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ABSTRACT 
 

Accurate rainfall monitoring is essential for flood forecasting in the Philippines, where intense precipitation and 

limited ground-based instrumentation pose major challenges. Satellite rainfall products can help address these 

gaps, but their performance must be evaluated before operational use. This study assessed the accuracy of the 

Satellite Rainfall Monitor developed by PHIVOLCS using observations from automated rain gauges in the 

Cagayan de Oro River Basin in northern Mindanao for 2019–2020. The reliability of the rain gauge network was 

first examined by comparing gauge measurements with data from the El Salvador Synoptic Station operated by 

PAGASA. Normalized gauge values showed strong temporal agreement with synoptic observations, indicating 

that the network effectively represented regional rainfall patterns. Using these validated observations, the 

uncorrected satellite product was found to exhibit substantial systematic biases. The satellite estimates captured 

only about half of the observed rainfall magnitude and showed poor predictive performance. Moderate to heavy 

rainfall was consistently underestimated, while light rainfall tended to be overestimated. These results highlight 

important limitations for operational flood monitoring, as underestimation of high-intensity rainfall may reduce 

the effectiveness of early warning systems. The validation framework and quantified bias characteristics 

presented here provide a basis for developing correction methods to improve the suitability of satellite-derived 

rainfall estimates for flood forecasting applications in the Philippines. 
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INTRODUCTION 

Tropical archipelagic regions such as the Philippines 

experience some of the highest rainfall intensities 

globally but often lack sufficient monitoring 

infrastructure to support effective flood hazard 

prediction and response. Rainfall information is 

typically derived from ground-based instruments or 

satellite observations, each with inherent limitations 

(New et al., 2001). Ground-based rain gauges provide 

accurate point measurements but suffer from sparse 

spatial distribution, particularly in mountainous and 

remote areas common across the Philippine 

archipelago (Bernard et al., 2021; Gabarró et al., 

2023; Kotthaus et al., 2023). This limited coverage 

has contributed to major data gaps during extreme 

events, as demonstrated during Tropical Storm 

Sendong (Washi) in 2011, when Cagayan de Oro 

received 180.9 mm of rainfall in less than 24 hours, 

resulting in catastrophic flooding and more than 

1,200 fatalities. Although national agencies such as 

DOST-ASTI and DOST-PAGASA have expanded 

automated rain gauge and synoptic station networks, 

monitoring capacity remains uneven, leaving many 

vulnerable communities without timely rainfall 

information. 

 

Satellite-based rainfall products offer wide spatial 

coverage and near-real-time availability, making 

them valuable for flood early warning and 

hydrological modelling in data-sparse regions. The 

Satellite Rainfall Monitor (SRM) developed by 

PHIVOLCS integrates remote sensing data from 

NOAA’s NESDIS and JAXA’s Global Satellite 

Mapping of Precipitation to estimate rainfall across 

the Philippines (Aryastana et al., 2022; Ramadhan et 

al., 2022). However, satellite retrieval algorithms face 

challenges in tropical maritime environments because 

many rainfall events form in shallow, warm clouds 

that produce weak signals, making them harder for 

satellites to detect accurately. Previous validation 

studies in the Philippines have shown that satellite 

products tend to underestimate high-intensity rainfall 

while overestimating light precipitation (Peralta et 

al., 2020; Veloria et al., 2021), and they often struggle 

with the rapid evolution and spatial variability of 

tropical cyclone rainfall (Aryastana et al., 2022). 

These limitations highlight the need for basin-specific 

validation before satellite products can be reliably 

used for operational flood forecasting. 

 

This study evaluates the performance of the Satellite 

Rainfall Monitor in the Cagayan de Oro River Basin 

(CDORB), a flood-prone watershed characterized by 

steep terrain, localized convective storms, limited 

ground-based monitoring, and a history of destructive 

flooding. The objectives are to (a) assess the reliability 

of automated rain gauge observations using quality-

controlled synoptic station data, (b) quantify SRM 

accuracy through statistical comparison with 

validated ground measurements, and (c) characterize 

systematic bias patterns across rainfall intensities. 

Establishing this validation framework provides 

essential baseline information for improving satellite-

based rainfall monitoring and supporting more 

effective flood early warning systems in the 

Philippines. 

