and ocean floors. PPCPs sorbed onto microplastics 

or particles in sediments may persist as localized 

pollution hotspots. It is evident that microplastics of 

higher densities tend to settle in benthic 

environments where they can interact with 

sediments and aquatic organisms. For example, a 

study noted that microplastics are retained in 

seagrass canopies, acting as sinks for these 

pollutants due to their negative buoyancy and 

aggregation with organic matter. This retention 



 

 

47  Mathews et al. International Journal of Biosciences | IJB 

Website: https://www.innspub.net 

 

Vol. 27, Issue: 5, p. 40-72, 2025 

 
Int. J. Biosci. 

 
leads to increased exposure for benthic organisms 

and alters local ecological dynamics (Radford et al., 

2024; Patterson, 2025). 

 

A study done by Joo et al. (2021) shows that enriched 

sediments with microplastics changed the structure 

and function of sedimentary microbial communities, 

affecting processes of nitrogen cycling. It has been 

shown that different microplastics like polyethylene 

(PE), polyvinyl chloride (PVC), and polyurethane 

foam (PUF) differently affect nitrification and 

denitrification rates, and therefore, show that the type 

of microplastic could influence both PPCPs retention 

or release (Anthony et al., 2024). 

 

Atmospheric transport 

Microplastics, especially smaller particles, can 

become airborne and travel significant distances 

through wind. PPCPs may volatilize into the 

atmosphere (e.g., fragrances) or adhere to airborne 

microplastics, contributing to their dispersion. This 

transport mechanism through the atmosphere raises 

concerns regarding their reaching and, consequently, 

their effects in the more remote areas away from the 

source ecosystems. PA6 possessed high adsorption 

capacities towards the hydrophilic PPCPs, namely 

Sulfacetamide, Chloramphenicol, Benzophenone-2 

(BP-2), through different adsorption mechanisms 

modulated by pH and ionic strength (Sun et al., 

2024). Research found that airborne microplastics 

can be transported over long distances, affecting 

remote regions like Antarctica (Chen et al., 2023). 

 

Soil and groundwater 

Soil contamination  

Agricultural application of biosolids and irrigation 

with contaminated water introduces microplastics 

and PPCPs into soils. Biosolids, nutrient-rich by-

products of wastewater treatment, are applied to 

agricultural lands to improve fertility. These biosolids 

may contain residual PPCPs that were not fully 

degraded during wastewater treatment. Studies have 

shown that microplastics can alter soil 

physicochemical properties, disrupt nutrient cycling, 

and affect microbial communities, which are essential 

for maintaining soil fertility. For instance, a recent 

study revealed that the rate of fertilizer application 

would exponentially increase the concentration of 

microplastics in agricultural soils, which will reach levels 

over a century that will significantly affect the soil health 

(Sheikh et al., 2025). Additionally, the presence of 

PPCPs in these soils may have adverse effects on soil 

organisms and may also pose risks to human health 

through the food chain (Liu et al., 2025). 

 

Leaching to groundwater 

PPCPs that are highly soluble in water can seep into 

groundwater, especially in sandy or broken soils, when 

combined with mobile microplastics that move within 

soil pores. For instance, it has been demonstrated that 

the chemotherapy medication fluorouracil, which is 

frequently used to treat cancer, can adsorb onto 

polypropylene (PP) microplastics; the adsorption 

capacity of PP was lower than that of polyvinyl chloride 

(PVC) and polyamide 6 (PA6) (Sun et al., 2024). With a 

half-life of roughly 20 to 50 days in soil, fluorouracil 

demonstrates environmental persistence despite this 

reduced adsorption, providing ample time for leaching 

(Dick et al., 2024). Furthermore, field research shows 

that in high-permeability soil conditions, PPCPs carried 

by microplastics can enter subterranean layers and make 

their way to groundwater in a matter of weeks to months 

(Prata et al., 2020). 

 

Persistence in soils raises the potential of 

groundwater pollution, and crops irrigated with 

contaminated groundwater may absorb PPCPs, which 

could lead to bioaccumulation and food-chain 

transfer issues (Boxall, 2012). These risks are 

significant. This emphasises how critical it is to track 

PPCP–microplastic complexes in agricultural soils 

that have had biosolids amended and to create 

mitigation plans to reduce the amount of 

groundwater exposure pathways. 

 

Factors influencing transport 

Environmental conditions 

pH and salinity 

In aquatic systems, pH and salinity control the 

movement and aggregation of microplastics in 
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addition to affecting the sorption of PPCPs. 

According to Zahmatkesh et al. (2023), tetracycline 

adsorption onto polyethylene microplastics, for 

instance, was found to peak at alkaline 

circumstances (pH = 10), with adsorption 

efficiency dropping by about 40% at near-neutral 

pH. The function of ionisation states in PPCP–

plastic interactions was further demonstrated by 

fluoxetine's enhanced sorption in acidic 

environments (pH 5–6) (Li et al., 2021). 

 

Salinity has a significant impact as well. In estuarine 

conditions, the electrically charged double layer of 

microplastic particles can be compressed by Na+ and 

Cl+ ions, which encourages the aggregation and co-

sorption of hydrophobic substances. For example, 

compared to freshwater conditions, the adsorption of 

bisphenol A on polystyrene microplastics increased 

by approximately 25% at salinities higher than 30‰ 

(Zhang et al., 2022). This implies that the long-

distance movement of PPCP–microplastic complexes 

from freshwater to marine environments may be 

facilitated by salinity-driven aggregation. 

 

Temperature 

Increased temperature can increase the kinetic energy 

of molecules, which can, in turn, improve the rates of 

desorption of PPCPs from microplastics. Moreover, 

higher temperatures can cause faster degradation of 

some types of microplastics, which can influence their 

surface properties and, subsequently, their adsorption 

properties (Dick et al., 2024). 

 

Chemical properties 

Hydrophobic PPCPs (e.g., triclosan) tend to adsorb 

onto microplastics, enhancing their co-transport. This 

increased adsorption is due to the fact that 

hydrophobic interactions enable these compounds to 

be more attracted to non-polar surfaces of 

microplastics (Dick et al., 2024). 

 

Hydrophilic PPCPs remain dissolved, often moving 

with water flow. The adsorption capacities of 

sulfacetamide and chloramphenicol onto 

microplastics were lower than those of their 

hydrophobic counterparts, and pH and ionic strength 

have significant effects on the adsorption behaviour 

of these hydrophilic compounds (Sun et al., 2024). 

