

RESEARCH PAPER

OPEN ACCESS

Acetylcholinesterase inhibitory and antioxidant activities of whole plant ethanolic extract of *Ophiorrhiza recurvipedala* in aluminium chloride induced *Drosophila melanogaster* model of Alzheimer's disease

Venkatakrishnan Vidya¹, Asokan Prema², Thamilarasan Manivasagam¹, Pandiyan Subasri¹, Arokiasamy Justin Thenmozhi^{*1,3}

¹Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Annamalainagar, Tamil Nadu, India

²Department of Chemistry, Government College of Arts and Science, Tittagudi, Tamil Nadu, India

³Department of Biochemistry, School of Biological Sciences, Madurai Kamaraj University, Madurai, Tamil Nadu, India

Key words: *Ophiorrhiza recurvipedala*, *Drosophila melanogaster*, Antioxidants, Acetylcholinesterase, Negative geotaxis

DOI: <https://dx.doi.org/10.12692/ijb/27.6.44-53>

Published: December 08, 2025

ABSTRACT

Alzheimer's disease (AD) is characterized by progressive memory impairment and deficits in cognitive functions. *Drosophila melanogaster*, is used as a model organism owing to the genetic and cost-effective advantages. Aluminium exposure in *Drosophila* affects cognitive function and genes related with AD. Previous study from our lab indicated ethanolic extract of *Ophiorrhiza recurvipedala*. (OREE) explored the potent radical scavenging properties. Therefore, it was aimed to study the survival rate, acetylcholinesterase inhibitory, antioxidant and climbing activities of ethanolic extract of OR in an aluminium chloride induced flies. Flies were divided based on the survival rate into 4 groups, Group I - normal diet for 7 days; Group II - diet with 0.5 ml of AlCl₃ in 100 ml of distilled water for 7 days; Group III - diet with AlCl₃ as group II + OREE (1.0 %) for 7 days; Group IV - diet with OREE (1.0 %) for 7 days. This study demonstrated the reduced TBARS levels and anticholinesterase activities and enhanced survival rate, antioxidant and climbing activities of OREE suggesting its neuroprotective function. Further investigations are needed to evaluate the protective role of OREE on A β and tau proteins that are the hallmarks of AD in other animal models.

*Corresponding author: Arokiasamy Justin Thenmozhi justinthenmozhi@gmail.com

INTRODUCTION

Dementia is one among the top 10 worldwide incidences of death (World Health Organization, 2019). Most predominant form of dementia is Alzheimer's disease (AD) which is projected to get tripled by the year 2050, mainly of population aging (Nicholas *et al.*, 2019). Globally, about 32 million were affected by mild, to severe forms and 87 million people by early AD (Gustavsson *et al.*, 2023). AD is characterized by gradual deficits in cognitive functions, which are caused by the accumulation of neuronal amyloid plaques and neurofibrillary tangles. The epidemiology of AD remains complex and elusive linking various pathological processes like oxidative imbalance, inflammation, loss of mitochondrial function and apoptosis (Chauhan *et al.*, 2024). Current therapeutic ailments can only manage the symptoms without curing AD. But, due to ethical issues and technical limits obstruct the clinical studies. The models of AD ranging from yeast, *Caenorhabditis elegans*, *Drosophila melanogaster* (*D. melanogaster*) to mammals and human cell culture systems to elucidate the mechanism and therapeutic implications.

Due to the combination of handling, behavioural, structural, genetic and cost-effective advantages, flies have arisen as a key model organism in the research of neurodegenerative diseases (Lu and Vogel, 2009; Nitta and Sugie, 2022). The mechanistic role of metal ions like aluminium (Al), zinc, lead and cadmium on AD pathology were reported (Chauhan *et al.*, 2024). After exposure with excess Al, several neurodegenerative phenotypes such as diminished locomotion and life span, enhanced olfactory learning irregularities and brain vacuolization were found in *Drosophila* (Fonte *et al.*, 2002). Moreover, *D. melanogaster* displays age-linked behavioural alterations and pathological processes including oxidative stress, that resembles the features of human NDDs (Prüßing *et al.*, 2013; Tsintzas and Niccoli, 2024). The human genes linked with AD like β -secretase and APP - have homologous counterparts in *Drosophila* (β -secretase-like enzyme and dAPP1) (Fortini *et al.*, 2000). These collective characteristics

convert *D. melanogaster* as a vital tool for examining potential therapeutic targets (McGurk *et al.*, 2015).

