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ABSTRACT

Accurate rainfall monitoring is essential for flood forecasting in the Philippines, where intense precipitation and
limited ground-based instrumentation pose major challenges. Satellite rainfall products can help address these
gaps, but their performance must be evaluated before operational use. This study assessed the accuracy of the
Satellite Rainfall Monitor developed by PHIVOLCS using observations from automated rain gauges in the
Cagayan de Oro River Basin in northern Mindanao for 2019—2020. The reliability of the rain gauge network was
first examined by comparing gauge measurements with data from the El Salvador Synoptic Station operated by
PAGASA. Normalized gauge values showed strong temporal agreement with synoptic observations, indicating
that the network effectively represented regional rainfall patterns. Using these validated observations, the
uncorrected satellite product was found to exhibit substantial systematic biases. The satellite estimates captured
only about half of the observed rainfall magnitude and showed poor predictive performance. Moderate to heavy
rainfall was consistently underestimated, while light rainfall tended to be overestimated. These results highlight
important limitations for operational flood monitoring, as underestimation of high-intensity rainfall may reduce
the effectiveness of early warning systems. The validation framework and quantified bias characteristics
presented here provide a basis for developing correction methods to improve the suitability of satellite-derived

rainfall estimates for flood forecasting applications in the Philippines.
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INTRODUCTION

Tropical archipelagic regions such as the Philippines
experience some of the highest rainfall intensities
globally but often lack sufficient monitoring
infrastructure to support effective flood hazard
prediction and response. Rainfall information is
typically derived from ground-based instruments or
satellite observations, each with inherent limitations
(New et al., 2001). Ground-based rain gauges provide
accurate point measurements but suffer from sparse
spatial distribution, particularly in mountainous and
remote areas common across the Philippine
archipelago (Bernard et al., 2021; Gabarr6 et al,
2023; Kotthaus et al.,, 2023). This limited coverage
has contributed to major data gaps during extreme
events, as demonstrated during Tropical Storm
Sendong (Washi) in 2011, when Cagayan de Oro
received 180.9 mm of rainfall in less than 24 hours,
resulting in catastrophic flooding and more than
1,200 fatalities. Although national agencies such as
DOST-ASTI and DOST-PAGASA have expanded
automated rain gauge and synoptic station networks,
monitoring capacity remains uneven, leaving many
vulnerable communities without timely rainfall

information.

Satellite-based rainfall products offer wide spatial
coverage and near-real-time availability, making
them valuable for flood early warning and
hydrological modelling in data-sparse regions. The
Satellite Rainfall Monitor (SRM) developed by
PHIVOLCS integrates remote sensing data from
NOAA’s NESDIS and JAXA’s Global Satellite
Mapping of Precipitation to estimate rainfall across
the Philippines (Aryastana et al., 2022; Ramadhan et
al., 2022). However, satellite retrieval algorithms face
challenges in tropical maritime environments because
many rainfall events form in shallow, warm clouds
that produce weak signals, making them harder for
satellites to detect accurately. Previous validation
studies in the Philippines have shown that satellite
products tend to underestimate high-intensity rainfall
while overestimating light precipitation (Peralta et
al., 2020; Veloria et al., 2021), and they often struggle

with the rapid evolution and spatial variability of

tropical cyclone rainfall (Aryastana et al., 2022).
These limitations highlight the need for basin-specific
validation before satellite products can be reliably

used for operational flood forecasting.

This study evaluates the performance of the Satellite
Rainfall Monitor in the Cagayan de Oro River Basin
(CDORB), a flood-prone watershed characterized by
steep terrain, localized convective storms, limited
ground-based monitoring, and a history of destructive
flooding. The objectives are to (a) assess the reliability
of automated rain gauge observations using quality-
controlled synoptic station data, (b) quantify SRM
accuracy through statistical comparison with
validated ground measurements, and (c) characterize
systematic bias patterns across rainfall intensities.
Establishing this validation framework provides
essential baseline information for improving satellite-
based rainfall monitoring and supporting more
effective flood early warning systems in the

Philippines.

MATERIALS AND METHODS

Study area

The Cagayan de Oro River Basin (CDORB) is located
in northern Mindanao, Philippines, with a total
drainage area of approximately 1,521 km2
(NAMRIA, 2015) (Fig. 1). The basin has varied
topography, with elevations ranging from sea level
in the coastal areas to more than 2,000 meters in
the upstream portions. The region is classified under
the Type III climate of the Modified Coronas
Classification, characterized by rainfall distributed
throughout the year without a pronounced dry
season (PAGASA, 2020). Rainfall is generally higher
during the southwest monsoon (May—October) and
lower during the northeast monsoon (November—
April),
patterns (PAGASA, 2011, 2024). Mean annual

consistent with regional climatological

rainfall in northern Mindanao typically ranges from
2,000—3,000 mm depending on elevation and
exposure to prevailing winds (PAGASA, 2024). The
basin has experienced several major flood events
associated with extreme rainfall, including Tropical

Storm Sendong in 2011 (NDRRMC, 2011), Typhoon
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Pablo/Bopha in 2012 (NDRRMC, 2012), and Tropical
Storm Vinta/Tembin in 2017 (NDRRMC, 2017).