 

Particle size 

Smaller microplastics (e.g., nanoplastics) have greater 

mobility in water and air, facilitating long-distance 

transport.Research indicates that nanoplastics can 

remain suspended in the water column due to their 

low density, allowing them to be transported over vast 

distances in aquatic environments. Additionally, the 

unique physicochemical properties of nanoplastics 

contribute to their stability and mobility; they can 

aggregate with other particles, altering their behavior 

and distribution in the environment (Ducoli et al., 

2025; Gigault and Davranche, 2025). 

 

Bioavailability 

The bioavailability of microplastics and PPCPs refers 

to their potential to interact with and be taken up by 

organisms. This concept is essential for 

understanding the ecological risks associated with 

plastic pollution and chemical contamination in 

aquatic and terrestrial environments. 

 

Bioavailability of microplastics 

Ingestion 

Aquatic organisms mistake microplastics for food due 

to their size and appearance, leading to ingestion. 

Filter-feeding animals like salps, bivalves, and several 

fish species ingest microplastics. Thus, it might lead 

to physiological effects. Microplastic particles were 

detected in 100% of water samples collected in the 

Tropical Eastern Pacific and also in the digestive 

tracts of some marine animals like fish and squid 

(Alfaro-Núñez et al., 2021).  

 

In terrestrial systems, microplastics can enter food 

chains through soil-dwelling organisms. deep-

burrowing earthworm Lumbricus terrestris enhances 

vertical transport of nanoplastics in soil. The study 

revealed that ingestion and subsequent excretion by 

earthworms led to substantial vertical transport of 

palladium-doped polystyrene nanoplastics with 256 

nm in diameter (Heinze et al., 2021). 
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Translocation  

Microplastics can translocate across biological 

barriers, such as the gut epithelium, entering tissues 

and potentially affecting physiological functions. The 

jellyfish Aurelia sp. has been found to ingest 

microplastics by adhesion to their oral arms, showing 

the ways in which, these particles can enter food webs 

via filter-feeding organisms (Costa et al., 2021). In 

similar manner, advanced in vitro models have shown 

that microplastics can translocate through lung and 

gut epithelial barriers. For instance, polystyrene 

particles with diameters of 0.05 μm to 10 μm have 

been found to cross epithelial cells in lung and 

intestinal models, suggesting that they could reach 

systemic circulation (Donkers et al., 2022). 

 

Bioavailability of PPCPs 

Bioavailability of PPCPs is a critical issue in 

environmental science as it deals with the way PPCPs 

interact with and are absorbed by living organisms. 

 

Direct exposure 

Aquatic organisms absorb PPCPs directly from 

contaminated water. A seminal study by Kolpin et al. 

(2002) reported that more than 80% of the streams 

sampled throughout the United States contained at 

least one type of PPCP, with many detected at 

concentrations in the parts per trillion (ppt) range. 

This widespread contamination indicates that aquatic 

organisms are frequently exposed to these substances. 

Recent studies revealed that certain PPCPs were able 

to induce transgenerational effects in aquatic 

organisms, affecting reproductive competency and 

behavioral traits across generations (Marcu et al., 

2023; Pinto and Aneck, 2025).  

 

Terrestrial organisms may be exposed through 

ingestion of contaminated food or water. Biosolids 

use in agriculture has been proven to lead to the 

introduction of PPCPs into the soil environment, 

some PPCPs like carbamazepine, atenolol 

paracetamol and ibuprofen have a very long 

persistence time in the soil and may be 

accumulated by plants (Pérez-Lucas et al., 2024). 

Kibuye et al. (2019) found several pharmaceuticals 

in the groundwater wells that supply drinking 

water, thus there is a risk to the terrestrial biota 

and humans through groundwater contamination. 

 

Microplastic-PPCP desorption 

Microplastics could significantly affect the 

bioavailability of pharmaceuticals and personal 

care products in aquatic environments. PPCPs 

sorbed to microplastics may concentrate these 

chemicals at ingestion sites, as well as provide a 

potential for desorption within the digestive 

systems of organisms. 

 

PPCPs sorbed onto microplastics may enhance 

their bioavailability by concentrating these 

chemicals at ingestion sites. A recent study by 

Zahmatkesh Anbarani (2023) has examined the 

adsorption behavior of tylosin, chloramphenicol 

and tetracycline onto common environmental 

microplastics such as PE, PS, and PVC. The results 

indicate that PVC has the highest adsorption 

capacity for both antibiotics, due to its functional 

groups and crystallinity, therefore the aquatic 

organisms exposed to these particles with adsorbed 

antibiotics exhibit physiological changes, including 

alterations in feeding behavior. 

 

Once ingested, PPCPs may desorb in the acidic or 

enzymatic environment of an organism's digestive 

system. This desorption process may liberate the 

adsorbed PPCPs in the organism tissues, which 

might result in toxicological effects. It has been 

proven that ibuprofen can be adsorbed onto 

microplastics, which considerably influences its 

bioavailability. The acidic conditions in the 

stomach may enhance the desorption of ibuprofen 

from microplastics upon ingestion by fish, 

increasing the concentrations of the drug in the 

bloodstream (Arienzo et al., 2023). These are 

processes that exhibit the effects of xenobiotics as 

foreign materials which interrupt normal biological 

activities. These cause disruptions in the normal 

endocrine pathways and metabolism within aquatic 

animals that could pose a risk to particular species 

as well as food chains (Zhu et al., 2023). 
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Combined effects of microplastics and PPCPs 

The co-transport of microplastics and PPCPs 

amplifies their environmental impact: 

 

Chemical loading: Microplastics act as carriers, 

increasing the amount of PPCPs available in 

ecosystems. Due to the higher surface area, 

microplastics are able to adsorb numerous toxic 

substances such as PPCPs, and the amount of these 

chemicals increases.  

 

Thus, due to adsorption ability, microplastics can 

serve as a vector, enabling the movement of PPCPs 

across diverse environments (Yu et al., 2022; 

Yarahmadi et al., 2024). 

 

Localized hotspots: Sediments and biofilms on 

microplastics can concentrate PPCPs, creating 

zones of high toxicity. These concentrations may 

produce zones that have significantly higher 

toxicity due to the PPCPs accumulating (Castaño-

Ortiz et al., 2024). Such hotspots are especially 

alarming in marine systems where floating 

microplastics can adsorb hydrophobic PPCPs, such 

as bisphenol A, causing their deposition at distant 

shorelines (Gani et al., 2024). 

 

Trophic transfer: Both microplastics and PPCPs 

can bioaccumulate and biomagnify in food chains, 

affecting top predators, including humans (Arienzo 

et al., 2023; Nguyen et al., 2023). As smaller 

organisms ingest microplastics, they also take up 

the associated PPCPs, which can then be 

transferred to larger predators, including humans. 