The plant-based medicines possess numerous secondary metabolites with multiple pharmacological activities were used in treating chronic diseases by their synergistic functions. Thorough knowledge about them helps to develop the novel drugs from medicinal plants (Alum, 2024). The *Ophiorrhiza* genus of Rubiaceae family was found in Asia, Australia and the Pacific Islands (Schanzer, 2005). In Ayurvedha, these plants were used to treat stomach problems including ulcers, snakebite and wounds (Krishnan *et al.*, 2004; Prabha *et al.*, 2018). It is able to reduce pain, inflammation, cancer, and infections caused by bacteria and virus. It is reported to have antioxidant, antitussive and pain-relieving properties (Martins and Nunez, 2015; Sibi *et al.*, 2012). The root extract of the plants is used to treat leprosy, stomach and mensural problems, while having sedative and purgative properties (Preethamol and Thoppil, 2022). *O. jacobii* and *O. japonica* revealed antioxidant potential while *O. fasciculata* has exhibited antioxidant and anti-inflammatory activities, due to its enriched bioactive compounds (Preethamol and Thoppil, 2022; Bu *et al.*, 2022, Rashid *et al.*, 2023). In India, a new species (*Ophiorrhiza recurvipedata*) is reported in recent study by Bhuyan *et al.* (2021) which closely mimics *Ophiorrhiza ochroleuca* Hook.f., but differs in few morphological characters. The phytochemical analysis of *Ophiorrhiza recurvipedata* (OREE) and *in vitro* antioxidant assays were performed previously in our lab showed the presence of various bioactive components with antioxidant and anti-inflammatory properties and also explored the potent radical scavenging properties of OREE (Vidya *et al.*, 2025) suggesting its neuroprotective activity. Therapeutic agents diminishing oxidative stress and/or enhancing acetylcholine levels play a vital role in the management of AD. Therefore, this investigation was aimed to study the acetylcholinesterase inhibitory and antioxidant activities of ethanolic extract of OR in an aluminium chloride induced *D. melanogaster* model of AD, which will be the first attempt.

MATERIALS AND METHODS

Chemicals

Aluminium chloride, phenyl methosulphate (PMS), nitroblue tetrazolium (NBT), NADH, glacial acetic acid, n-butanol, tricholoroacetic acid, thiobarbituric acid, HCl and nicotinamide adenine dinucleotide were obtained from Himedia Pvt. Ltd., Mumbai.

Drosophila melanogaster stock and culture

Wild-type (WT) of *D. melanogaster* were obtained from Centre for Cellular and Molecular Biology (CCMB), Hyderabad, Telangana, India. Flies were cultured on standard cornmeal fly medium and retained at 20-25 °C with a 12h Light-Dark (12:12) cycle in the *Drosophila* culture incubator (Rays Scientifics Instruments, Chennai, India) (Kani and Subramanian, 2021).

Dose dependent/Survival study

5 groups of flies were separately maintained as Group I – normal diet; Group II - diet with 0.5 ml of AlCl₃ in 100 ml dH₂O (Salu et al., 2024); Group III - diet with AlCl₃ as group II+ OREE (0.1 %); Group IV - diet with AlCl₃ as group II + OREE (1.0 %); Group V - diet with OREE (1.0 %). After 15 days, flies were observed for viability on day-to-day basis and it was quantified (Abolaji et al., 2017) by determining the number of alive flies found.

Experimental design

Flies (male and female) were separately maintained as 4 groups. Normal diet was given to the Group I for 7 days; Group II - diet with AlCl₃ for 7 days (Salu et al., 2024); Group III - diet with AlCl₃ as group II + OREE (1.0 %) for 7 days; Group IV - diet with OREE (1.0 %) for 7 days.

Negative geotaxis: Response to gravity

The flies (n =30) were exposed to diethyl ether and transferred to a glass tube (12 cm X 1.5 cm) which is plugged with cotton at top. After five minutes, flies were allowed to settle. Following a minute, moving and resting flies (percentage) were counted separately. This assay was repeated thrice and mean ± SEM was calculated.

Estimation of thiobarbituric acid reactive substances (TBARS)

The whole-bodyhomogenate was mixed with TBA-TCA-HCl reagent and placed in boiling H₂O. Then, tubes were cooled and centrifuged (Niehaus and Samuelsson, 1968). The supernatant was used to observe OD at 535 nm.

Assay of superoxide dismutase (SOD)

To 0.5 ml of sample, same volume of water, 1.5 ml and 2.5 ml of chloroform and ethanol were added, mixed and centrifuged in a cooling centrifuge. To the supernatant, NBT, PMS, sodium pyrophosphate buffer and NADH was added and maintained in room temperature and to stop the reaction, it was mixed with glacial acetic acid. Then n-butanol was added, centrifuged after 10 minutes, precipitate was removed, and OD was read at 510 nm (Kakkar et al., 1984).

Assay of catalase

Hydrogen peroxide and phosphate buffer were added to sample followed by dichromate-acetic acid at various time intervals for stopping the reaction and were placed in hot water bath, cooled and OD was observed at 620 nm (Sinha, 1972).