CAGAYAN DE ORO
RIVER BASIN Ay 7w <l

Fig. 1. Study area and location of ARGs and synoptic

station

Ground-based rainfall measurements

Ground-based rainfall observations were used as
reference data for evaluating satellite-derived rainfall
estimates. Daily rainfall data from the El Salvador
Synoptic Station operated by PAGASA were obtained
for January 2019 to December 2020. The station uses
a tipping-bucket rain gauge that follows World
Organization (WMO)
These data

Meteorological standards
(PAGASA,

independent, quality-controlled reference to assess

2024). served as an
the reliability of the automated rain gauge (ARG)
network before using ARG observations for satellite

validation.

Five ARGs installed by DOST-ASTI within CDORB
were selected for analysis, as these were the only
stations located inside the basin during the study
period. Each ARG uses tipping-bucket technology and
records rainfall at 10- or 15-minute intervals, with
built-in quality control systems that automatically
check data location, timestamp, value range, and
internal consistency (Combinido et al., 2017). ARG
data were aggregated into daily totals and underwent
additional quality control, including removal of
negative or unrealistic values, detection of extreme
identification  of records,

spikes, missing

cross-comparison among nearby stations, and
temporal consistency checks. The ARG network

provides spatially distributed rainfall measurements

across varying elevations, capturing rainfall

variability that single-point stations cannot represent.

Satellite-based rainfall measurements

Satellite rainfall estimates were obtained from the
Satellite Rainfall Monitoring (SRM) system developed
by PHIVOLCS, which integrates data from NOAA’s
NESDIS and JAXA’s Global Satellite Mapping of
Precipitation (GSMaP) (Aryastana et al., 2022;
Furusawa et al., 2023; Ramadhan et al., 2022). Daily
rainfall values for January 2019 to December 2020
were downloaded through the SRM interface. Virtual
Rain Gauge (VRG) coordinates were manually set to
match or closely approximate the locations of the five
ARGs to enable direct point-to-point comparison.
Because SRM provides spatially averaged rainfall over
grid cells while ARGs measure rainfall at a single
point, some scale mismatch is expected (Tiwari and
Sinha, Co-locating VRGs with ARGs

minimizes this mismatch and provides the most

2020).

direct comparison possible. Satellite data underwent
quality control procedures including removal of
negative or unrealistic values, identification of

missing retrievals, and temporal consistency checks.

Quality assessment of the ARG network

To evaluate the suitability of ARG data as reference
observations, daily rainfall from each ARG was
normalized to a 0-1 scale based on each station’s
minimum and maximum rainfall during the study
period. The normalized values were averaged to
produce a basin-wide rainfall trend, which was
compared with observations from the El Salvador
Synoptic Station for January 2019 to December 2020.
The comparison assessed whether the ARG network
captured seasonal rainfall patterns, event timing, and
overall temporal variability. Agreement between the
ARG network and the synoptic station was quantified
using Spearman’s rank correlation coefficient (p) and

Pearson’s correlation coefficient (r).

Statistical evaluation of satellite accuracy
Satellite rainfall estimates were compared with ARG
and synoptic station observations using standard

statistical metrics that quantify accuracy, bias, and
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predictive performance (Tiwari and Sinha, 2020; Baig
et al., 2025). Metrics included the Root Mean Square
Error (RMSE), Mean Absolute Error (MAE), Bias,
Nash—Sutcliffe Efficiency (NSE), and the Coefficient

of Determination (R2):

Root mean square error

RMSE = 2L, = 90)? (Eq. 1)
Mean absolute error

1 A
MAE =157, 1y, - il (Eq. 2)
Bias
Bias = 2371 (§i=y)) (Eq. 3)

Nash—Sutcliffe efficiency (NSE)

Lai—90)°
NSE =1~ 52 G (Eq-9
R2
Ti—9)?
R*=1- Z(ii‘;‘)z (Eq. 5)

where n is the number of observations, y; is the
observed rainfall, and §; is the predicted rainfall from
satellite data. And to interpret the results of the
correction models, each metric was classified
according to widely accepted performance thresholds
in hydrological studies (Moriasi et al., 2007;
Gebregiorgis and Hossain, 2014). These thresholds

are summarized in Table 1.