This process raises concern about the potential 

health impacts on top predators due to the 

accumulation of these harmful substances 

(Hashem et al., 2024). 

 

Transport and bioavailability in ecosystems 

Microplastics, due to their pervasive presence in 

various ecosystems, they have become great vectors 

to transport pharmaceutical and personal care 

products (PPCPs). This facilitates the enhancement 

of bioavailability of the contaminants, as it relates 

to being hazardous to environment and human. 

Table 2 shows the examples on transport and 

enhanced bioavailability of microplastics and 

PPCPs into different ecosystems. 

 

Toxicity amplification of microplastics and PPCPs 

The co-occurrence of microplastics and 

pharmaceuticals and personal care products 

(PPCPs) in the environment leads to toxicity 

amplification, a phenomenon where their 

combined presence intensifies harmful effects on 

ecosystems and organisms. This interaction creates 

synergistic impacts that are more severe than those 

caused by either pollutant alone. 

 

The synergistic interactions between microplastics 

and PPCPs significantly amplify their toxicity, 

posing a serious threat to ecosystems and human 

health. Addressing this issue requires 

interdisciplinary efforts to mitigate sources, 

advance treatment technologies, and promote 

sustainable practices to reduce their environmental 

footprint. 

 

The combination of microplastics and PPCPs can 

lead to synergistic toxic effects on organisms, 

impacting their health and the environment. 

 

Combined stressors 

Microplastics can cause direct damage to 

organisms, such as clogging digestive systems, and 

the leaching of PPCPs introduces a chemical level 

of toxicity. Such a combination of exposures may 

disturb metabolic processes, reproduction, and 

behavior in aquatic life. For instance, it has been 

proven that the combination of different PPCPs 

with microplastics can cause synergistic toxicity 

even at concentrations below harmful levels for 

each individual.  

 

This phenomenon raises concerns about the 

ecological impact of low-level exposures to multiple 

contaminants, which can disrupt metabolic 

processes and lead to adverse effects on non-target 

organisms (Yang et al., 2024). 
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Table 2. Transport and bioavailability of microplastics and PPCPs in various ecosystems 

Ecosystem type Transport and bioavailability Compounds involved Reference 

Marine  Floating microplastics adsorbed with hydrophobic 
PPCPs travel across oceans and wash ashore on 
distant coastlines. 

Bisphenol A, Polycyclic 
Aromatic Hydrocarbons 
(PAHs) 

Yarahmadi et al., 
2024 

Freshwater  Rivers carry microplastics and dissolved PPCPs 
downstream, where they accumulate in deltas and 
estuaries. 

Ibuprofen, Caffeine, 
Diclofenac 

Gupta et al., 2024 

Groundwater Groundwater contamination occurs through 
leaching from soils where microplastics and PPCPs 
have been introduced. 

Ofloxacin, Caffeine Picó et al., 2020 

Soils Agricultural practices introduce antibiotics bound 
to microplastics into soils, affecting microbial 
communities. 

Tetracycline, 
Sulfamethoxazole, 
Chloramphenicol 

Wang et al., 2021 

 

Endocrine disruption 

Microplastics can adsorb endocrine-disrupting PPCPs 

like bisphenol A or synthetic hormones. These 

substances may exacerbate hormonal imbalances in 

organisms. Research suggests that microplastics are 

vectors for these harmful substances, thus increasing 

their bioavailability and potential endocrine 

disruption. For instance, it has been established that 

microplastics can increase the bioaccumulation of 

bisphenol A in aquatic organisms, causing 

reproductive and developmental problems. The 

interaction of microplastics with endocrine disruptors 

is significant because such an interaction may impact 

the long-term ecological consequences as the result of 

hormonal imbalances in wildlife (Atugoda et al., 

2021; Zhang et al., 2023). 

 

Mechanisms of toxicity amplification 

The interaction between microplastics and PPCPs 

results in an amplified toxicity through several 

mechanisms. Understanding these mechanisms is 

necessary for assessing the environmental and health 

impacts of these contaminants. 

 

Microplastics as carriers of PPCPs 

Microplastics have a large surface area and exhibit 

hydrophobic properties, making them effective 

adsorbents for PPCPs. This adsorption increases the 

persistence of PPCPs in the environment, prolongs 

exposure times, and enhances their bioavailability to 

organisms. For example, it has been shown that 

microplastics could adsorb a broad spectrum of 

PPCPs with different adsorption capacities depending 

on the type of microplastic and the chemical nature of 

the PPCPs involved. Long-term aged microplastics 

were found to have significantly higher adsorption 

capacities for PPCPs compared to fresh microplastics, 

suggesting that aging processes increase their 

capacity to retain contaminants. This increase in 

adsorption capacity can be attributed to changes in 

the surface area and structure of the microplastics 

during the aging process. A study showed that, the 

total adsorption capacity of long-term aged 

microplastics ranged from 7,114.0 to 13,114.4 μg/g, 

which is much higher than the 171.8 to 1,043.7 μg/g 

found in fresh microplastics. The aging process leads 

to the formation of additional surface functional 

groups and alterations in the microplastic structure, 

which create more active sites for adsorption (Yao et 

al., 2023; Santana et al., 2025). 

 

Desorption in biological systems 

When microplastics are ingested by organisms, they 

can lead to the release of adsorbed PPCPs in their 

digestive systems due to changes in environmental 

conditions such as pH, salinity, and enzymatic 

activity. Thus, localized release leads to higher 

concentrations of PPCPs at the point of interaction, 

which amplifies their toxic effects on tissues and cells.  

 

According to research, microplastics can desorb 

contaminants once ingested and exposed to 

physiological conditions, leading to increased local 

concentrations of toxic substances. For instance, a study 

by Atugoda et al. (2021) explained that microplastics 

may desorb adsorbed hydrophobic organic pollutants 

from aquatic organisms, thus leading to high 

bioaccumulation and potential toxic effects. 
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Additive and synergistic effects 

Microplastics can cause physical harm, such as 

inflammation and gut blockage, while PPCPs 

contribute chemical toxicity. Collectively, they add 

cumulative stress to organisms, breaking down their 

physiological defences and exacerbating toxic effects. 

The combination of physical stress by microplastics 

and chemical stress by PPCPs might lead to more 

severe ecological consequences than either 

contaminant alone. The presence of microplastics 

enhances the oxidative stress caused by PPCPs, which 

further leads to cellular damage in aquatic organisms. 

The review added that this interaction could impair 

immune responses and reproductive success in 

aquatic species (Zhou et al., 2020; Subaramaniyam et 

al., 2023; Hong, 2025).  