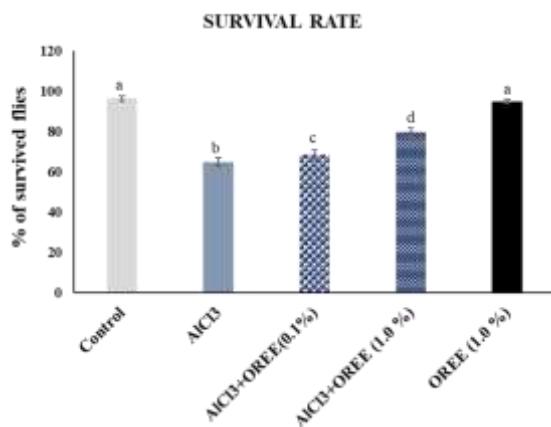
Assay of glutathione-s-transferase (GST)

To the sample, distilled water, phosphate buffer, CDNB (37 °C; 5 min) and glutathione was added and optical density was observed at 340 nm (Habig et al., 1974).

Assay of acetylcholine esterase

Estimation of acetylcholinesterase activity was done by Ellman et al. (1959) method. To tissue homogenate, potassium phosphate buffer, DTNB and acetylthiocholine were added. The OD was measured at 412 nm.

Statistical analysis

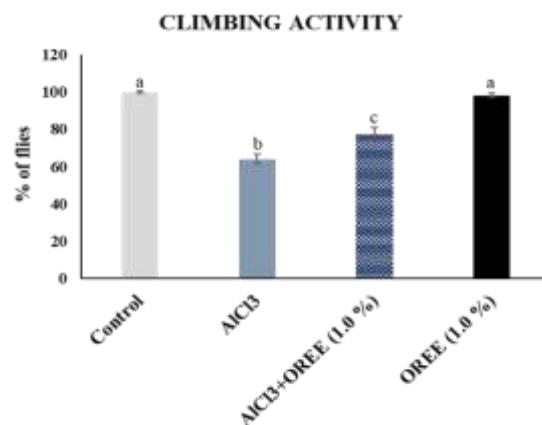

Using the Statistical Package for Social Sciences (SPSS) version 12.0, one-way analysis of variance and Duncan's Multiple Range Test (DMRT) were used for statistical analysis. Results were expressed as mean ±

SEM for four experiments of flies. p values < 0.05 were considered significant.

RESULTS

Survival rate of flies exposed to AlCl_3 and OREE

The flies exposed to 40mMol concentration of AlCl_3 had significantly decreased percentage survival rate within 15 days as compared to the control flies. Flies co-exposed with AlCl_3 and OREE showing the reduced mortality and restored survival rate as compared to AlCl_3 alone exposed group. As compared to low dose of OREE (0.1 %), high dose of OREE (1.0 %) showed enhanced viability in AlCl_3 exposed flies. So, the high concentration of OREE is considered as the effective dose for further experiments. The OREE (1.0 %) alone exposed flies revealed no significant alterations in survival rate than control group (Fig. 1).


