

RESEARCH PAPER**OPEN ACCESS****Chronopharmacology: Integration of circadian biology in modern pharmacotherapy****Sangram D. Chikane¹, Vishal S. Adak¹, Shrikant R. Borate¹, Rajkumar V. Shete¹,****Deepak V. Fajage²***¹Department of Pharmacology, Rajgad Dnyanpeeth's College of Pharmacy, Bhor, Pune, Maharashtra, India**²Department of Pharmacology, Navsahyadri Institute of Pharmacy, Naigaon, Nasrapur, Pune, Maharashtra, India***Key words:** Biological clock, Chronobiology, Chronopharmacology, Chronotherapy, Circadian rhythms, Personalized medicine**Received Date:** December 23, 2025**Published Date:** January 07, 2026**DOI:** <https://dx.doi.org/10.12692/ijb/28.1.56-64>**ABSTRACT**

Chronopharmacology integrates chronobiology with pharmacotherapy to optimize drug administration according to the body's circadian rhythms. Many physiological processes, including hormone secretion, cardiovascular function, metabolism, immune responses, and cellular proliferation, exhibit predictable daily variations that significantly influence drug pharmacokinetics, pharmacodynamics, efficacy, and toxicity. This review aims to summarize the fundamental principles of chronopharmacology, explain the mechanistic role of circadian rhythms and clock genes in drug response, and highlight its clinical relevance in modern pharmacotherapy. The core components of chronopharmacology—chronokinetics, chronesthesia, and chronotherapeutics—are discussed, emphasizing how biological timing affects drug absorption, distribution, metabolism, elimination, and tissue sensitivity. Clinical applications of chronotherapy across major disease conditions, including cardiovascular diseases, asthma, arthritis, gastrointestinal disorders, cancer, neurological disorders, and metabolic diseases, are reviewed, demonstrating that time-optimized drug administration can enhance therapeutic efficacy while reducing adverse effects. The review also addresses key advantages of chronopharmacology, such as improved disease control and personalized treatment strategies, alongside limitations including interindividual variability in circadian rhythms, complexity of dosing schedules, limited availability of chronotherapeutic formulations, and lifestyle-related circadian disruptions. In conclusion, chronopharmacology represents a promising approach within personalized medicine by aligning drug therapy with the body's biological clock. With continued research, improved chronopharmaceutical formulations, and integration into clinical guidelines, chronopharmacology has the potential to significantly improve therapeutic outcomes and patient care.

***Corresponding author:** Sangram D. Chikane ✉ chikanesangram180@gmail.com

INTRODUCTION

Chronopharmacology is an interdisciplinary field that integrates chronobiology with pharmacology to examine how biological rhythms influence drug efficacy, safety, and therapeutic outcomes. Human physiological functions are governed by endogenous circadian rhythms with an approximately 24-hour periodicity, regulating processes such as sleep–wake cycles, hormone secretion, cardiovascular activity, immune responses, and metabolism (Halberg, 1969; Reinberg and Halberg, 1971). These rhythmic variations significantly affect drug pharmacokinetics and pharmacodynamics, influencing absorption, distribution, metabolism, elimination, and target tissue responsiveness (Lemmer *et al.*, 1991; Labrecque and Bélanger, 1991).

The central circadian pacemaker is located in the suprachiasmatic nucleus (SCN) of the hypothalamus, which coordinates peripheral clocks present in organs such as the liver, heart, lungs, kidneys, and immune system (Moore and Eichler, 1972). Advances in molecular chronobiology, particularly the discovery of clock genes and their transcription–translation feedback loops, have provided mechanistic insights into how circadian rhythms regulate physiological and behavioral functions (Chang and Reppert, 2001; Tei *et al.*, 1997). These findings emphasize biological timing as a critical determinant of drug response and toxicity.