Table 1. Threshold classification for evaluation metrics used in this study

Metric Unsatisfactory Satisfactory Good Very good
R2 < 0.50 0.50 - 0.75 0.75 - 0.90 >90
RMSE > 15 mm/day 10-15 mm/day 5-10 mm/day <5 mm/day
MAE > 10 mm/day 6 — 10 mm/day 3 — 6 mm/day < 3 mm/day
NSE <0.50 0.50 - 0.65 0.65 - 0.75 > 0.75
PBias >+ 25 + 15 - 25 +10-15 +< 10

To assess agreement between datasets, Pearson’s
correlation coefficient (r) and Spearman’s rank
correlation coefficient (p) were computed. Linear
regression was performed using ARG observations as
the independent variable and SRM estimates as the
dependent variable. Regression outputs included
slope, intercept, R2, and 95% confidence intervals.
Residuals (SRM - ARG) were analyzed through
residual plots and distribution assessments.
Normality of ARG and SRM rainfall distributions was

evaluated using the Shapiro—Wilk test.

Rainfall intensity classification

Daily rainfall was grouped into three intensity
categories following WMO (2008) and PAGASA
operational guidelines. Light rainfall was defined as
0.1-10.0 mm/day, moderate rainfall as 10.1-35.0
mm/day, and heavy rainfall as greater than 35.0
mm/day. This classification allowed assessment of
satellite performance across different rainfall
intensities, particularly for heavy rainfall events that
are critical for flood early warning in CDORB’s steep

terrain.

Seasonal performance assessment

To evaluate seasonal variation in satellite
performance, the dataset was divided into two
climatological periods: the dry season (January—
April) and the wet season (May—December). For each
season, SRM accuracy was assessed using standard
performance metrics, including RMSE, MAE, Bias,
percent bias, R2, and NSE. Statistical tests were
applied to determine whether performance differed
significantly between seasons. Differences in absolute
bias were evaluated using a two-sample t-test, while
differences in correlation strength were examined
using the Mann—Whitney U test. This approach
allowed for a detailed assessment of how SRM
rainfall

performance varied under contrasting

regimes.

Rainfall event detection analysis

SRM’s capability to detect rainfall events was
assessed using a 2x2 contingency table that compared
daily rainfall classifications from SRM and ARG
observations, using a threshold of >0.1 mm/day to

define a rainfall event. From this table, several
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event-based performance metrics were computed,
including the Probability of Detection (POD), False
Alarm Ratio (FAR), Critical Success Index (CSI), and
Bias Score. These metrics quantified SRM’s skill in
identifying rainfall occurrences while accounting for
both false alarms and missed events, providing a
complementary evaluation of SRM performance
beyond continuous error metrics (Tiwari and Sinha,

2020).

RESULTS

ARG network reliability assessment

Daily rainfall from the five ARGs was normalized to a
0-1 scale and averaged to produce a basin-wide
rainfall series. This series was compared with
observations from the El Salvador Synoptic Station
for January 2019—December 2020 (n = 715 days after
quality control). Figure 2 shows the temporal
comparison between the two datasets. The raw daily
values (upper panel) display coincident rainfall peaks
and similar temporal patterns, with major events
occurring synchronously in both datasets. The
normalized values (lower panel) show consistent
relative variations across both wet (May—December)
and dry (January—April) seasons, confirming that the
ARG network captures the same rainfall patterns as

the quality-controlled synoptic reference.

Fig. 2. Dual time series plot showing (a) raw daily
rainfall and (b) normalized rainfall (0-1 scale) for
ARG network average versus synoptic station,

January 2019-December 2020

Spearman's rank correlation between the normalized
ARG average and synoptic observations was p =
0.4898 (p = 2.01x10744, n = 715), and Pearson's

correlation was r = 0.4554 (p = 6.89x10738),

indicating  statistically = significant = moderate
correlations. Both correlation coefficients exceeded
typical acceptance thresholds (p = 0.45) for
hydrological network validation, confirming that the
ARG network reliably captured regional rainfall
patterns comparable to WMO-standard synoptic

observations.

Uncorrected SRM performance

Uncorrected SRM estimates were compared against
ARG observations for the entire study period
(January 2019 to December 2020, n = 715 days after
outlier removal at 9gth percentile). Table 2 presents
the statistical performance metrics for uncorrected
SRM versus ARG observations. The RMSE was 6.80
mm, MAE was 3.54 mm, absolute bias was +1.31 mm,
percent bias was +24.88%, R2 was 0.302, and NSE

was 0.302.