Fig. 1. Effect of AlCl_3 and OREE on the percentage survival rate of flies

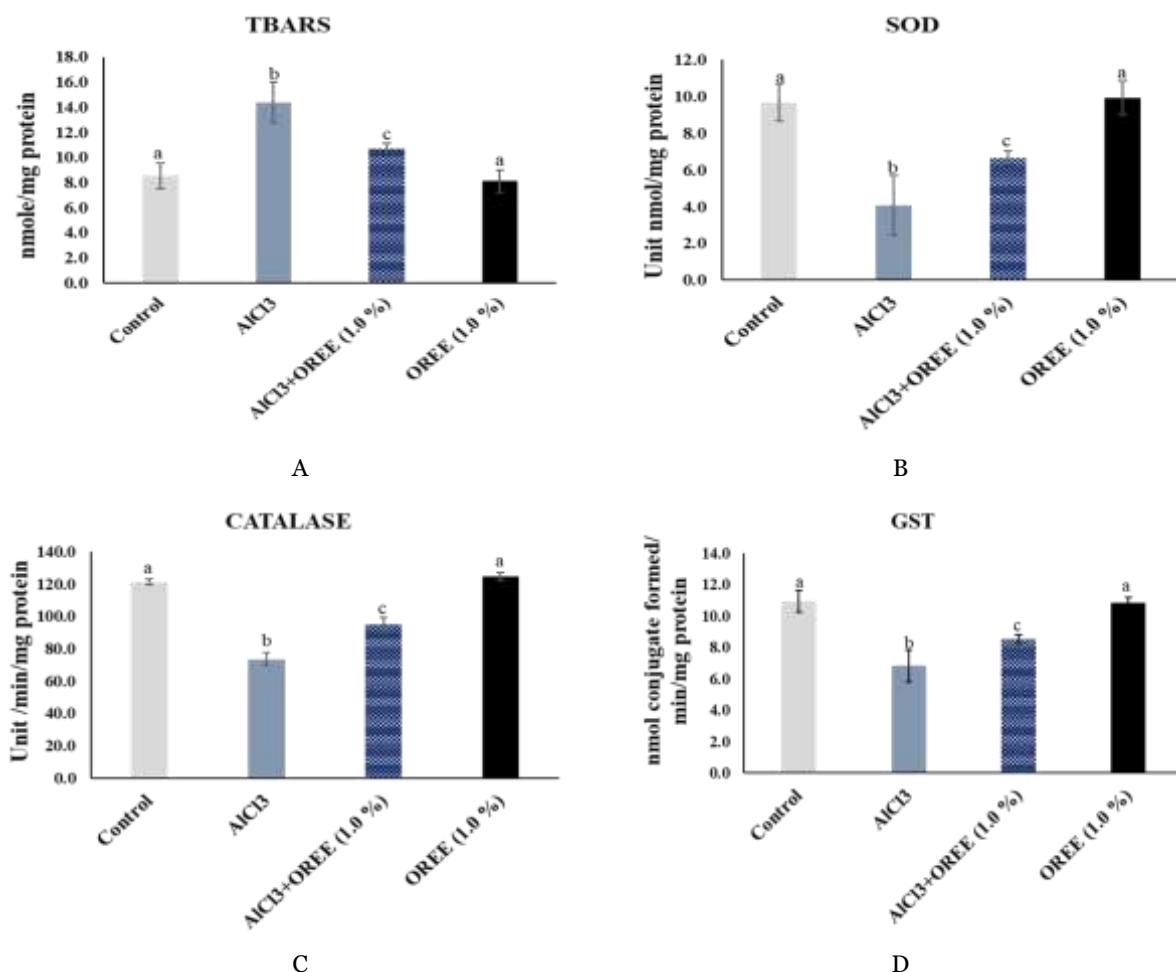
Data are presented as mean \pm SEM. Experiments were repeated for four times. Values with different superscript alphabets differ significantly, $p< 0.05$.

Negative geotaxis of flies exposed to AlCl_3 and OREE

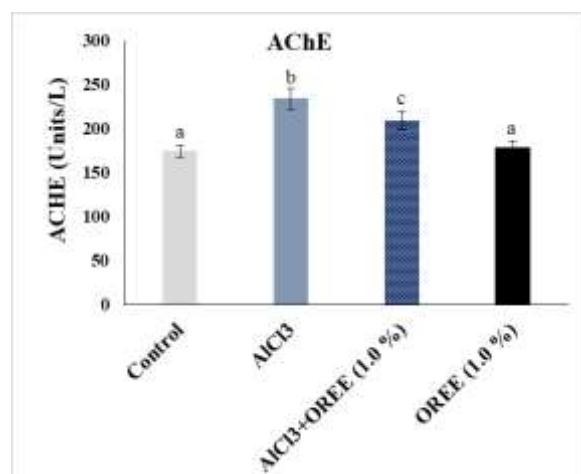
The protective role of the OREE on the climbing ability of control and AlCl_3 exposed flies exhibited that AlCl_3 exposure reduced the activity of flies (diminished negative geotaxis) as compared to control flies. OREE enhanced the climbing activity

(enhanced negative geotaxis) in AlCl_3 assaulted flies as compared to AlCl_3 alone exposed flies. The OREE alone exposed flies revealed no substantial changes in climbing activity than control group (Fig. 2).

Fig. 2. Effect of AlCl_3 and OREE on the climbing rate of flies


Data are presented as mean \pm SEM. Experiments were repeated for four times. Values with different superscript alphabets differ significantly, $p< 0.05$.

TBARS concentration in flies treated with AlCl_3 and OREE


In flies exposed to AlCl_3 , a notable increase in TBARS levels was noted. However, the flies co-exposed to AlCl_3 and OREE exhibited a lowered TBARS level as compared to AlCl_3 alone treated flies. The flies treated with OREE alone showed no discernible change in TBARS levels as when compared with the control group (Fig. 3A).

Enzymatic antioxidant activities of flies treated with AlCl_3 and OREE

A significant reduction in the activities of SOD (Fig. 3B), catalase (Fig. 3C) and GST (Fig. 3D) were found in AlCl_3 alone exposed flies as compared to the control flies. However, there was a significant enhancement in the activities of those enzymatic antioxidants in OREE (1.0 %) and AlCl_3 cotreated flies as compared to AlCl_3 alone exposed flies. The OREE (1.0 %) alone treated flies revealed no significant alterations in the activities of these enzymes than control group.