Chronotherapy, a major clinical application of chronopharmacology, involves the strategic timing of drug administration to align with circadian variations in disease activity and drug metabolism, thereby enhancing therapeutic efficacy and minimizing adverse effects (Kaur *et al.*, 2013; Ohdo, 2007). Many disease conditions, including hypertension, bronchial asthma, arthritis, peptic ulcer disease, cardiovascular events, and cancer, exhibit predictable circadian patterns, making them particularly suitable for time-optimized pharmacotherapy (Duncan, 1996; Shah and Shah, 2024). For example, bedtime administration of antihypertensive agents improves blood pressure control and reduces early-morning

cardiovascular risk, while evening dosing of statins coincides with nocturnal peaks in cholesterol synthesis, enhancing lipid-lowering efficacy (Lemmer *et al.*, 1991; Youan, 2004).

Despite accumulating evidence supporting chronopharmacological approaches, most medications are still prescribed without consideration of circadian timing. Incorporating chronopharmacology into routine clinical practice represents an important advancement toward personalized medicine by accounting for both interindividual and intraindividual variability in drug response (Anandabaskar, 2019; Choudhary *et al.*, 2021). This review aims to summarize the fundamental concepts, mechanistic basis, and clinical applications of chronopharmacology, while highlighting its advantages, limitations, and future potential in modern pharmacotherapy.

Conceptual framework of chronopharmacology

Understanding chronopharmacology

Chronopharmacology is based on the recognition that biological functions are not constant throughout the day but fluctuate according to endogenous circadian rhythms. These rhythms regulate multiple physiological systems, including endocrine secretion, cardiovascular function, respiratory mechanics, immune activity, and gastrointestinal processes (Halberg, 1969; Reinberg and Halberg, 1971). Such time-dependent physiological variations directly influence drug absorption, distribution, metabolism, elimination, and target-organ sensitivity, leading to predictable differences in drug efficacy and toxicity depending on the timing of administration (Labrecque and Bélanger, 1991; Lemmer *et al.*, 1991). The physiological foundation of this concept is reflected in circadian variations of key functions, as summarized in Table 1.

Individualization of pharmacotherapy

Traditional approaches to individualized pharmacotherapy focus on interindividual differences such as age, sex, genetic polymorphisms, and organ function. Chronopharmacology extends this paradigm by emphasizing intraindividual variability, whereby

the same patient may exhibit different pharmacokinetic and pharmacodynamic responses to a drug at different times of the day (Anandabaskar, 2019). Circadian modulation of hepatic enzyme activity, renal clearance, gastrointestinal motility, plasma protein binding, and receptor expression can

substantially alter drug exposure and responsiveness over the 24-hour cycle (Ohdo, 2007; Choudhary *et al.*, 2021). Incorporating circadian timing into therapeutic decision-making therefore enhances the precision of pharmacotherapy beyond conventional dose-adjustment strategies.

Table 1. Circadian variation in physiological functions relevant to chronopharmacology

Circadian phase	Physiological functions showing peak activity
Morning	Secretion of adrenocorticotrophic hormone (ACTH), cortisol, aldosterone, and testosterone; increased platelet adhesiveness; increased blood viscosity; heightened natural killer (NK) cell activity
Afternoon	Peak hematocrit levels; maximal airway caliber (FEV1), indicating improved pulmonary function
Evening	Increased secretion of insulin; elevated levels of cholesterol, triglycerides, and uric acid; increased platelet count
Night	Peak basal gastric acid secretion; increased secretion of prolactin, melatonin, growth hormone (GH), follicle-stimulating hormone (FSH), and luteinizing hormone (LH); elevated white blood cell counts, including lymphocytes and eosinophils

Circadian rhythms and drug response

Circadian rhythms are generated by an endogenous biological clock system centered in the suprachiasmatic nucleus of the hypothalamus, which synchronizes peripheral clocks in organs such as the liver, heart, lungs, kidneys, and immune system (Moore and Eichler, 1972). At the molecular level, clock genes regulate rhythmic expression of drug-metabolizing enzymes, transporters, and receptors, thereby influencing pharmacokinetic and pharmacodynamic profiles across the day (Tei *et al.*, 1997; Chang and Reppert, 2001). These coordinated rhythms explain time-dependent variations in drug sensitivity, therapeutic response, and adverse effect profiles observed in clinical practice (Desai *et al.*, 2004; Kaur *et al.*, 2013). Understanding these mechanisms provides a rational basis for time-optimized drug therapy and supports the integration of chronopharmacology into personalized medicine.