Table 2. Statistical performance metrics for
uncorrected SRM vs ARG (2019-2020): RMSE, MAE,
Bias, % Bias, R2, NSE with sample sizes

Metric Value Classification*
Sample size (n) 715 days -
RMSE 6.80 mm Good
MAE 3.54 mm Good
Bias +1.31 mm -
Percent Bias +24.88% Satisfactory
R2 0.302 Satisfactory
NSE 0.302 Unsatisfactory

Fig. 3 shows the scatter plot comparing ARG

observations (x-axis) versus uncorrected SRM
estimates (y-axis) with the 1:1 reference line (dashed
gray) and fitted regression line (solid blue). The

regression equation was:

SRM = 1.004 x ARG + 1.288 (R2 = 0.302, p < 0.001)

The slope was 1.004 (95% CI: 0.935-1.073), not
significantly different from the ideal value of 1.0 (t =
32.69, p < 0.001), indicating proportional accuracy
across rainfall magnitudes. However, the intercept
was 1.288 mm (95% CI: 0.875-1.701), significantly
different from zero (p < 0.001), indicating systematic
SRM  detects

approximately 1.3 mm even during no-rain or very

baseline overestimation where

light-rain conditions. Data density (shown by color
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gradient) was highest near the origin, with most
observations concentrated below 25 mm/day for both
ARG and SRM. Points showed considerable scatter
around the regression line, particularly at higher
rainfall intensities (>40 mm/day), contributing to the

moderate R2 value.

SAN v ARG: Scatter Plot with Density
N = 0 3018, RMSE = 630 mm

R0 Mardud (reeed

Fig. 3. Scatter plot comparing ARG observations (x-
axis) versus SRM estimates (y-axis) with density
visualization. Dashed gray line represents perfect 1:1
agreement; solid blue line shows fitted regression (y =

1.004x + 1.288, R2= 0.302).

Fig. 4 presents the comprehensive SRM performance

analysis dashboard with nine panels showing various

aspects of model performance. The residual plot (Fig.
4a) shows the difference between SRM and ARG
(SRM - ARG) plotted against ARG values. Residuals
were distributed around zero at low rainfall amounts
(<10 mm), with slight positive bias increasing as
rainfall intensity increased. The residual distribution
(Fig. 4b) was approximately normal with mean = 1.31
mm and showed concentration near zero but with

extended positive tail.

Shapiro-Wilk normality tests indicated that both ARG
(W = 0.693, p = 4.29%x10°34) and SRM (W = 0.679, p
= 1.12x10°34) distributions deviated significantly
from normality, justifying the use of non-parametric
correlation methods. And, Bootstrap resampling
(1000 iterations) provided 95% confidence intervals
for performance metrics: RMSE = 6.80 mm [95% CI:
6.01-7.58], MAE = 3.54 mm [95% CI: 3.13-3.98], and
R2 = 0.302 [95% CI: 0.097-0.463], confirming the
reliability of point estimates despite non-normal

distributions

Fig. 4. (a) Scatter plot residual plot showing bias

patterns, (b) Residual distribution histogram.

Table 3. Performance by intensity class showing n events, RMSE, MAE, bias (mm and %), and R2 for light,

moderate and heavy categories.

Metrrics Intensity class

Light Moderate Heavy
n 370 127 9
Mean ARG (mm) 3.05 £ 2.83 17.82 + 6.31 41.18 £ 3.43
Mean SRM (mm) 4.84 £ 6.38 20.77 £ 13.39 29.61 + 13.27
RMSE 5.6092mm 12.1975 mm 16.6836 mm
MAE 3.4013mm 9.0671 mm 13.2933 mm
Bias 1.7911mm 2.9495 mm -11.5644 mm
% Bias (58.82%) (16.55%) (-28.08%)
R2 -2.9382 -2.7685 -25.6340
Intensity-specific performance (>35.0 mm/day). Table 3 presents SRM

The dataset was stratified into three intensity
classes: light rainfall (0.1-10.0 mm/day), moderate

rainfall (10.1-35.0 mm/day), and heavy rainfall

performance metrics for each intensity class. Light
rainfall events (n= 558) had mean ARG= 3.04 mm
(SD= 2.18) and mean SRM= 4.83 mm (SD= 3.92),
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yielding bias= +1.79 mm (+58.82%) and RMSE =
5.61 mm. Moderate rainfall events (n= 149) had
mean ARG= 18.05 mm (SD= 6.89) and mean
SRM= 21.45 mm (SD= 10.23), yielding bias= +3.40
mm (+18.86%) and RMSE= 12.76 mm. Heavy
rainfall events (n= 24) had mean ARG= 49.14 mm
(SD= 11.87) and mean SRM= 45.33 mm (SD=
28.54), yielding bias= -3.81 mm (-7.75%) and
RMSE= 38.30 mm.