Fig. 3. Effect of AlCl₃ and OREE on the levels of TBARS (A), activities of SOD (B), catalase (C) and GST (D) in flies. Data are presented as mean±SEM. Experiments were repeated for four times. Values with different superscript alphabets differ significantly, $p < 0.05$.

Fig. 4. Effect of AlCl₃ and OREE on the activity of AChE in flies

Data are presented as mean±SEM. Experiments were repeated for four times. Values with different superscript alphabets differ significantly, $p < 0.05$.

AChE activity in AlCl₃ and OREE exposed flies

The AlCl₃-exposed exhibited elevated activity of AChE when compared with normal flies. However, it was found that flies fed with AlCl₃ and OREE exhibited a discernible diminution in AChE activity as compared to AlCl₃ alone-exposed flies (Fig. 4).

DISCUSSION

Acetylcholine is a chemical messenger that is reported to involve in episodic and spatial memories, learning, attention, motivation and arousal behaviours in brain. Acetylcholinesterase (AChE) hydrolyses the acetylcholine and an elevated AChE enzyme levels is the main biomarker of AD (Mesulam *et al.*, 2002). Al affected over two hundred reactions in biological system and it causes contrary effects in mammalian CNS (Kawahara and Kato-Negishi, 2011).

Al activated AChE by its allosteric activity and also by its direct binding ability to the enzyme in the β -anionic site (Patočka and Bajgar, 1987). Our observed results marked the increased AChE activity of Al exposed flies, as like prior results (Ogunsuyi *et al.*, 2021; Oboh *et al.*, 2021; Adedayo *et al.*, 2022).

Enhancement of acetylcholine by increasing AChE inhibition was the most important strategy for AD treatment. Hyperforin and galantamine, the plant-based drugs modulated the release of acetylcholine in the CNS (Kumar *et al.*, 2017). Several plants, fungus and marine organisms containing alkaloids (piperidine, quinolizidine, indole, isoquinoline, and steroids) and non-alkaloidal (flavonoids, terpenoids and other phenolic compounds) with potent AChE inhibition activities were reported (Houghton *et al.*, 2006; Williams *et al.*, 2011; Murray *et al.*, 2013). The obtained results indicated the existence of several phytochemical compounds (Vidya *et al.*, 2025) in the OREE may responsible for its AChEi activity, which may use to manage AD.

In negative geotaxis assay, the lowered climbing activity or impairment in locomotion in AlCl_3 exposed flies demonstrated the occurrence of neurodegeneration, a main indicator of AD (Oyetayo *et al.*, 2020). The obtained results are in concordant with published reports representing AlCl_3 mediated locomotor deficits (Oboh *et al.*, 2021), which could result from compromised cholinergic transmission because acetylcholine is essential for the regulation of movement (Day *et al.*, 1991). Enhanced activity of AChE can reduce the levels of acetylcholine and impair the locomotion (Halmenschlager and da Rocha, 2019). Dietary exposure of OREE can able to enhanced the climbing activity and attenuated locomotion deficits of AlCl_3 exposed flies which may due to its anti-cholinesterase activity.

The results demonstrated that an enhanced formation of TBARS, an index of lipid peroxidation processes, in Al-exposed flies, while the OREE attenuating the level of TBARS formed. As shown by Exley, 2004 and Zatta *et al.* (2002) Al is

reported to have a potent prooxidant activity and metal-based oxidative processes. Moreover, Al combines with superoxide ions and forms complex, a strong oxidant than superoxide anion alone. Further, Al induces hydrogen peroxide and hydroxyl radicals production leading to severe oxidative imbalance (Exley, 2004).

Antioxidants are the low concentrated molecules that impede or interrupt the oxidation of a substrates, thereby counteracting free radical mediated impairment of macromolecules. SOD is called as primary defence enzyme which is reported to convert more toxic superoxide anion into oxygen molecule or less toxic H_2O_2 . Uncontrolled superoxide anion production may result in cellular damage (Hayyan *et al.*, 2016). Catalase is a ubiquitous enzyme present in all aerobic organisms, which involved in the breakdown of H_2O_2 into water and molecular oxygen (Pan *et al.*, 2024). It is also a crucial enzyme that protect the cell from damage induced by free radicals. Instead, GST is a key enzyme mainly involving in detoxification of xenobiotics. It catalyses the reactions between reduced glutathione and toxic substance (Lushchak, 2012). The obtained result indicated that there was a reduction in SOD, catalase and GST activities of AlCl_3 treated flies, which can be linked with the increase in formation of ROS, a normal process found during the oxidative stress conditions. An increased SOD, catalase and GST actions of AlCl_3 and OREE co-treated flies, indicated the antioxidant potential of OREE.