Mechanistic basis of chronopharmacology

At its core, chronopharmacology reflects the interaction between endogenous circadian rhythms and the molecular, cellular, and organ-level processes that govern drug disposition and response. These mechanisms explain why identical drug doses may produce different therapeutic or adverse outcomes depending on the timing of administration.

Chronokinetics

Chronokinetics refers to the time-dependent variation in drug pharmacokinetics, encompassing absorption, distribution, metabolism, and excretion across the circadian cycle. Circadian rhythms influence gastrointestinal motility, gastric pH, intestinal blood flow, plasma protein binding, hepatic enzyme activity, and renal clearance, resulting in predictable fluctuations in drug bioavailability and systemic exposure (Labrecque and Bélanger, 1991; Lemmer *et al.*, 1991). For example, diurnal variation in hepatic blood flow and renal function can alter drug clearance, while rhythmic changes in gastric acid secretion may affect drug dissolution and absorption. These temporal pharmacokinetic differences form a key mechanistic basis for time-optimized dosing strategies (Ohdo, 2007; Choudhary *et al.*, 2021).

Chronesthesia

Chronesthesia describes circadian variations in tissue and receptor sensitivity to drugs, independent of changes in drug concentration. These variations arise from rhythmic modulation of receptor expression, signal transduction pathways, and downstream cellular responsiveness (Reinberg and Halberg, 1971). As a result, the same plasma drug concentration may elicit different pharmacodynamic effects at different times of the day. Chronesthesia is particularly relevant for drugs

acting on the cardiovascular, respiratory, endocrine, and nervous systems, where circadian fluctuations in autonomic tone and hormonal signaling strongly influence drug responsiveness (Duncan, 1996; Ohdo, 2007).

Chronotherapeutics

Chronotherapeutics applies chronokinetic and chronesthetic principles to clinical practice by aligning drug administration with circadian rhythms to maximize efficacy and minimize toxicity. This approach is especially effective for diseases exhibiting predictable circadian patterns, such as hypertension, asthma, arthritis, peptic ulcer disease, and cancer (Kaur *et al.*, 2013; Shah and Shah, 2024). For instance, evening administration of statins coincides with nocturnal cholesterol synthesis, while bedtime dosing of antihypertensive agents improves blood pressure control and reduces early-morning cardiovascular risk (Lemmer *et al.*, 1991; Youan, 2004). Chronotherapeutics thus represents the clinical translation of mechanistic chronopharmacology.

Role of clock genes

At the molecular level, circadian rhythms are regulated by clock genes that operate through transcription-translation feedback loops. Core clock genes, initially identified through mammalian homologs of *Drosophila period*, regulate rhythmic expression of numerous downstream genes involved in metabolism, cell cycle control, and immune function (Tei *et al.*, 1997; Chang and Reppert, 2001). Mutations or polymorphisms in clock genes have been shown to alter circadian timing and physiological rhythms, contributing to interindividual variability in drug response and disease susceptibility (Jones *et al.*, 1999; Toh *et al.*, 2001). These findings provide a genetic basis for chronopharmacological variability and reinforce its relevance to personalized medicine.

Drug metabolism and liver enzymes

The liver plays a central role in chronopharmacology due to circadian regulation of hepatic drug-

metabolizing enzymes. Expression and activity of cytochrome P450 enzymes, transporters, and conjugating enzymes exhibit pronounced diurnal variation, leading to time-dependent differences in drug metabolism, clearance, and toxicity (Labrecque and Bélanger, 1991; Desai *et al.*, 2004). Experimental studies have demonstrated rhythmic gene expression in hepatic pathways involved in xenobiotic metabolism, resulting in predictable fluctuations in drug bioavailability and metabolite formation across the day-night cycle (Desai *et al.*, 2004). These molecular and enzymatic rhythms provide a mechanistic basis for time-dependent pharmacokinetics and underpin chronotherapeutic dosing strategies, particularly for drugs with narrow therapeutic indices.