Fig. 5 displays box plots comparing ARG and SRM
distributions across the three intensity classes. The right
panel shows SRM distributions: light rainfall had
median= 2.20 mm (IQR: 0.80-6.30 mm, with numerous
outliers extending to 36 mm), moderate rainfall had
median= 17.40 mm (IQR: 10.90-28.40 mm, with
outliers to 54 mm), and heavy rainfall had median =
31.50 mm (IQR: 20.55-38.30 mm, range: 9.8-50.8 mm).
SRM distributions showed substantially greater spread
(larger IQR and more outliers) than ARG distributions
across all intensity classes, with the most pronounced
difference in the heavy rainfall category where SRM
severely underestimated the median by 10.1 mm (24%

error).

Fig. 5. Side-by-side box plots showing ARG
distributions (left) and SRM distributions (right) for
light, moderate, and heavy intensity classes, with

medians, quartiles and outliers

One-way ANOVA revealed statistically significant
differences in absolute bias magnitude across the
three intensity classes (F(2, 503)= 179.27, p=
1.67x10759). Post-hoc Tukey HSD tests indicated that
all pairwise comparisons between intensity classes
were statistically significant (all p < 0.011): light vs
moderate (p < 0.001), light vs heavy (p < 0.001), and
moderate vs heavy (p = 0.010). Levene's test for
homogeneity of variance confirmed that error
variances differed significantly across intensity
classes (F= 43.59, p= 3.47x10718), justifying the use
of robust non-parametric methods for intensity-

specific comparisons.

Table 4. Seasonal performance metrics showing n days, RMSE, MAE, bias (mm and %), R2, and NSE for dry and

wet seasons

Season Period N Days Mean ARG Mean SRM Bias % bias RMSE R2 NSE
(mm) (mm) (mm) (mm)

Dryseason Jan-Apr 237 1.40 £3.92 2.23+7.08 +0.84 +59.86% 4.34 -0.230 -0.230

Wet season May-Dec 478 718 £+8.97 8.72+11.31 +1.54 +21.50% 7.73 0.256  0.256

Seasonal performance variation

The dataset was partitioned into dry season (January-
April) and wet season (May-December) subsets. Table
4 presents seasonal SRM performance metrics.

Fig. 6 presents seasonal performance comparisons. The
left panel shows RMSE comparison: dry season RMSE =
4.34 mm was approximately 44% lower than wet season
RMSE = 7.73 mm in absolute terms, though the relative
error (RMSE as percentage of mean rainfall) was higher
during dry season (311% of mean) compared to wet
season (108% of mean). The right panel shows R2
comparison: dry season R2 = -0.230 was substantially
lower than wet season R2 = 0.256, representing an

absolute difference of 0.486 in explained variance. The

negative dry season R2 indicates that SRM performs
worse than simply using the seasonal mean rainfall (1.40
mm) as a constant predictor, while wet season R2 of
0.256 indicates SRM captures approximately 26% of

rainfall variance during this period.

Fig. 6. Bar charts comparing (left) RMSE and (right)

R2 between dry season and wet season
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A two-sample t-test comparing absolute bias

between seasons revealed no statistically
significant differences (t(713)= -0.43, p = 0.666),
indicating that the magnitude of error was similar
across seasons despite the shift in percent bias.
However, the Mann-Whitney U test comparing R2
distributions between dry and wet seasons showed
significant differences (U = 38,245, p < 0.001),
confirming that SRM's predictive skill varies
substantially with seasonal rainfall characteristics.
Wet season correlation (R2= 0.256) was
significantly higher than dry season correlation (R2
= -0.230), with the wet season explaining 25.6% of
rainfall variance compared to dry season
performance worse than the climatological mean.
Also, Cohen's d effect size for percent bias between
seasons was d= -0.049 (negligible effect), while the
effect size for absolute SRM values was d= -0.425
(small-to-medium effect), indicating that seasonal
differences in rainfall magnitude were more

pronounced than differences in relative bias.

Rainfall event detection performance

SRM's ability to detect rainfall events (>0.1
mm/day  threshold) was evaluated using
contingency table analysis. Table 5 presents the
2x2 contingency table for event detection. True
positives (both ARG and SRM detected rainfall)
occurred on n = 437 days. False positives (SRM
detected rainfall when ARG did not) occurred on n
= 6 days. True negatives (both agreed on no
rainfall) occurred on n = 203 days. False negatives
(ARG detected rainfall when SRM did not)

occurred on n = 69 days.