 

Ecotoxicological impacts 

The microplastics and pharmaceuticals and personal 

care products (PPCPs) complex in aquatic and 

terrestrial ecosystems poses significant 

ecotoxicological risks.  

 

Aquatic ecosystems 

Fish and invertebrates 

Microplastics adsorbing PPCPs can disrupt feeding, 

growth, and reproduction in aquatic organisms. For 

instance, exposure to microplastics carrying endocrine-

disrupting chemicals like bisphenol A has been shown to 

lead to hormonal imbalances and reproductive failures 

in fish. A study by Reis (2022) found that fish exposed to 

microplastics containing bisphenol A exhibited altered 

reproductive behaviours, reduced fertility, and 

developmental abnormalities.  

 

The presence of these contaminants can interfere with 

hormone signalling pathways, leading to significant 

ecological consequences. 

 

Biofilm formation 

Microplastics in water ecosystems generally form 

biofilms. These are communities of microbes attached 

to surfaces. They produce hotspots where PPCPs tend 

to accumulate, enhancing the toxicity of both the 

microplastics and the chemicals that get adsorbed. 

According to Castaño-Ortiz et al. (2024), biofilms 

attached to microplastics, besides trapping PPCPs 

inside the particles, alsomodify physicochemical 

properties of microplastics, which makes them even 

more toxic. The formation of biofilms promotes 

horizontal gene transfer within bacteria that may 

result in the transmission of antibiotic-resistance 

genes in aquatic systems. 

 

Terrestrial ecosystems 

Soil microorganisms 

In terrestrial ecosystems, antibiotics attached to 

microplastics can interfere with the microbial 

communities in soils. This reduces soil fertility and 

changes nutrient cycles. A study by Aralappanavar et 

al. (2024) showed that microplastics laden with 

antibiotics significantly affected the composition of 

soil microbial communities, thereby reducing 

microbial.  

 

The existence of microplastics altered the 

composition of antibiotic resistance profiles during 

nitrification, indicating that these contaminants 

significantly affect microbial interactions and nutrient 

cycles (Liu et al., 2025). Such interference can have 

cascading effects on plant health and soil 

productivity. 

 

Earthworms and soil invertebrates 

Ingestion of microplastic-PPCP complexes affects 

growth, reproduction, and behavior, disrupting 

their role in soil health.Research showed that 

microplastics along with PPCPs such as 

enrofloxacin and ciprofloxacin showed synergistic 

effect on the invertebrate species of Pseudomonas 

aeruginosa and Escherichia coli, which led to 

osmotic imbalance, cell membrane damage, 

obstructed the DNA replication and oxidative 

stress (Wu et al., 2022; Du et al., 2024). Exposure 

to microplastics loaded with PPCPs depressed 

earthworm reproduction and slowed the growth 

rates. Such impairment of growth and reproduction 

severely challenges their ecological functions, such 

as organic matter decomposition and nutrient 

cycling (Zhang et al., 2024).  
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Human health implications 

The interaction between microplastics and 

pharmaceuticals and personal care products (PPCPs) 

raises significant concerns regarding human health. 

As microplastics enter the food chain, they can carry 

harmful PPCPs, leading to various health 

implications. 

 

Ingestion and bioaccumulation 

Microplastics and PPCPs enter the human food chain 

through contaminated seafood, drinking water, and 

agricultural produce. Once inside the body, 

microplastics may act as vectors, releasing adsorbed 

PPCPs in tissues, potentially leading to localized 

toxicity.Microplastics deposits are observed in 

different human biological samples, such as blood, 

stool, and breast milk. 

 

The ingestion of microplastics may lead to oxidative 

stress and inflammation, which may cause various 

health issues, including gastrointestinal disorders and 

chronic diseases. A study done in carp (Cyprinus 

carpio) revealed that this complex can easily pass 

through the blood-brain barrier resulting in 

significant biochemical changes including decreased 

activity of enzymes such as acetylcholinesterase and 

monoamine oxidase thereby resulting in impaired 

neural function (Hamed et al., 2022; Yarahmadi et 

al., 2024; Zheng et al., 2024). 

 

Combined toxic effects 

Chemical toxicity 

PPCPs such as antibiotics and hormones interfere 

with human hormonal and immune systems. A 

study showed that the combined presence of 

microplastic-PPCP such as polystyrene and 

roxithromycin can cause neurotoxicity, where 

microplastics were antagonistic, causing increased 

activity of superoxide dismutase (Arienzo et al., 

2023). PPCPs are known endocrine disruptors that 

may have adverse effects on growth, development, 

and reproductive health in humans (Dutta et al., 

2023). The presence of these compounds in the 

environment raises concerns about their long-term 

effects on human health. 

Physical harm 

Microplastics can cause inflammation and oxidative 

stress, exacerbated by the leaching of toxic PPCPs. 

Microplastic exposure has been associated with 

respiratory problems, cardiovascular diseases, and 

other inflammatory disorders. Physical damage from 

microplastics combined with chemical toxicity from 

adsorbed PPCPs has compounded the health risk for 

humans  (Lee et al., 2023). The microplastic particles 

tend to cause irritation and damage of epithelial cells, 

causing inflammation and even potential tissue 

injury. A study highlighted that the physical 

stimulation of these particles in the human body 

tends to trigger localized swelling and blockage in 

tissues due to their presence in the tissues. This form 

of physical irritation can exacerbate existing health 

issues and cause conditions like inflammatory bowel 

disease (IBD) (Kumar et al., 2024; Li et al., 2024). 

 

Examples of toxicity amplification 

Antibiotics and microplastics 

Microplastics carrying antibiotics like 

sulfamethoxazole increase bacterial exposure to low 

doses of antibiotics, fostering the development of 

antibiotic-resistant bacteria, a phenomenon that 

poses a significant threat to public health.  

 

Microplastics not only serve as carriers for antibiotics 

but also enhance horizontal gene transfer among 

bacteria, thereby facilitating the spread of antibiotic 

resistance genes (ARGs) in aquatic environments. The 

presence of biofilms on microplastics further 

increases the resistance levels of pathogenic bacteria 

since they provide a stable environment that fosters 

their growth and genetic exchange (Marathe et al., 

2022; Wang et al., 2024). This is threatening since it 

can lead to treatment-resistant infections in humans, 

complicating standard medical practices and 

elevating healthcare costs. 

 

Endocrine disruptors 

Hormones like 17α-ethinylestradiol, when adsorbed 

onto microplastics, amplify disruptions in the 

reproductive systems of fish and amphibians.These 

endocrine-disrupting chemicals can leach into the 
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tissues of organisms from microplastics, thereby 

affecting the levels of hormones in a manner that 

could interfere with reproduction and development. 