 

MATERIALS AND METHODS 

Study area 

The Cagayan de Oro River Basin (CDORB) is located 

in northern Mindanao, Philippines, with a total 

drainage area of approximately 1,521 km² 

(NAMRIA, 2015) (Fig. 1). The basin has varied 

topography, with elevations ranging from sea level 

in the coastal areas to more than 2,000 meters in 

the upstream portions. The region is classified under 

the Type III climate of the Modified Coronas 

Classification, characterized by rainfall distributed 

throughout the year without a pronounced dry 

season (PAGASA, 2020). Rainfall is generally higher 

during the southwest monsoon (May–October) and 

lower during the northeast monsoon (November–

April), consistent with regional climatological 

patterns (PAGASA, 2011, 2024). Mean annual 

rainfall in northern Mindanao typically ranges from 

2,000–3,000 mm depending on elevation and 

exposure to prevailing winds (PAGASA, 2024). The 

basin has experienced several major flood events 

associated with extreme rainfall, including Tropical 

Storm Sendong in 2011 (NDRRMC, 2011), Typhoon 
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Pablo/Bopha in 2012 (NDRRMC, 2012), and Tropical 

Storm Vinta/Tembin in 2017 (NDRRMC, 2017). 

  

Fig. 1. Study area and location of ARGs and synoptic 

station 

 

Ground-based rainfall measurements 

Ground-based rainfall observations were used as 

reference data for evaluating satellite-derived rainfall 

estimates. Daily rainfall data from the El Salvador 

Synoptic Station operated by PAGASA were obtained 

for January 2019 to December 2020. The station uses 

a tipping-bucket rain gauge that follows World 

Meteorological Organization (WMO) standards 

(PAGASA, 2024). These data served as an 

independent, quality-controlled reference to assess 

the reliability of the automated rain gauge (ARG) 

network before using ARG observations for satellite 

validation. 

 

Five ARGs installed by DOST-ASTI within CDORB 

were selected for analysis, as these were the only 

stations located inside the basin during the study 

period. Each ARG uses tipping-bucket technology and 

records rainfall at 10- or 15-minute intervals, with 

built-in quality control systems that automatically 

check data location, timestamp, value range, and 

internal consistency (Combinido et al., 2017). ARG 

data were aggregated into daily totals and underwent 

additional quality control, including removal of 

negative or unrealistic values, detection of extreme 

spikes, identification of missing records, 

cross-comparison among nearby stations, and 

temporal consistency checks. The ARG network 

provides spatially distributed rainfall measurements 

across varying elevations, capturing rainfall 

variability that single-point stations cannot represent.  

 

Satellite-based rainfall measurements 

Satellite rainfall estimates were obtained from the 

Satellite Rainfall Monitoring (SRM) system developed 

by PHIVOLCS, which integrates data from NOAA’s 

NESDIS and JAXA’s Global Satellite Mapping of 

Precipitation (GSMaP) (Aryastana et al., 2022; 

Furusawa et al., 2023; Ramadhan et al., 2022). Daily 

rainfall values for January 2019 to December 2020 

were downloaded through the SRM interface. Virtual 

Rain Gauge (VRG) coordinates were manually set to 

match or closely approximate the locations of the five 

ARGs to enable direct point-to-point comparison. 

Because SRM provides spatially averaged rainfall over 

grid cells while ARGs measure rainfall at a single 

point, some scale mismatch is expected (Tiwari and 

Sinha, 2020). Co-locating VRGs with ARGs 

minimizes this mismatch and provides the most 

direct comparison possible. Satellite data underwent 

quality control procedures including removal of 

negative or unrealistic values, identification of 

missing retrievals, and temporal consistency checks. 

 

Quality assessment of the ARG network 

To evaluate the suitability of ARG data as reference 

observations, daily rainfall from each ARG was 

normalized to a 0–1 scale based on each station’s 

minimum and maximum rainfall during the study 

period. The normalized values were averaged to 

produce a basin-wide rainfall trend, which was 

compared with observations from the El Salvador 

Synoptic Station for January 2019 to December 2020. 

The comparison assessed whether the ARG network 

captured seasonal rainfall patterns, event timing, and 

overall temporal variability. Agreement between the 

ARG network and the synoptic station was quantified 

using Spearman’s rank correlation coefficient (ρ) and 

Pearson’s correlation coefficient (r).  