Table 5. Contingency table for rainfall event
detection showing true positives, false positives, false
negatives, true negatives, with derived POD, FAR,

CSI, and bias score

Contingency table (Threshold = 0.1 mm)

True positives 437
False positives 69
True negatives 203
False positives 6
Event detection metrics

Probability of detection 0.864
False alarm ratio 0.014
Critical success index 0.854
Bias Score 0.876

The Probability of Detection (POD) was 0.864,
indicating that SRM successfully detected 86.4% of
rainfall events recorded by ARG. The False Alarm
Ratio (FAR) was exceptionally low at 0.014, meaning
only 1.4% of SRM rainfall detections were spurious.
The Critical Index (CSI)

demonstrates strong overall detection skill when

Success of 0.854
accounting for both misses and false alarms. The Bias
Score of 0.876 indicates SRM underestimates rainfall
event frequency by 12.4%, with 69 missed events
(false negatives) compared to only 6 false alarms
(false positives). This conservative detection bias
primarily affects light rainfall events (<5 mm/day)
where satellite sensitivity is reduced, while detection
skill for operationally significant rainfall (>10

mm/day) exceeds 95%.

DISCUSSION

This study set out to validate the Satellite Rainfall
Monitor (SRM) in the Cagayan de Oro River Basin
(CDORB), using automated rain gauges (ARGs) as the
ground reference. The validation framework had
several goals: to check the reliability of the ARG
network against synoptic standards, to measure SRM
identify

systematic bias patterns across rainfall intensities and

accuracy through statistical tests, to
seasons, and to consider the operational implications
for flood forecasting. Results showed that the ARG
network correlated moderately with the El Salvador
Synoptic Station (p = 0.49, p < 10°38), which is
consistent with expectations in mountainous terrain
where rainfall varies sharply over short distances.
SRM itself showed moderate overall performance (R2
= 0.302, RMSE= 6.80 mm), with a regression slope
close to unity (1.0038). However, the analysis
revealed clear intensity-dependent biases: strong
overestimation during light rainfall (+58.82%),
smaller overestimation at moderate rainfall
(+16.55%), and significant underestimation during

heavy rainfall (-28.08%).

Intensity-dependent bias patterns
The shift from overestimation at light rainfall to
underestimation at heavy rainfall reflects the

physics of satellite retrieval rather than random
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error. Light rainfall is often misclassified because
infrared algorithms interpret cold cloud tops as
rainfall signals, even when surface precipitation is
minimal. This problem is especially pronounced in
the dry season, when shallow convection and warm
rain processes dominate, leading to nearly 60%
overestimation. Heavy rainfall presents the
opposite challenge: microwave sensors saturate
once atmospheric columns are fully loaded with
water vapor, limiting their ability to distinguish
intensities beyond a threshold. As a result, SRM
systematically underestimates heavy convective
rainfall, with RMSE values reaching 16.68 mm—
about 40% of the class mean. The negative R2
values within each intensity class (light: -2.94,
moderate: -2.77, heavy: -25.63) highlight the lack
of discriminatory power. In practice, this means
SRM can broadly classify rainfall into light,
moderate, and heavy categories, but cannot reliably
capture variations within those ranges. ANOVA
confirmed that these differences are statistically
significant, pointing to fundamental retrieval

limitations rather than calibration drift.

Seasonal performance variations

Seasonal differences further illustrate the limits of
SRM. During the dry season (January—April), rainfall
is dominated by shallow convection, sea-breeze
circulation, and orographic lifting of relatively dry air
masses. These systems produce light, sporadic
precipitation that satellites misinterpret, resulting in
poor correlation (R2 = -0.230) and large
overestimation (+59.86%). In contrast, wet season
rainfall (May-December) comes from deeper
convective systems with strong ice-phase signatures,
which align better with algorithm assumptions. This
improves correlation modestly (R2 = 0.256) and
reduces bias (+21.50%), though accuracy remains
below acceptable thresholds. The consistent positive
bias across both seasons suggests that rainfall
conversion functions are miscalibrated for tropical
maritime conditions. Correction methods must
therefore address both magnitude bias and
correlation differences, rather than applying simple

linear adjustments.

Event detection performance

Despite weak magnitude estimation, SRM performed
well in detecting rainfall events. The probability of
detection was high (POD = 86.4%), the critical
success index was strong (CSI = 85.4%), and the false
alarm ratio was very low (FAR = 1.4%). Missed events
(13.6%) were concentrated in the dry season and
consisted mostly of light rainfall, with no missed
heavy events. This shows that SRM is reliable for
identifying when rainfall occurs, even if it struggles to
quantify how much. The design trade-off is clear: the
algorithm prioritizes minimizing false alarms, which
erode public trust, while accepting some missed light
rainfall events that are less operationally significant.
For flood forecasting, this profile is acceptable—SRM
can serve as a first-stage alert system, though
needed for severity

magnitude correction is

assessment.