Clinical and translational applications of chronopharmacology

Chronopharmacology and drug metabolism

The circadian regulation of hepatic metabolism has direct implications for clinical pharmacotherapy. Diurnal variations in liver blood flow and enzymatic activity contribute to time-dependent differences in drug clearance and urinary excretion, influencing both therapeutic efficacy and adverse-effect profiles (Labrecque and Bélanger, 1991; Lemmer *et al.*, 1991). Recognizing these temporal patterns allows clinicians to optimize dosing schedules by administering drugs at times when metabolic activity favors maximal efficacy and minimal toxicity. Thus, mechanistic insights into circadian liver function translate into practical strategies for improving drug safety and effectiveness in clinical settings (Ohdo, 2007).

Optimization of drug delivery

Insights into circadian regulation of drug responses have driven the development of optimized drug delivery strategies that align dosing schedules with the body's natural biological cycles. Chronopharmacology supports the design of time-specific dosing regimens and modified-release formulations to maximize therapeutic benefits and reduce side effects (Ohdo, 2007). For example,

several cardiovascular drugs display time-dependent variations in effectiveness. Bedtime administration of antihypertensive agents improves nocturnal blood pressure control and reduces early-morning cardiovascular risk compared with morning dosing (Kaur *et al.*, 2013).

Similarly, chemotherapy protocols that account for circadian timing of tumor cell proliferation have demonstrated improved efficacy and reduced systemic toxicity (Duncan, 1996; Youan, 2004). These principles underpin the clinical applications summarized in Table 2.

Table 2. Chronotherapy applications in common diseases illustrating time-optimized pharmacological interventions

No.	Disease	Chronobiological characteristics	Chronotherapy
1	Bronchial asthma	Attacks commonly occur late at night or early morning (2–6 a.m.) due to increased bronchial hyperreactivity	Early-morning inhaled salbutamol; sustained-release theophylline taken in the evening ensures peak drug levels at night and early morning
2	Hypertension	Blood pressure rises sharply in the morning, decreases in the evening, and is lowest during sleep (midnight–4 a.m.)	Morning-only dosing may not control early-morning BP surge; bedtime administration of extended-release calcium channel blockers (verapamil) and modified-release valsartan provides better BP control and reduces cardiovascular risk
3	Cardiovascular diseases (stroke, myocardial infarction)	Higher incidence in early morning (6 a.m.–12 noon) due to increased platelet aggregation, reduced fibrinolytic activity, and rapid rise in BP and heart rate	Evening or bedtime aspirin reduces morning platelet reactivity; bedtime ACE inhibitors (enalapril, ramipril), ARBs (valsartan, telmisartan), or calcium channel blockers (amlodipine) reduce cardiovascular events; beta-blockers prevent morning peaks in angina, myocardial infarction, and sudden death
4	Allergic rhinitis	Symptoms peak late at night or early morning	Antihistamines taken at bedtime provide better symptom control
5	Rheumatoid arthritis	Pain and stiffness are most severe in the early morning	Long-acting NSAIDs (flurbiprofen, ketoprofen, indomethacin) taken at bedtime relieve morning stiffness
6	Osteoarthritis	Pain worsens in the evening	Analgesics (ibuprofen) taken in the afternoon provide optimal pain relief
7	Hypercholesterolemia	HMG-CoA reductase activity peaks at night, leading to increased cholesterol synthesis	Statins (e.g., simvastatin) taken in the evening or at night are more effective
8	Diseases requiring systemic steroids	ACTH and cortisol secretion peak in the early morning	Corticosteroids (prednisolone) administered in the early morning mimic the natural HPA-axis rhythm
9	Acid peptic disease	Basal gastric acid secretion peaks at midnight	H ₂ blockers (famotidine) taken at bedtime inhibit nocturnal acid secretion; chronopharmaceutical formulations are available
10	Epilepsy	Seizures often occur at sleep onset and upon waking	Higher evening doses compared with morning doses improve seizure control
11	Cancer	Normal and cancer cells follow different circadian rhythms; DNA synthesis in normal bone marrow peaks at noon, whereas lymphoma cells replicate predominantly at midnight	S-phase-active cytotoxic drugs administered at night selectively target lymphoma cells while minimizing bone-marrow suppression

Chronopharmacology in special populations

Chronopharmacological responses vary across populations due to sex-, age-, and genotype-dependent differences in circadian regulation. Sex-related differences in drug metabolism have been reported, such as altered cefodizime pharmacokinetics between men and women (Duncan, 1996). Aging is associated with attenuation or phase

shifts of circadian rhythms, which can modify time-dependent drug responses; for instance, indomethacin shows circadian pharmacokinetic variation in younger adults but not in elderly individuals (Jones *et al.*, 1999). In addition, genetic polymorphisms affecting clock genes and metabolic pathways contribute to interindividual differences in chronopharmacokinetic profiles (Anandabaskar,

2019). These factors highlight the importance of individualized chronotherapy, particularly in vulnerable populations.