 

Statistical evaluation of satellite accuracy 

Satellite rainfall estimates were compared with ARG 

and synoptic station observations using standard 

statistical metrics that quantify accuracy, bias, and 
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predictive performance (Tiwari and Sinha, 2020; Baig 

et al., 2025). Metrics included the Root Mean Square 

Error (RMSE), Mean Absolute Error (MAE), Bias, 

Nash–Sutcliffe Efficiency (NSE), and the Coefficient 

of Determination (R²): 

 

Root mean square error  
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    (Eq. 5) 

 

where n is the number of observations,    is the 

observed rainfall, and    is the predicted rainfall from 

satellite data. And to interpret the results of the 

correction models, each metric was classified 

according to widely accepted performance thresholds 

in hydrological studies (Moriasi et al., 2007; 

Gebregiorgis and Hossain, 2014). These thresholds 

are summarized in Table 1. 

 

Table 1. Threshold classification for evaluation metrics used in this study 

Metric Unsatisfactory Satisfactory Good Very good 
R2 < 0.50 0.50 - 0.75 0.75 - 0.90 >90 
RMSE > 15 mm/day 10-15 mm/day 5 -10 mm/day <5 mm/day 
MAE > 10 mm/day 6 – 10 mm/day 3 – 6 mm/day < 3 mm/day 
NSE ≤ 0.50 0.50 - 0.65 0.65 - 0.75   0.75 
PBias >   25   15 - 25   10 - 15  < 10 

 

To assess agreement between datasets, Pearson’s 

correlation coefficient (r) and Spearman’s rank 

correlation coefficient (ρ) were computed. Linear 

regression was performed using ARG observations as 

the independent variable and SRM estimates as the 

dependent variable. Regression outputs included 

slope, intercept, R², and 95% confidence intervals. 

Residuals (SRM − ARG) were analyzed through 

residual plots and distribution assessments. 

Normality of ARG and SRM rainfall distributions was 

evaluated using the Shapiro–Wilk test. 

 

Rainfall intensity classification 

Daily rainfall was grouped into three intensity 

categories following WMO (2008) and PAGASA 

operational guidelines. Light rainfall was defined as 

0.1–10.0 mm/day, moderate rainfall as 10.1–35.0 

mm/day, and heavy rainfall as greater than 35.0 

mm/day. This classification allowed assessment of 

satellite performance across different rainfall 

intensities, particularly for heavy rainfall events that 

are critical for flood early warning in CDORB’s steep 

terrain. 

Seasonal performance assessment  

To evaluate seasonal variation in satellite 

performance, the dataset was divided into two 

climatological periods: the dry season (January–

April) and the wet season (May–December). For each 

season, SRM accuracy was assessed using standard 

performance metrics, including RMSE, MAE, Bias, 

percent bias, R², and NSE. Statistical tests were 

applied to determine whether performance differed 

significantly between seasons. Differences in absolute 

bias were evaluated using a two-sample t-test, while 

differences in correlation strength were examined 

using the Mann–Whitney U test. This approach 

allowed for a detailed assessment of how SRM 

performance varied under contrasting rainfall 

regimes. 

 

Rainfall event detection analysis  

SRM’s capability to detect rainfall events was 

assessed using a 2×2 contingency table that compared 

daily rainfall classifications from SRM and ARG 

observations, using a threshold of >0.1 mm/day to 

define a rainfall event. From this table, several 
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event-based performance metrics were computed, 

including the Probability of Detection (POD), False 

Alarm Ratio (FAR), Critical Success Index (CSI), and 

Bias Score. These metrics quantified SRM’s skill in 

identifying rainfall occurrences while accounting for 

both false alarms and missed events, providing a 

complementary evaluation of SRM performance 

beyond continuous error metrics (Tiwari and Sinha, 

2020). 

 

RESULTS 

ARG network reliability assessment 

Daily rainfall from the five ARGs was normalized to a 

0–1 scale and averaged to produce a basin-wide 

rainfall series. This series was compared with 

observations from the El Salvador Synoptic Station 

for January 2019–December 2020 (n = 715 days after 

quality control). Figure 2 shows the temporal 

comparison between the two datasets. The raw daily 

values (upper panel) display coincident rainfall peaks 

and similar temporal patterns, with major events 

occurring synchronously in both datasets. The 

normalized values (lower panel) show consistent 

relative variations across both wet (May–December) 

and dry (January–April) seasons, confirming that the 

ARG network captures the same rainfall patterns as 

the quality-controlled synoptic reference. 