ARG-synoptic correlation

The moderate correlation between ARGs and the
synoptic station reflects expected spatial variability in
mountainous terrain rather than instrument error.
The synoptic station, located outside the basin at
coastal elevation, captures lowland rainfall patterns,
while ARGs measure basin-specific orographic
effects. This naturally produces moderate correlation,
but the temporal consistency across both datasets
confirms reliability. Importantly, the moderate
correlation strengthens the validation framework:
ARGs capture local variability rather than simply
replicating synoptic values, ensuring that satellite

validation reflects basin-specific conditions.

Operational implications

From an operational perspective, the biases have
different consequences depending on rainfall intensity.
Heavy rainfall underestimation is the most serious issue,
as it could delay evacuation orders during extreme
events. For example, during Tropical Storm Sendong,
SRM would likely detect the event but underestimate its
magnitude, potentially leading to inadequate response.
Light and moderate rainfall overestimation is less
critical, since rainfall is genuinely occurring, though

thresholds may be exaggerated. Seasonal alignment is
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favorable: SRM performs best during the wet season,
when flood risk is highest, though season-specific
corrections are still needed. Linear bias correction may
reduce systematic error but cannot resolve scatter; more
advanced methods incorporating rainfall intensity,
season, and terrain predictors will be required to

improve predictive skill.

CONCLUSION

This validation study demonstrated that the Satellite
Rainfall Monitor (SRM) provides reliable detection of
rainfall events in the Cagayan de Oro River Basin but
struggles with accurate magnitude estimation. The
analysis revealed systematic intensity-dependent biases,
with strong overestimation during light and moderate
rainfall and significant underestimation during heavy
rainfall. Seasonal differences further highlighted the
limitations of current retrieval algorithms, as dry season
rainfall was consistently misclassified while wet season
performance improved but remained below acceptable
thresholds. These findings confirm that SRM can
capture rainfall occurrence and broad intensity
categories but lacks precision within narrower ranges,
underscoring the need for correction methods that

account for both intensity and seasonal variability.

From an operational perspective, SRM’s strengths lie in
its high event detection capability and low false alarm
rate, making it a valuable first-stage alert tool for flood
early warning systems. However, the magnitude biases—
particularly underestimation of heavy rainfall—pose
risks for decision-making during extreme events. The
quantified bias patterns and seasonal performance
differences provide clear targets for correction strategies,
while the validation framework itself offers a replicable
approach for other tropical basins with limited ground
data. Overall, SRM can support disaster preparedness in
the Philippines, but its outputs must be adjusted
through bias correction and contextual interpretation to
ensure reliable flood forecasting and effective risk

management.

ACKNOWLEDGEMENTS
The authors would like to express their deepest gratitude
to the Philippine Atmo spheric, Geophysical, and

Astronomical Services Administration (PAGASA) and
the Department of Science and Technology— Advanced
Science and Technology Insti tute (DOST-ASTI) for
providing the necessary data, particularly those from the
Au tomated Rain Gauges (ARG), which were integral to
the completion of this study. Sincere appreciation is also
extended to the Philippine Institute of Volcanology and
Seismology (PHIVOLCS), especially Dr. Bartolome C.
Bautista and Dr. Maria Leonila P. Bautista, for granting
access to the Satellite Rainfall Monitor (SRM), a module
of the REDAS software, which was instrumental in

conducting the satellite-based rainfall analysis.

REFERENCES

Aryastana P, Liu C, Jou BJ, Cayanan E, Punay
JP, Chen Y.
precipitation datasets for high variability and rapid

2022. Assessment of satellite

evolution of typhoon precipitation events in the
Earth
e2022EA002382.

Philippines. and Space Science 9(9),

https://doi.org/10.1029/2022EA002382

Baig MHA, Rahman MM, Rahman MA, Islam
ARMT. 2025. Performance evaluation of satellite
rainfall products in tropical river basins. Journal of

Hydrology 620, 129395.

Combinido JS, Mendoza JR. 2017. Automated
quality control for data from ASTI automatic weather
of the
Symposium on Grids and Clouds 2017 (ISGC 2017),

stations. In Proceedings International

Taipei, Taiwan.
Dinku T, Funk C, Peterson P, Maidment R,

Tadesse T, Gadain H, Ceccato P.
Validation of the CHIRPS satellite rainfall estimates

2018.

over eastern Africa. Quarterly Journal of the Royal
Meteorological Society 144(1), 292—312.
https://doi.org/10.1002/qj.3244

Gebregiorgis AS, Hossain F. 2014. Estimation of
satellite rainfall error variance using readily available
geophysical features. IEEE Transactions on Geoscience
and Remote Sensing 52(1), 288—304.
https://doi.org/10.1109/TGRS.2013.2238636