The flies exposed to the diet containing AlCl_3 exhibited reduction in the viability of flies due to the toxic effects of AlCl_3 which agrees with the previous reports (Burger and Promislow, 2004; Kijak *et al.*, 2014). Impairment in cholinergic neurons, enhanced oxidative stress of AlCl_3 exposed flies may be accountable for the reduced survival rate (Oboh *et al.*, 2021). But, OREE exposure along with AlCl_3 , attenuated AlCl_3 -mediated death could be due to the existence of antioxidants in the extract.

CONCLUSION

This study demonstrated the antioxidant and anticholinesterase activities of OREE, which attributed to therapeutic action against AlCl₃ mediated toxicity and specifically AD. In future, further investigations are needed to reveal the protective action of OREE on A_β and tau proteins that are the hallmarks of AD in animal models will lead to its utilisation in the management of AD.

REFERENCES

Abolaji AO, Olaiya CO, Oluwadahunsi OJ, Farombi EO. 2017. Dietary consumption of monosodium L-glutamate induces adaptive response and reduction in the life span of *Drosophila melanogaster*. *Cell Biochem Funct* **35**(3), 164–170. DOI: 10.1002/cbf.3259

Adedayo BC, Ogunseyi OB, Akinniyi ST, Oboh G. 2022. Effect of *Andrographis paniculata* and *Phyllanthus amarus* leaf extracts on biochemical indices in *Drosophila melanogaster* model of neurotoxicity. *Drug Chem Toxicol* **45**(1), 407–416. DOI: 10.1080/01480545.2019.1708377

Alum EU. 2024. The role of indigenous knowledge in advancing the therapeutic use of medicinal plants: challenges and opportunities. *Plant Signal Behav*, **19**(1), 2439255. DOI: 10.1080/15592324.2024.2439255

Bhuyan B, Baruah S, Mehmud S. 2021. *Ophiorrhiza recurvipedata* (Rubiaceae) sp. nov. from Assam, India. *Nord J Bot* **39**(3). DOI: 10.1111/njb.03048

Bu Q, Jin Y, Xu MJ, Wu L, Liang LF. 2022. Structurally diverse metabolites from the *Ophiorrhiza japonica* Bl. and their antioxidant activities *in vitro* and PPAR α agonistic activities *in silico*. *Molecules*, **27**(16), 5301. DOI: 10.3390/molecules27165301

Burger JM, Promislow DE. 2004. Sex-specific effects of interventions that extend fly life span. *Sci Aging Knowledge Environ* **2004**(28), pe30. DOI: 10.1126/sageke.2004.28.pe30

Chauhan P, Wadhwa K, Singh G. 2024. Diverse models in Alzheimer's research: exploring alternative approaches beyond traditional rodent frameworks. *Aging Pathobiol Ther*. **6**(4), 154–169.

Day J, Damsma G, Fibiger HC. 1991. Cholinergic activity in the rat hippocampus, cortex and striatum correlates with locomotor activity: an *in vivo* microdialysis study. *Pharmacol Biochem Behav* **38**(4), 723–729. DOI: 10.1016/0091-3057(91)90211-O

Ellman GL. 1959. Tissue sulfhydryl groups. *Arch Biochem Biophys* **82**(1), 70–77. DOI: 10.1016/0003-9861(59)90046-7

Exley C. 2004. Aluminum in antiperspirants: more than just skin deep. *Am J Med* **117**(12), 969–970. DOI: 10.1016/j.amjmed.2004.06.028

Fonte V, Kapulkin WJ, Taft A, Fluet A, Friedman D, Link CD. 2002. Interaction of intracellular β amyloid peptide with chaperone proteins. *PNAS* **99**(14), 9439–9444. DOI: 10.1073/pnas.152313999

Fortini ME, Skupski MP, Boguski MS, Hariharan IK. 2000. A survey of human disease gene counterparts in the *Drosophila* genome. *Journal of Cell Biology* **150**(2), F23–F30. DOI: 10.1083/jcb.150.2.f23

Gustavsson A, Norton N, Fast T, Frölich L, Georges J, Holzapfel D. 2023. Global estimates on the number of persons across the Alzheimer's disease continuum. *Alzheimer's & Dementia* **19**(2), 658–670. DOI: 10.1002/alz.12694

Habig WH, Pabst MJ, Jakoby WB. 1974. Glutathione S-transferases: the first enzymatic step in mercapturic acid formation. *J Biol Chem* **249**(22), 7130–7139.
DOI: 10.1016/S0021-9258(19)42083-8

Halmenschlager PT, da Rocha JB. 2019. Biochemical CuSO₄ toxicity in *Drosophila melanogaster* depends on sex and developmental stage of exposure. *Biol Trace Elem Res* **189**, 574–585.
DOI: 10.1007/s12011-018-1498-6

Hayyan M, Hashim MA, AlNashef IM. 2016. Superoxide ion: generation and chemical implications. *Chem Rev* **116**(5), 3029–3085.
DOI: 10.1021/acs.chemrev.5b00407

Houghton PJ, Ren Y, Howes MJ. 2006. Acetylcholinesterase inhibitors from plants and fungi. *Nat Prod Rep* **23**(2), 181–199.
DOI: 10.1039/B508966M

Kakkar P, Das B, Viswanathan PN. 1984. A modified spectrophotometric assay of superoxide dismutase (SOD). *Indian J Biochem Biophys* **21**(2), 130–132.