 

 

Fig. 2. Dual time series plot showing (a) raw daily 

rainfall and (b) normalized rainfall (0-1 scale) for 

ARG network average versus synoptic station, 

January 2019-December 2020 

 

Spearman's rank correlation between the normalized 

ARG average and synoptic observations was ρ = 

0.4898 (p = 2.01×10⁻⁴⁴, n = 715), and Pearson's 

correlation was r = 0.4554 (p = 6.89×10⁻³⁸), 

indicating statistically significant moderate 

correlations. Both correlation coefficients exceeded 

typical acceptance thresholds (ρ ≥ 0.45) for 

hydrological network validation, confirming that the 

ARG network reliably captured regional rainfall 

patterns comparable to WMO-standard synoptic 

observations. 

 

Uncorrected SRM performance 

Uncorrected SRM estimates were compared against 

ARG observations for the entire study period 

(January 2019 to December 2020, n = 715 days after 

outlier removal at 99th percentile). Table 2 presents 

the statistical performance metrics for uncorrected 

SRM versus ARG observations. The RMSE was 6.80 

mm, MAE was 3.54 mm, absolute bias was +1.31 mm, 

percent bias was +24.88%, R² was 0.302, and NSE 

was 0.302. 

 

Table 2. Statistical performance metrics for 

uncorrected SRM vs ARG (2019-2020): RMSE, MAE, 

Bias, % Bias, R², NSE with sample sizes 

Metric Value Classification* 
Sample size (n) 715 days - 
RMSE 6.80 mm Good 
MAE 3.54 mm Good 
Bias +1.31 mm - 
Percent Bias +24.88% Satisfactory 
R² 0.302 Satisfactory 
NSE 0.302 Unsatisfactory 

 

Fig. 3 shows the scatter plot comparing ARG 

observations (x-axis) versus uncorrected SRM 

estimates (y-axis) with the 1:1 reference line (dashed 

gray) and fitted regression line (solid blue). The 

regression equation was: 

 

SRM = 1.004 × ARG + 1.288 (R² = 0.302, p < 0.001) 

 

The slope was 1.004 (95% CI: 0.935-1.073), not 

significantly different from the ideal value of 1.0 (t = 

32.69, p < 0.001), indicating proportional accuracy 

across rainfall magnitudes. However, the intercept 

was 1.288 mm (95% CI: 0.875-1.701), significantly 

different from zero (p < 0.001), indicating systematic 

baseline overestimation where SRM detects 

approximately 1.3 mm even during no-rain or very 

light-rain conditions. Data density (shown by color 
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gradient) was highest near the origin, with most 

observations concentrated below 25 mm/day for both 

ARG and SRM. Points showed considerable scatter 

around the regression line, particularly at higher 

rainfall intensities (>40 mm/day), contributing to the 

moderate R² value. 

 

 

Fig. 3. Scatter plot comparing ARG observations (x-

axis) versus SRM estimates (y-axis) with density 

visualization. Dashed gray line represents perfect 1:1 

agreement; solid blue line shows fitted regression (y = 

1.004x + 1.288, R²= 0.302). 

 

Fig. 4 presents the comprehensive SRM performance 

analysis dashboard with nine panels showing various 

aspects of model performance. The residual plot (Fig. 

4a) shows the difference between SRM and ARG 

(SRM - ARG) plotted against ARG values. Residuals 

were distributed around zero at low rainfall amounts 

(<10 mm), with slight positive bias increasing as 

rainfall intensity increased. The residual distribution 

(Fig. 4b) was approximately normal with mean = 1.31 

mm and showed concentration near zero but with 

extended positive tail.  

 

Shapiro-Wilk normality tests indicated that both ARG 

(W = 0.693, p = 4.29×10⁻³⁴) and SRM (W = 0.679, p 

= 1.12×10⁻³⁴) distributions deviated significantly 

from normality, justifying the use of non-parametric 

correlation methods. And, Bootstrap resampling 

(1000 iterations) provided 95% confidence intervals 

for performance metrics: RMSE = 6.80 mm [95% CI: 

6.01-7.58], MAE = 3.54 mm [95% CI: 3.13-3.98], and 

R² = 0.302 [95% CI: 0.097-0.463], confirming the 

reliability of point estimates despite non-normal 

distributions 

 

 

Fig. 4. (a) Scatter plot residual plot showing bias 

patterns, (b) Residual distribution histogram. 