This issue a red flag in terms of potential similar 

effects in human reproductive health through the 

food chain via bioaccumulation. The microplastics 

with endocrine disruptors affected the reproductive 

behaviours and developmental processes of fish, 

which may be of relevance to human health if such 

mechanisms also occur in humans (Tang et al., 2024; 

Zhao et al., 2024). 

 

Heavy metal adsorption 

Microplastics carrying PPCPs can also adsorb heavy 

metals, creating multi-pollutant complexes with 

heightened toxicity.The bioavailability of toxic metals 

in human tissues increases when these complexes are 

formed, and this may be a cause for concern 

regarding the cumulative exposure risks. A study has 

shown that microplastics can enhance the uptake of 

heavy metals like lead and mercury in aquatic 

habitats. The bioaccumulation risk associated with 

this uptake is dangerous and harmful as these heavy 

metals contribute to neurotoxicity and other adverse 

health problems in humans. Moreover, the complex 

of heavy metals with PPCPs can enhance their toxicity 

and make it appear worse than what would be if 

either contaminant were present (Wang et al., 2024; 

Zhao et al., 2024). 

 

Factors influencing toxicity amplification 

Particle size 

Smaller microplastics (nanoplastics) have greater 

surface area-to-volume ratios, increasing their 

capacity to adsorb PPCPs and penetrate biological 

barriers.The size of nanoplastics can more easily 

interact with the biological systems, and hence the 

adsorption of harmful substances increases. Smaller 

microplastics often tend to clump more in biological 

environments which, in return, can modulate their 

levels of bioavailability and toxicity profile. Once 

accumulated with biomolecules or other toxic 

contaminants, toxic compounds are leached out 

within a more bioactive form leading to an even 

higher level of damage to health (Bora et al., 2024). 

According to a study conducted by Song et al. (2024), 

polystyrene microplastics may enter the bloodstream 

from the gastrointestinal tract and the respiratory 

system. Oxidative stress and inflammatory responses 

in myocardial cells indicate that the toxic effects are 

likely to be enhanced with smaller-sized particles. 

 

Environmental conditions 

The pH, salinityand temperature in the environment 

play a significant role in influencing the adsorption-

desorption dynamics and bioavailability of PPCPs 

associated with microplastics.  

 

They can influence the behavior of microplastics in 

the aquatic environments, hence their interaction 

with contaminants. For instance, changes in pH will 

alter the charge on the surface of the microplastics, 

impacting their ability to adsorb PPCPs (Bhuyan et 

al., 2022). Besides this, temperature fluctuations may 

change the rates of microplastics' degradation, which 

further can lead to higher release of adsorbed 

chemicals into the environment.  

 

Chemical properties of PPCPs 

The chemical properties of PPCPs are essential for 

interaction with microplastics. Hydrophobic PPCPs, 

like triclosan and bisphenol A, have a greater 

tendency to associate with microplastics, thereby 

increasing persistence and bioaccumulation potential. 

It prolongs the exposure time of aquatic organisms 

and increases the possibility of toxic effects from 

persistent contaminants (Martín et al., 2022). 

 

Microplastics and PPCPs 

Role in antimicrobial resistance (AMR) 

The interplay between microplastics and 

pharmaceuticals and personal care products (PPCPs) 

plays a significant role in fostering antimicrobial 

resistance (AMR). This occurs through mechanisms 

such as biofilm formation, gene transfer among 

bacteria, and the prolonged persistence of antibiotics 

in the environment. Microplastics can act as hotspots 

for microbial colonization, creating a 

microenvironment for bacteria and other 

microorganisms. 
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Microplastics and PPCPs play a pivotal role in the 

emergence and spread of antimicrobial resistance by 

providing surfaces for microbial colonization, 

prolonging the environmental persistence of 

antibiotics, and facilitating gene transfer. Tackling 

this complex issue requires coordinated efforts to 

reduce pollutant sources, enhance waste 

management, and promote sustainable practices to 

curb the spread of AMR. 

 

Biofilm formation 

Microplastics provide biofilm support since they 

enable bacteria to cling and establish protective films 

against various physical and biological impacts. 

PPCPs, specifically antibiotic and antimicrobial 

species linked to microplastics, would seem to 

improve the establishment of such biofilms. Evidence 

already shows that microplastics support different 

microbial populations or communities including ARB. 

 

The biofilm's physical structure is used to shield 

microbes from stress factors like antibiotics, leading 

to enhanced survival and subsequent possibilities of 

developing resistance (Zheng et al., 2023). 

 

Gene transfer 

The proximity of resistant and non-resistant bacteria 

in these biofilms facilitates horizontal gene transfer, 

accelerating the spread of antimicrobial resistance. 

 

Microplastics enhance gene exchange among 

microbial populations because bacteria in biofilms are 

closely spatially arranged. This can lead to rapid 

dissemination of Antibiotic resistant genes (ARGs), 

further complicating the management of 

antimicrobial resistance (AMR) (Jiao et al., 2024). 

 

Microplastics as hotspots for microbial activity 

Microplastics have emerged as significant 

environmental pollutants that create favourable 

environments for microbial colonization, particularly 

in aquatic and soil ecosystems. This phenomenon 

promotes the spread of antimicrobial resistance 

(AMR) through various mechanisms. 

Biofilm formation 

Microplastics in aquatic and soil systems serve as 

surfaces for biofilm development, wherein bacteria 

aggregate and form protective layers. These biofilms 

often contain diverse microbial communities, 

including antibiotic-resistant bacteria (ARB). A study 

by Zheng et al. (2023) emphasize that microplastics 

support the growth of ARB within biofilms, which can 

lead to increased resistance levels in contaminated 

environments.The physical structure of biofilms 

protects microbes from external stresses, such as 

antibiotics, enhancing their survival and the potential 

for resistance. 

 

Prolonged exposure to contaminants 

Microplastics adsorb PPCPs, including antibiotics, 

creating localized high concentrations of these 

chemicals. For example, a research by Li et al. (2023) 

showed that microplastics like polyethylene (PE) and 

polystyrene (PS) adsorb antibiotics such as 

ciprofloxacin and sulfamethoxazole, which increases 

their transport and bioavailability in aquatic 

ecosystems.Prolonged exposure to sub-lethal 

antibiotic concentrations within biofilms induces 

selective pressure. This selective pressure can lead to 

the survival and proliferation of antibiotic-resistant 

bacteria (Tang, 2024). 

 

PPCPs in selective pressure for AMR 

PPCPs, particularly antibiotics, play a significant role 

in the development of antimicrobial resistance 

(AMR).  