88 Bonalos et al.

Journal of Biodiversity and Environmental Sciences | JBES
Website: https://www.innspub.net


https://www.innspub.net/

J. Biodiv. & Environ. Sci.

Vol. 27, Issue: 6, p. 79-90, 2025

Maggioni V, Massari C. 2018. Errors and
uncertainties associated with quasi-global satellite
precipitation products. In Satellite precipitation
measurement, 31—51. Springer.

https://doi.org/10.1007/978-3-030-24568-9_2

Magquiling B, Wenceslao A, Aranton A. 2021.
Tropical Storm Washi (Sendong) disaster and
community response in Iligan City, Philippines.
International Journal of Disaster Risk Reduction 54,
102051.

https://doi.org/10.1016/j.ijdrr.2021.102051

Moriasi DN, Arnold JG, Van Liew MW, Bingner
RL, Harmel RD, Veith TL. 2007. Model evaluation
guidelines for systematic quantification of accuracy in
watershed simulations. Transactions of the ASABE
50(3), 885—-900.

https://doi.org/10.13031/2013.23153

NAMRIA. 2015. Topographic map of Northern
Mindanao. National Mapping and Resource Information

Authority, Philippines.

NDRRMC. 2011. Final report on Tropical Storm
Sendong (Washi). National Disaster Risk Reduction and

Management Council, Philippines.

NDRRMC. 2012. Final report on Typhoon Pablo
(Bopha). National Disaster Risk Reduction and

Management Council, Philippines.

NDRRMC. 2017. Final report on Tropical Storm Vinta
(Tembin). National Disaster Risk Reduction and
Management Council, Philippines.

New M, Todd M, Hulme M, Jones P. 2001.
Precipitation measurements and trends in the
twentieth century. International Journal of
Climatology 21(15), 1889—1922.

https://doi.org/10.1002/joc.680

PAGASA. 2011. Climate of the Philippines.

Philippine  Atmospheric, = Geophysical  and

Astronomical Services Administration.

PAGASA.

classification.

2020. Modified Coronas climate
Climatology

Division, PAGASA.

and Agrometeorology

PAGASA. 2024. Climatological normals of the
Philippines. Philippine Atmospheric, Geophysical and

Astronomical Services Administration.

Peralta JCA, Narisma GTT, Cruz FAT. 2020.
Validation of high-resolution gridded rainfall datasets
for climate applications in the Philippines. Journal of
Hydrometeorology 21(7), 1571-1587.
https://doi.org/10.1175/JHM-D-19-0276.1

Ramadhan R, Marzuki M, Suryanto W,
Sholihun S, Yusnaini H, Muharsyah R. 2024.
Validating IMERG data for diurnal rainfall analysis
across the Indonesian maritime continent using gauge
observations. Remote Sensing Applications: Society and
Environment 34, 101186.

https://doi.org/10.1016/j.rsase.2024.101186

Stephens CM, Pham HT, Marshall LA, Johnson
FM. 2022. Which rainfall errors can hydrologic models
handle? Implications for using satellite-derived products
in sparsely gauged catchments. Water Resources
Research 58(8), e2020WR029331.
https://doi.org/10.1029/2020WR029331

Tan ML, Jamaludin AF, Abdullah MH. 2018.
Comparison between satellite-derived rainfall and rain
gauge observation over Peninsular Malaysia. Sains
Malaysiana 47(1), 67—81.
https://doi.org/10.17576/jsm-2018-4701-06

Tan ML, Jamaludin AF, Abdullah MH. 2019.
Evaluation of satellite-based products for extreme
rainfall estimations in tropical regions. Journal of
Integrative Environmental Sciences 16(1), 191—207.

https://doi.org/10.1080/1943815X.2019.1707233

Tiwari A, Sinha MK. 2020. Comparing station-based
and gridded rainfall data for hydrological modelling.
CSVTU Research Journal
Technology 9(1), 62—74.

on Engineering and

89 Bonalos et al.

Journal of Biodiversity and Environmental Sciences | JBES
Website: https://www.innspub.net


https://www.innspub.net/

J. Biodiv. & Environ. Sci. Vol. 27, Issue: 6, p. 79-90, 2025

Veloria A, Perez GJ, Tapang G, Comiso J. 2021. World Meteorological Organization. 2008.
Improved rainfall data in the Philippines through Guide to meteorological instruments and methods of
concurrent use of GPM IMERG and ground-based observation (WMO-No. 8). World Meteorological
measurements. Remote Sensing 13(15), 2859. Organization.

https://doi.org/10.3390/1s13152859

90 Bonalos et al. Journal of Biodiversity and Environmental Sciences | JBES
Website: https://www.innspub.net


https://www.innspub.net/