Kani A, Subramanian P. 2021. Dose-dependent influences of vanillic acid on cognitive function and redox homeostasis status in N-nitrosodiethylamine treated *Drosophila melanogaster*. *Inter J Curr Pharm Res*, 85–92.

Kawahara M, Kato-Negishi M. 2011. Link between aluminum and the pathogenesis of Alzheimer's disease: the integration of the aluminum and amyloid cascade hypotheses. *Int J Alzheimers Dis* **2011**, 276393.
DOI: 10.4061/2011/276393

Kijak E, Rosato E, Knapczyk K, Pyza E. 2014. *Drosophila melanogaster* as a model system of aluminum toxicity and aging. *Insect Sci* **21**(2), 189–202.
DOI: 10.1111/1744-7917.12073

Krishnan SA, Dileepkumar R, Nair AS, Oommen OV. 2014. Studies on neutralizing effect of Ophiorrhizamungos root extract against *Daboia russelii* venom. *J Ethnopharmacol* **151**(1), 543–547.
DOI: 10.1016/j.jep.2013.11.010

Kumar A, Singh A, Aggarwal A. 2017. Therapeutic potentials of herbal drugs for Alzheimer's disease — An overview. *Ind J Exp Biol* **55**, 63–73.
<https://pubmed.ncbi.nlm.nih.gov/30183230>

Lu B, Vogel H. 2009. *Drosophila* models of neurodegenerative diseases. *Annu Rev Pathol* **4**(1), 315–342.
DOI: 10.1146/annurev.pathol.3.121806.151529

Lushchak VI. 2012. Glutathione homeostasis and functions: potential targets for medical interventions. *J Amino Acids* **2012**, 736837.
DOI: 10.1155/2012/736837

Martins D, Nunez CV. 2015. Secondary metabolites from Rubiaceae species. *Molecules* **20**(7), 13422–13495.
DOI: 10.3390/molecules200713422

McGurk L, Berson A, Bonini NM. 2015. *Drosophila* as an *in vivo* model for human neurodegenerative disease. *Genetics* **201**(2), 377–402.
DOI: 10.1534/genetics.115.179457

Mesulam M, Guillozet A, Shaw P, Quinn B. 2002. Widely spread butyrylcholinesterase can hydrolyze acetylcholine in the normal and Alzheimer brain. *Neurobiol Dis* **9**(1), 88–93.
DOI: 10.1006/nbdi.2001.0462

Murray AP, Faraoni MB, Castro MJ, Alza NP, Cavallaro V. 2013. Natural AChE inhibitors from plants and their contribution to Alzheimer's disease therapy. *Curr Neuropharmacol* **11**(4), 388–413.
DOI: 10.2174/1570159X11311040004

Nichols E, Steinmetz JD, Vollset SE, Fukutaki K, Chalek J, Abd-Allah F. 2022. Estimation of the global prevalence of dementia in 2019 and forecasted prevalence in 2050: an analysis for the Global Burden of Disease Study 2019. *The Lancet Public Health* **7**(2), e105–e125.

DOI: 10.1016/S2468-2667(21)00249-8

Niehaus Jr WG, Samuelsson B. 1968. Formation of malonaldehyde from phospholipid arachidonate during microsomal lipid peroxidation. *Eur J Biochem* **6**(1), 126–130.

DOI: 10.1111/j.1432-1033.1968.tb00428.x

Nitta Y, Sugie A. 2022. Studies of neurodegenerative diseases using *Drosophila* and the development of novel approaches for their analysis. *Fly* **16**(1), 275–298.

DOI: 10.1080/19336934.2022.2087484

Oboh G, Oladun FL, Ademosun AO, Ogunsuyi OB. 2021. Anticholinesterase activity and antioxidant properties of *Heinsia crinita* and *Pterocarpus soyauxii* in *Drosophila melanogaster*. *J Ayurveda Integr Med* **12**(2), 254–260.

DOI: 10.1016/j.jaim.2020.10.004

Ogunsuyi OB, Oboh G, Özek G, Göger F. 2021. Solanum vegetable-based diets improve impairments in memory, redox imbalance, and altered critical enzyme activities in *Drosophila melanogaster*. *J Food Biochem* **45**(3), e13150.