 

Environmental persistence of antibiotics 

The persistence of the antibiotics ciprofloxacin and 

sulfamethoxazole is enhanced if they are adsorbed 

onto microplastics because they would last longer in 

the environment than when they occur alone. Such 

persistence is important as it enables the antibiotics 

to continue exerting selective pressure on microbial 

populations. Studies have found that microplastics 

enhance the half-life of the antibiotics in the aquatic 

environments, thereby making them available to 

bacteria. 
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A study by Li et al. (2022) demonstrated that 

microplastics could adsorb high concentrations of 

various antibiotics, thus prolonging the exposure 

period for microbial communities. The study further 

showed that the adsorption capacity of microplastics 

for these antibiotics increases not only their 

environmental persistence but also facilitates their 

accumulation in sediments and biofilms, where they 

exert selective pressure on bacteria. The prolonged 

exposure to sub-lethal concentrations of antibiotics 

within biofilms formed on microplastics induces 

selective pressure that favours the survival of 

antibiotic-resistant bacteria (ARB) (Ahmad et al., 

2024). 

 

Non-antibiotic PPCPs and co-resistance 

Non-antibiotic PPCPs (e.g., disinfectants, heavy 

metals, and endocrine-disrupting compounds) can 

also drive co-selection, where resistance to one 

compound confers resistance to others. This can 

occur through various mechanisms: 

 

Cellular mechanisms: Exposure to non-antibiotic 

agents may result in physiological changes in bacteria 

that make them more resistant to a range of 

antimicrobial agents. Biocides used as disinfectants, 

for example, may select for resistance mechanisms 

that protect against antibiotics (Maillard et al., 2024). 

 

Genetic linkage: Resistance genes for non-antibiotic 

agents could be genetically linked to those for 

antibiotics. This means that when bacteria acquire 

resistance to one type of compound, they may also 

gain resistance to others due to the proximity of these 

genes on the same plasmid or chromosome (Partridge 

et al., 2018). 

 

Bacterial community structure: The presence of non-

antibiotic PPCPs can change the structure of bacterial 

communities, making resistant strains dominant (Wu 

et al., 2023). This results in increased interactions 

between resistant and susceptible bacteria, thereby 

promoting gene transfer.For example, exposure to 

triclosan (an antimicrobial in personal care products) 

has been linked to cross-resistance with antibiotics. 

Horizontal gene transfer (HGT) on microplastics 

Microplastics facilitate the transfer of antimicrobial 

resistance genes (ARGs) among bacteria through 

horizontal gene transfer: 

 

Gene exchange in biofilms 

Bacteria within biofilms on microplastics are in close 

proximity, enabling processes like conjugation, 

transduction, and transformation.Biofilms on 

microplastics may act as reservoirs for ARGs, 

allowing for quick spread even between distantly 

related bacterial species (Liu et al., 2024). 

 

ARGs in the environment 

ARGs from resistant bacteria may adsorb onto 

microplastics, which then act as carriers, spreading 

resistance genes to new environments.When these 

microplastics are ingested by organisms, ARGs may 

enter the gut microbiome, further propagating 

resistance. 

 

A study by Zheng et al. (2023) indicated that 

microplastics adsorb ARGs very effectively, especially 

in environments affected by wastewater discharge. 

The study underscored that the physical and chemical 

properties of microplastics make them an ideal 

substrate for microbial colonization and biofilm 

formation, where horizontal gene transfer (HGT) may 

occur.A study indicated that the aging of 

microplastics due to its increase in surface area 

improves its ability to capture and retain ARGs from 

the environment. Such a process promotes the 

transfer of resistance genes among bacteria in 

biofilms accumulated on these microplastics, mainly 

in the wastewater treatment plants as the conditions 

are favourable for gene exchange (Tang et al., 2024). 

 

Environmental pathways for AMR spread 

The spread of antimicrobial resistance is a complex 

issue involving numerous environmental pathways, 

mainly through transport via microplastics and 

pharmaceuticals and personal care products. These 

routes contribute to the spreading of resistant 

bacteria and resistance genes through ecosystems, 

affecting public health to a great extent. 



 

 

57  Mathews et al. International Journal of Biosciences | IJB 

Website: https://www.innspub.net 

 

Vol. 27, Issue: 5, p. 40-72, 2025 

 
Int. J. Biosci. 

 
Aquatic pathways 

Rivers and oceans become highways for microplastics 

carrying PPCPs and resistant bacteria, thus spreading 

AMR across regions. Transport of microplastics in 

aquatic environments is further facilitated by human 

activities, like discharge of sewage effluent and 

agricultural runoff, introducing antibiotic-laden 

microplastics into water bodies.Wastewater treatment 

plants (WWTPs) are significant sources of 

microplastics and PPCPs. It has been reported that 

treated sewage may still contain viable bacteria and 

ARGs, which then find their way into rivers and 

oceans (Raju et al., 2023). 

 

Agricultural practices often lead to runoff of fertilizers, 

pesticides, and other contaminants including 

microplastics. The runoff introduced antibiotic residues 

in the adjacent water bodies which promoted resistant 

bacteria proliferation (Perković et al., 2022). 

 

Soil and agricultural systems 

Application of biosolids and irrigation with 

contaminated water introduces microplastics and 

PPCPs into soils. Biosolids, treated sewage sludge, 

applied into soils and irrigation using contaminated 

water, introduces microplastics and PPCPs. This 

process has immense implications for soil 

microbiomes that can develop resistance and may be 

transferred to plant-associated or human-pathogenic 

bacteria. 

 

Biosolids usually carry residual antibiotics and ARGs 

from human waste. Once applied to agricultural 

fields, they introduce both microplastics and PPCPs 

into the soil ecosystem (Pozzebon et al., 2023). Soil 

microbiomes exposed to these pollutants develop 

resistance, which can transfer to plant-associated or 

human-pathogenic bacteria. 

 

Evidence of AMR amplification by microplastics and 

PPCPs 

The interaction between microplastics and PPCPs 

especially contributes to the amplification of AMR. 

The amplification occurs through various 

mechanisms, as stated below. 

Studies on antibiotic adsorption 

Adsorption of antibiotics on microplastics follows a 

multilayer chemical adsorption process. This 

mechanism is governed by a combination of physical 

and chemical interactions. 

 

Research has shown that tetracycline and 

ciprofloxacin antibiotics can be adsorbed strongly 

onto microplastics, especially on polyethylene (PE) 

and polyvinyl chloride (PVC). Such adsorption creates 

hotspots for antibiotic-resistant bacteria (ARB), 

allowing the survival and multiplication of such 

bacteria in contaminated environments (Tong, 2023). 