Chronotherapeutics: the future of rational drug therapy

Chronotherapeutics represents the clinical translation of chronopharmacological principles and focuses on synchronizing drug administration with circadian rhythms to optimize treatment outcomes. This approach has shown substantial benefit in diseases with predictable circadian patterns, including asthma, rheumatoid arthritis, cardiovascular disorders, peptic ulcer disease, and cancer (Kaur *et al.*, 2013; Shah and Shah, 2024). By tailoring drug therapy to biological timing, clinicians can enhance drug efficacy, reduce

adverse reactions, and improve long-term disease management. The organ- and disease-specific circadian patterns relevant to chronotherapy are summarized in Table 3.

Chronopharmacology in drug development

Chronopharmacology is increasingly recognized as an important consideration in drug development and clinical trial design. Incorporating circadian principles into pharmacokinetic and pharmacodynamic assessments can lead to more effective drugs with optimized dosing schedules (Tei *et al.*, 1997; Chang and Reppert, 2001). Regulatory perspectives are gradually evolving, and future drug approvals may include chronotherapeutic recommendations to guide clinical use and improve patient outcomes.

Table 3. Organ system-based circadian disease patterns relevant to chronotherapeutic strategies

No.	Organ system	Disease/condition	Circadian pattern
1	Cardiovascular system	Hypertension	Blood pressure rises early in the morning
		Myocardial infarction and sudden death	Increased incidence in the early morning
		Thrombotic and hemorrhagic stroke	Higher occurrence in the early morning
		Congestive heart failure symptoms	Symptoms are worst at night
2	Respiratory system	Bronchial asthma attacks	Most severe in the early morning
3	Nervous system	Migraine headaches	Peak severity in the early morning
		Epileptic seizures	More frequent around sleep onset at night and upon awakening
4	Musculoskeletal system	Rheumatoid arthritis	Symptoms are worst in the early morning
		Osteoarthritis	Symptoms worsen later in the day
5	Gastrointestinal system	Peptic ulcer disease pain	Most intense during late evening and early morning
6	Immune system	Allergic rhinitis	Peak severity during late night or early morning

Chronopharmacology and circadian disruptions

Circadian rhythms play a fundamental role in immune regulation, and disruption of these rhythms can alter disease susceptibility and therapeutic response. Evidence suggests that infectious diseases, including viral infections, exhibit circadian variation in host immune responses and disease severity (Moore and Eichler, 1972; Desai *et al.*, 2004). Recent studies have highlighted interactions between the circadian clock and infectious diseases such as SARS-CoV-2, emphasizing the potential value of time-based treatment strategies (Shah and Shah, 2024). Furthermore, emerging research in chrono-nutrition demonstrates that meal timing influences metabolic processes and drug absorption, reinforcing the need

for a holistic chronopharmacological approach that integrates dietary timing with pharmacotherapy (Tahara and Shibata, 2013).

Advantages of chronopharmacology

Chronopharmacology offers several important advantages by integrating circadian biology into pharmacotherapy. One of its primary benefits is the enhancement of drug efficacy through time-optimized administration. Aligning medication dosing with physiological and biochemical rhythms allows drugs to act when target pathways are most responsive. For example, administering statins in the evening coincides with nocturnal peaks in cholesterol synthesis, resulting in improved lipid-lowering

efficacy compared with morning dosing (Lemmer *et al.*, 1991; Youan, 2004).