DOI: 10.1111/jfbc.13150

Oyetayo BO, Abolaji AO, Fasae KD, Aderibigbe A. 2020. Ameliorative role of diets fortified with curcumin in a *Drosophila melanogaster* model of aluminum chloride-induced neurotoxicity. *J Funct Foods* **71**, 104035.

DOI: 10.1016/j.jff.2020.104035

Pan Y, Wang X, Tan Q, Wang L. 2024. Effects and mechanisms of prussian blue nanozymes with multiple enzyme activities on nasopharyngeal carcinoma cells. *Tissue Cell* **87**, 102316.

DOI: 10.1016/j.tice.2024.102316

Patočka J, Bajgar J. 1987. Aluminium activation and inhibition of human brain acetylcholinesterase in vitro. *Inorg Chim Acta* **135**(2), 161–163.

Prabha G, Karuppusamy S. 2018. Phytochemical profile and radical scavenging activity of alcoholic extract of *Ophiorrhiza radicans* Gardner (Rubiaceae) – a rare plant of southern Western Ghats of India. *Trends Biosci*, 1572–1576.

Preethamol SN, Thoppil JE. 2022. Antioxidant potential and chemical composition of *Ophiorrhiza jacobii*: A promising medicinal plant endemic to Western Ghats. *Indian J Pharma Sci* **84**(2), 407–414.

Prüßing K, Voigt A, Schulz JB. 2013. *Drosophila melanogaster* as a model organism for Alzheimer's disease. *Mol Neurodegener* **8**, 35.

DOI: 10.1186/1750-1326-8-35

Rashid PT, Hossain MJ, Zahan MS, Hasan CM, Rashid MA, Al-Mansur MA. 2023. Chemico-pharmacological and computational studies of *Ophiorrhiza fasciculata* D. Don and *Psychotria silhetensis* Hook. f. focusing cytotoxic, thrombolytic, anti-inflammatory, antioxidant, and antibacterial properties. *Heliyon* **9**(9)

Salu JA, Olajuyin AM, Monday OO. 2024. *Sercocephalous latifolius* fruit attenuates aluminum chloride-induced oxidative stress and neurotoxicity in *Drosophila melanogaster* via Drn1 regulation of the IMD signaling pathway. *Pharmacol Res* **11**, 100437.

Schanzer IA. 2005. Three new species of *Ophiorrhiza* (Rubiaceae-Ophiorrhizeae) from Thailand. *Thai Forest Bulletin (Botany)* **33**, 161–170.

Sibi CV, Dintu PK, Renjith R, Krishnaraj MV, Roja G, Satheeshkumar K. 2012. A new record of *Ophiorrhiza trichocarpon* Blume (Rubiaceae: Ophiorrhizeae) from Western Ghats, India: Another source plant of camptothecin. *J Sci Res* **4**(2), 529–532.

<https://doi.org/10.3329/jsr.v4i2.9378>

Sinha AK. 1972. Colorimetric assay of catalase. *Anal Biochem* **47**(2), 389–394.
DOI: 10.1016/0003-2697(72)90132-7

Tsintzas E, Niccoli T. 2024. Using *Drosophila* amyloid toxicity models to study Alzheimer's disease. *Ann Hum Genetics* **88**(5), 349–363.
DOI: 10.1111/ahg.12405

Vidya V, Thenmozhi AJ, Surya R, Prema A, Manivasagam T. 2025. Phytochemical extraction, screening, GCMS analysis and antioxidant properties of *Ophiorrhiza recurvifolia*. *Pharmacog Res* **17**(3), 1050–1061. DOI: 10.5530/pres.20252230

Williams P, Sorribas A, Howes MJ. 2011. Natural products as a source of Alzheimer's drug leads. *Nat Prod Rep* **28**(1), 48–77. DOI: 10.1039/CoNP00027B

World Health Organization. 2019. Global health estimates: Life expectancy and leading causes of death and disability. Geneva, Switzerland: World Health Organization. Available at: <https://www.who.int/data/gho/data/themes/mortality-and-global-health-estimates>

Zatta P, Ibn-Lkhayat-Idrissi M, Zambenedetti P, Kilyen M, Kiss T. 2002. *In vivo* and *in vitro* effects of aluminum on the activity of mouse brain acetylcholinesterase. *Brain Res Bull* **59**(1), 41–45.
DOI: 10.1016/S0361-9230(02)00829-8

Zatta P, Kiss T, Suwalsky M, Berthon G. 2002. Aluminium (III) as a promoter of cellular oxidation. *Coord Chem Rev* **228**(2), 271–284.
DOI: 10.1016/S0010-8545(02)00063-0