 

ARG enrichment in biofilms 

ARGs have always been observed in higher quantities 

in biofilms that form on microplastic surfaces 

compared to those in surrounding environments. 

Biofilm matrices are protective in nature and provide 

an opportunity for the aggregation and survival of 

ARGs. 

 

Close proximity among resistant and non-resistant 

bacteria within biofilms promotes horizontal gene 

transfer, which has the capability of accelerating the 

dispersion of ARGs within the microbial community 

(Li, 2023). 

 

Antibiotic co-resistance  

Research has indicated that exposure to triclosan 

causes mutations in bacterial populations that give 

rise to resistance not only to triclosan itself but also to 

other antibiotics, including tetracycline and 

fluoroquinolone. El-Masry (2021) discovered that 

exposure to triclosan caused an increased minimum 

inhibitory concentration of several antibiotics in E. 

coli strains. 

 

Implications for human and environmental health 

Ecosystem disruption 

The proliferation of antibiotic-resistant bacteria 

(ARB) affects the microbial ecosystems, thereby 

depleting the biodiversity and modified ecological 

functions, such as nutrient cycling. ARB may disrupt 

the balance of microbial communities in several 
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ecosystems by dominant resistant strains overcoming 

susceptible strains leading to reduced microbial 

diversity (De Wit et al., 2022). 

 

Risk to human health 

Microplastics provide a suitable substrate for 

microbial colonization, allowing formation of biofilms 

that can harbour a wide range of microorganisms, 

including ARB. The biofilm environment promotes 

horizontal gene transfer among bacteria that results 

in ARGs. The survival and proliferation of resistant 

bacteria in the aquatic environment is improved by 

the presence of microplastics. ARB and ARGs from 

microplastics can contaminate food and water 

supplies, increasing human exposure to resistant 

infections. The presence of resistant bacteria in the 

water sources is reported several times and, 

subsequently even, in the food chain if not treated 

properly (Iwu et al., 2019; Ahmad et al., 2024). 

 

Ingestion of microplastic-laden seafood introduces 

ARGs into the human gut microbiome, potentially 

contributing to the spread of AMR as these bacteria can 

form a biofilm layer in the gut lining.The resistance can 

be obtained by spontaneous mutations in bacteria DNA. 

Such mutations may alter the target sites of antibiotics 

so that it is no longer active. For instance, alterations in 

penicillin-binding proteins are associated with resistance 

to beta-lactam antibiotics, including the penicillin and 

cephalosporins (Scoffone et al., 2025). 

 

Environmental persistence of PPCPs and 

microplastics  

The persistence of pharmaceuticals and personal care 

products (PPCPs) and microplastics in the 

environment is a critical issue due to their resistance 

to natural degradation processes. Their prolonged 

presence affects ecosystems, biodiversity, and human 

health, exacerbating pollution and amplifying risks 

such as antimicrobial resistance (AMR). 

 

Environmental persistence 

Persistent contaminants 

Once bound, PPCPs may persist in the environment 

for longer periods, reducing their natural degradation 

rates. The interaction between microplastics and 

PPCPs increases the persistence of both pollutants in 

the environment. Their long-lasting presence, 

coupled with their interactions and impacts, 

highlights the urgent need for integrated solutions to 

minimize their environmental footprint and mitigate 

associated risks. 

 

Slower degradation 

The hydrophobic interaction,     interactions, and 

the electrostatic interactions between the 

microplastics and PPCPs makes them a stronger 

complex that enhances their persistence 

(Faltynkova, 2024). PPCPs adsorbed to 

microplastics are essentially protected from 

environmental degradation processes like photolysis 

and microbial degradation. Photolysis involves the 

breakdown of compounds by sunlight, and thus 

photolysis is impeded with PPCPs bound to 

microplastic surfaces. In this way, shielding PPCPs 

may prolong the half-life of these contaminants in 

the environment (Ajithkumar, 2024). The biofilm 

formed on the microplastic limits the exposure to 

degrading microbes that also slow down the 

degradation of PPCPs (Kumar et al., 2024). 

 

Sequestration in sediments 

Microplastics tend to sink in aqueous environments 

and thus concentrate in sediments. When these 

microplastics adsorb PPCPs, they facilitate the 

transportation of contaminants to sequestered 

sediment layers. A recent study highlighted that 

microplastics-containing sediments and sorbed 

PPCPs have long-term reservoirs of these pollutants, 

thus extending their persistence in the environment 

(Castaño-Ortiz et al., 2024). 

 

Persistence of PPCPs 

PPCPs include antibiotics, hormones, and synthetic 

chemicals that persist in the environment because 

they do not easily degrade in the natural processes. 

The persistence of such substances is significant to 

the ecosystems, biodiversity and human health due to 

increased pollution and enhanced problems such as 

AMR. 
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Factors contributing to persistence 

Chemical stability 

The chemical nature of PPCPs is quite crucial in their 

persistence. Chemical bonds that are quite stable, 

such as the fluorinated PPCPs which include 

fluoroquinolone antibiotics, are resistant to 

degradation. Hydrolysis and photolysis are examples 

of such degradation processes (Chen et al., 2024). 

 

Lipophilicity 

Hydrophobic (lipophilic) PPCPs tend to adsorb on 

sediments and organic matters in aquatic 

environments. Through this adsorption process, their 

bioavailability towards the microbial degradation is 

reduced, and sometimes lead to accumulation in 

layers. It has been well found that lipophilicity plays a 

strong impact on the adsorption capacity of PPCPs 

onto microplastics further facilitating their 

persistence (Titov et al., 2024). 

 

Environmental conditions 

Environmental factors like low temperatures, limited 

sunlight exposure and anaerobic conditions will slow 

down the degradation of PPCPs. For example, 

research has shown that PPCPs persistence is 

enhanced in in cold water temperatures because of 

reduced microbial activity (Shi et al., 2023). 

 

Pathways in the environment 

Aquatic systems 

PPCPs enter water bodies through wastewater 

effluents, agricultural runoff, and improper disposal. 

The wastewater treatment plants do not entirely 

remove PPCPs and allow them to be discharged into 

rivers and oceans, where they accumulate 

(Bavumiragira et al., 2022). Persistent PPCPs 

accumulate in sediments and biofilms, acting as 

reservoirs of pollution. 

 

Soil and groundwater 

Land application of biosolids and irrigation with 

contaminated water introduces PPCPs into soils, 

where they may leach into groundwater.Shallow 

groundwater sources are most vulnerable to 

contamination by agricultural runoff and septic 

systems and thus cause long-term environmental 

contamination (Gyimah et al., 2024). Table 3 reviews 

the various examples of persistent PPCPs in different 

media. 