Another key advantage of chronopharmacology is the reduction of adverse drug effects. Synchronizing drug administration with circadian variations in drug metabolism and tissue sensitivity can lower peak toxicity and minimize off-target effects. Bedtime administration of antihypertensive agents, for instance, has been shown to reduce early-morning cardiovascular events while maintaining effective blood pressure control (Kaur *et al.*, 2013). By avoiding periods of heightened vulnerability, chronotherapy improves the overall safety profile of many medications.

Chronopharmacology also contributes to improved disease management by tailoring treatment schedules to the temporal patterns of disease activity. Many chronic conditions, including asthma, rheumatoid arthritis, peptic ulcer disease, and cardiovascular disorders, exhibit predictable circadian symptom fluctuations. Time-adjusted therapy enables better symptom control and enhances quality of life by targeting periods of peak disease severity (Duncan, 1996; Shah and Shah, 2024).

Furthermore, chronopharmacology supports optimized drug metabolism and pharmacokinetics. Circadian regulation of hepatic enzymes, renal clearance, and gastrointestinal function influences drug bioavailability and elimination throughout the day. Administering medications during periods of optimal metabolic capacity can enhance therapeutic effectiveness and reduce inter- and intraindividual variability in drug response (Labrecque and Bélanger, 1991; Desai *et al.*, 2004).

Collectively, these advantages position chronopharmacology as a valuable component of personalized medicine. By accounting for biological timing alongside genetic and physiological factors, chronopharmacological strategies offer a rational approach to improving therapeutic outcomes, minimizing adverse effects, and advancing patient-

centered care in modern pharmacotherapy (Anandabaskar, 2019).

Limitations and challenges

Despite its demonstrated clinical potential, the widespread implementation of chronopharmacology faces several limitations. A major challenge is interindividual variability in circadian rhythms, influenced by genetics, age, sex, lifestyle, comorbidities, and environmental exposures such as light and work schedules. These differences complicate the establishment of universal chronotherapy guidelines and necessitate individualized assessment (Anandabaskar, 2019; Choudhary *et al.*, 2021).

Complexity of dosing schedules also limits clinical adoption. Time-specific regimens may reduce adherence, particularly in patients receiving multiple medications or those with irregular daily routines (Ohdo, 2007). In addition, the limited availability of chronotherapeutic formulations restricts the application of time-optimized therapy for many commonly prescribed drugs (Youan, 2004).

External factors, including shift work, jet lag, sleep deprivation, and exposure to artificial light, can disrupt circadian rhythms and diminish the effectiveness of chronopharmacological strategies (Moore and Eichler, 1972; Tahara and Shibata, 2013).

Future research gaps

Key gaps include the need for large-scale clinical trials validating time-specific dosing across diverse populations, standardized biomarkers for circadian phase assessment, and clearer regulatory frameworks for chronotherapeutic labeling. Further investigation into gene–environment interactions and long-term outcomes of chronotherapy is essential to support routine clinical implementation (Kaur *et al.*, 2013; Shah and Shah, 2024).

Future perspectives

The future of chronopharmacology lies in its integration with personalized medicine, where drug dosing is tailored not only to genetic and physiological

characteristics but also to an individual's circadian profile. Advances in wearable technologies capable of monitoring sleep-wake cycles, heart rate variability, activity patterns, and body temperature offer practical tools for real-time circadian assessment and treatment optimization (Tahara and Shibata, 2013).

The incorporation of artificial intelligence (AI) and digital health platforms has the potential to transform chronotherapy by integrating multidimensional data, predicting optimal dosing times, and supporting clinical decision-making. Machine learning models may help identify patient-specific circadian patterns and optimize therapeutic regimens dynamically (Shah and Shah, 2024).

Development of chronopharmaceutical formulations, including delayed-release, pulsatile, and time-programmed drug delivery systems, represents another critical frontier. Such formulations can deliver drugs at biologically optimal times without increasing regimen complexity, thereby improving adherence and therapeutic outcomes (Youan, 2004). Collectively, these advances may facilitate the routine clinical adoption of chronopharmacology and expand its impact across multiple disease areas.

CONCLUSION

Chronopharmacology provides a scientifically grounded framework for optimizing pharmacotherapy by aligning drug administration with endogenous circadian rhythms. By accounting for time-dependent variations in physiology, drug metabolism, and tissue responsiveness, chronopharmacological strategies can enhance therapeutic efficacy while reducing adverse effects.

Growing evidence supports the clinical value of chronotherapy, particularly in conditions characterized by predictable circadian variation in disease activity. However, challenges such as interindividual differences in circadian timing, limited availability of chronotherapeutic formulations, and practical barriers to implementation currently limit its widespread adoption.

Continued advances in chronobiology, wearable circadian monitoring, artificial intelligence–driven analytics, and chronopharmaceutical drug delivery systems are expected to address these challenges. As these tools mature, the integration of biological timing into routine clinical decision-making has the potential to strengthen personalized medicine and improve patient outcomes in modern pharmacotherapy.

REFERENCES

Anandabaskar N. 2019. Chronopharmacology. In: Raj G, Raveendran R (eds.), *Introduction to basics of pharmacology and toxicology*. Springer, Singapore, pp. 261–270.

Chang DC, Reppert SM. 2001. The circadian clocks of mice and men. *Neuron* **29**, 555–558.

Choudhary D, Goykar H, Rajpoot K, Tekade RK. 2021. Chronopharmacokinetics. In: *Biopharmaceutics and pharmacokinetics considerations*. Academic Press, New York, pp. 163–194.

Desai VG, Moland CL, Branham WS, Delongchamp RR, Fang H, Duffy PH, Peterson CA, Beggs ML, Fuscoe JC. 2004. Changes in expression level of genes as a function of time of day in the liver of rats. *Mutation Research* **549**, 115–129.

Duncan WC. 1996. Circadian rhythms and the pharmacology of affective illness. *Pharmacology & Therapeutics* **71**, 253–312.

Halberg F. 1969. Chronobiology. *Annual Review of Physiology* **31**, 675–725.

Jones CR, Campbell SS, Zone SE, Cooper F, DeSano A, Murphy PJ, Jones B, Czajkowski L, Ptacek LJ. 1999. Familial advanced sleep-phase syndrome: a short-period circadian rhythm variant in humans. *Nature Medicine* **5**, 1062–1065.

Kaur G, Phillips C, Wong K, Saini B. 2013. Timing is important in medication administration: a timely review of chronotherapy research. *International Journal of Clinical Pharmacy* **35**, 344–358.

Labrecque G, Bélanger PM. 1991. Biological rhythms in the absorption, distribution, metabolism and excretion of drugs. *Pharmacology & Therapeutics* **52**, 95–107.

Lemmer B, Scheidel B, Behne S. 1991. Chronopharmacokinetics and chronopharmacodynamics of cardiovascular active drugs: propranolol, organic nitrates, nifedipine. *Annals of the New York Academy of Sciences* **618**, 166–181.

Moore RY, Eichler VB. 1972. Loss of a circadian adrenal corticosterone rhythm following suprachiasmatic lesions in the rat. *Brain Research* **42**, 201–206.

Ohdo S. 2007. Chronopharmacology focused on biological clock. *Drug Metabolism and Pharmacokinetics* **22**(1), 3–14.

Reinberg A, Halberg F. 1971. Circadian chronopharmacology. *Annual Review of Pharmacology* **11**, 455–492.

Shah AM, Shah SV. 2024. Chronopharmacology: optimizing drug therapy through biological rhythms. *National Journal of Physiology, Pharmacy and Pharmacology* **14**(9).

Tahara Y, Shibata S. 2013. Chronobiology and nutrition. *Neuroscience* **253**, 78–88.

Tei H, Okamura H, Shigeyoshi Y, Fukuhara C, Ozawa R, Hirose M, Sakaki Y. 1997. Circadian oscillation of a mammalian homologue of the *Drosophila* period gene. *Nature* **389**, 512–516.

Toh KL, Jones CR, He Y, Eide EJ, Hinz WA, Virshup DM, Ptacek LJ, Fu YH. 2001. An hPer2 phosphorylation site mutation in familial advanced sleep phase syndrome. *Science* **291**, 1040–1043.

Youan BBC. 2004. Chronopharmaceutics: gimmick or clinically relevant approach to drug delivery? *Journal of Controlled Release* **98**(3), 337–353.