 

Persistence of microplastics 

The high persistence of microplastics in the 

environment is linked to their synthetic nature and 

chemical stability, coupled with their resistance to 

biodegradation. This level of persistence raises 

ecological and health concerns and thus in-depth 

research is needed on the factors associated with 

their persistence and also on the routes of their 

dispersal. Some examples of persistent 

microplastic and their environmental impacts are 

given in Table 4. 

 

Factors contributing to persistence 

Material composition 

Common polymers such as polyethylene (PE), 

polypropylene (PP), and polystyrene (PS) are 

known to degrade extremely slowly. Their lifetimes 

can be estimated to range between decades and 

centuries. For instance, PE can last over 100 years 

in marine environments (Andrady, 2011). This is 

because the chemical structure of these polymers 

makes them resistant to natural degradation 

processes and hence tends to accumulate in 

ecosystems. 

 

Size and surface area 

The smaller microplastics, for example, 

nanoplastics, have a high surface area-to-volume 

ratio, which makes them more challenging to 

detect and degrade. Their small size allows them to 

evade many conventional waste management 

systems and increases their bioavailability to 

organisms. Studies have shown that smaller 

particles can be ingested by a wider range of 

organisms, leading to potential toxic effects and 

further dispersal in food webs (Patil et al., 2022; 

Yarahmadi et al., 2024). Aquatic invertebrates 

consume microplastics because they appear to be a 

similar size to plankton, disrupting its 

physiological functions (Witczak et al., 2024). 
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Table 3. Examples of persistent PPCPs in various media 

Category  PPCP compound Media Source Reference 

Antibiotic Ciprofloxacin Surface water Wastewater effluents, 
agricultural runoff 

Sarafraz et al., 2022 

Sulfamethoxazole Groundwater Septic systems, land application 
of biosolids 

Chen and Akhtar, 
2022 

Tetracycline Soil Agricultural runoff, biosolid 
application 

Matamoros et al., 
2022 

Endocrine 
disruptors 

17α-ethinylestradiol Surface and 
drinking water 

Wastewater treatment plants, 
agricultural runoff 

Rastkari et al., 2023 

Bisphenol A Groundwater Land application of biosolids, 
agricultural runoff 

Dueñas-Moreno et al.,  
2022 

Non-biodegradable 
fragrances 

Synthetic musk - 
Galaxolide 

Soil Landfill leachate, agricultural 
runoff 

Chakraborty et al., 
2023 

Linalyl Acetate Air Personal care products, 
household cleaning products 

Rádis-Baptista, 2023 

 

Table 4. Examples of persistent microplastics 

Persistent microplastic Common uses Environmental impact Reference 

Polyethylene (PE) Packaging 
materials 

Dominates plastic debris; persists for decades; 
adsorbs pollutants 

Wojnowska et al., 2022 

Polypropylene (PP) Food containers Commonly found in marine debris; slow 
degradation leads to long-term environmental 
risks 

Dey et al., 2024 

Polystyrene (PS) Disposable cups, 
insulation 

Accumulates in aquatic environments; 
potential toxic effects on marine life 

Gupta et al., 2022 

Polyester Fibers Textiles Shed during washing; accumulate in aquatic 
systems; contribute to microplastic pollution 

Šaravanja et al., 2022 

 

Environmental conditions 

Environmental factors greatly impact the degradation 

rates of microplastics. Though photodegradation is 

triggered by UV, low light such as deep oceans or soils 

does not cause much degradation. Scientific studies 

show that microplastics buried in sediments or 

submerged in dark waters could be intact for many 

years (Zhang et al., 2024). 

 

Pathways in the environment 

Aquatic systems 

Microplastics can accumulate on the surface of the 

ocean, in sediments, and along shorelines. These can 

travel through currents to the remotest parts of the 

Earth, including the Arctic, and alter pristine 

ecosystems (Mishra et al., 2021). 

 

Terrestrial systems 

Soil contamination occurs through agricultural 

practices that involve plastic waste or tire wear. 

Microplastics may persist in soils for decades, 

affecting soil structure and function. Research has 

shown that microplastics can alter microbial 

communities in soils, potentially impacting 

nutrient cycling and plant health (Aralappanavar et 

al., 2024). 

 

Atmospheric transport 

Microplastics are also transported by wind and rain, 

which can transport them to remote locations. 

Atmospheric deposition can cause microplastic 

contamination in pristine environments, such as 

mountainous and polar regions (Han et al., 2023). 

 

CONCLUSION 

Microplastics increase the persistence and toxicity of 

contaminants, such as PPCPs. PPCPs adsorb onto the 

microplastic surfaces through hydrophobic forces, 

Vander Waals interactions, hydrogen bonding, and 

electrostatic attractions. Environmental factors such 

as pH, salinity and temperature affect adsorption and 

desorption processes. Biofilm formation on 

microplastics entraps more of these contaminants, 

increasing bioavailability. This leads to 

bioaccumulation and toxic effects on organisms and 

even on human health. The complex of microplastics-

PPCPs poses significant ecological challenges that 

must be addressed to prevent their spread and 
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impact. The widespread dispersal of contaminants 

and their toxic effects in food webs indicates a need 

for better waste management and mitigation 

strategies. 

 

MITIGATION STRATEGIES 

Policy and regulatory frameworks 

Some regulatory measures have been implemented 

to reduce the environmental impact of 

microplastic-PPCPs contamination, with varying 

results across the globe. The microbead ban in the 

European Union and the microbead-free Water Act 

in United States are some examples of how to 

reduce the primary microplastic contamination 

(Kukkola et al., 2024; Xu, 2024). However, 

treating secondary microplastics caused by plastic 

breakdown remains challenging.  

 

Public awareness and sustainable behaviour 

Public education campaigns play a vital role in 

promoting sustainable behaviours. Reducing plastic 

consumption with biodegradable alternatives has the 

potential to significantly reduce the microplastic 

pollution. Improvements in ecologically friendly 

PPCP formulations also lead to the creation of safer 

medicinal substances with a less environmental 

footprint. 

 

FUTURE INSIGHTS LEADING TO RESEARCH 

Desorption dynamics: Understanding conditions that 

trigger the release of PPCPs from microplastics is 

critical for assessing real-world risks. 

 

Long-term impacts: The cumulative effects of 

microplastic-PPCP complexes on ecosystems and 

food chains remain poorly understood. 

 

Analytical limitations: Detecting and quantifying 

PPCPs on microplastics requires advanced, 

standardized analytical techniques. 
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