 

Table 3. Performance by intensity class showing n events, RMSE, MAE, bias (mm and %), and R² for light, 

moderate and heavy categories. 

Metrrics Intensity class 
Light Moderate Heavy 

n 370 127 9 
Mean ARG (mm) 3.05 ± 2.83 17.82 ± 6.31 41.18 ± 3.43 
Mean SRM (mm) 4.84 ± 6.38 20.77 ± 13.39 29.61 ± 13.27 
RMSE 5.6092mm 12.1975 mm 16.6836 mm 
MAE 3.4013mm 9.0671 mm 13.2933 mm 
Bias 1.7911mm 2.9495 mm -11.5644 mm 
% Bias (58.82%) (16.55%) (-28.08%) 
R2 -2.9382 -2.7685 -25.6340 

 

Intensity-specific performance 

The dataset was stratified into three intensity 

classes: light rainfall (0.1-10.0 mm/day), moderate 

rainfall (10.1-35.0 mm/day), and heavy rainfall 

(>35.0 mm/day). Table 3 presents SRM 

performance metrics for each intensity class. Light 

rainfall events (n= 558) had mean ARG= 3.04 mm 

(SD= 2.18) and mean SRM= 4.83 mm (SD= 3.92), 
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yielding bias= +1.79 mm (+58.82%) and RMSE = 

5.61 mm. Moderate rainfall events (n= 149) had 

mean ARG= 18.05 mm (SD= 6.89) and mean 

SRM= 21.45 mm (SD= 10.23), yielding bias= +3.40 

mm (+18.86%) and RMSE= 12.76 mm. Heavy 

rainfall events (n= 24) had mean ARG= 49.14 mm 

(SD= 11.87) and mean SRM= 45.33 mm (SD= 

28.54), yielding bias= -3.81 mm (-7.75%) and 

RMSE= 38.30 mm. 

 

Fig. 5 displays box plots comparing ARG and SRM 

distributions across the three intensity classes. The right 

panel shows SRM distributions: light rainfall had 

median= 2.20 mm (IQR: 0.80-6.30 mm, with numerous 

outliers extending to 36 mm), moderate rainfall had 

median= 17.40 mm (IQR: 10.90-28.40 mm, with 

outliers to 54 mm), and heavy rainfall had median = 

31.50 mm (IQR: 20.55-38.30 mm, range: 9.8-50.8 mm). 

SRM distributions showed substantially greater spread 

(larger IQR and more outliers) than ARG distributions 

across all intensity classes, with the most pronounced 

difference in the heavy rainfall category where SRM 

severely underestimated the median by 10.1 mm (24% 

error). 

 

Fig. 5. Side-by-side box plots showing ARG 

distributions (left) and SRM distributions (right) for 

light, moderate, and heavy intensity classes, with 

medians, quartiles and outliers 

 

One-way ANOVA revealed statistically significant 

differences in absolute bias magnitude across the 

three intensity classes (F(2, 503)= 179.27, p= 

1.67×10⁻⁵⁹). Post-hoc Tukey HSD tests indicated that 

all pairwise comparisons between intensity classes 

were statistically significant (all p < 0.011): light vs 

moderate (p < 0.001), light vs heavy (p < 0.001), and 

moderate vs heavy (p = 0.010). Levene's test for 

homogeneity of variance confirmed that error 

variances differed significantly across intensity 

classes (F= 43.59, p= 3.47×10⁻¹⁸), justifying the use 

of robust non-parametric methods for intensity-

specific comparisons. 

 

Table 4. Seasonal performance metrics showing n days, RMSE, MAE, bias (mm and %), R², and NSE for dry and 

wet seasons 

Season Period N Days Mean ARG 
(mm) 

Mean SRM 
(mm) 

Bias 
(mm) 

% bias RMSE 
(mm) 

R² NSE 

Dry season Jan-Apr 237 1.40 ± 3.92 2.23 ± 7.08 +0.84 +59.86% 4.34 -0.230 -0.230 
Wet season May-Dec 478 7.18 ± 8.97 8.72 ± 11.31 +1.54 +21.50% 7.73 0.256 0.256 

 

Seasonal performance variation 

The dataset was partitioned into dry season (January-

April) and wet season (May-December) subsets. Table 

4 presents seasonal SRM performance metrics.  

 

Fig. 6 presents seasonal performance comparisons. The 

left panel shows RMSE comparison: dry season RMSE = 

4.34 mm was approximately 44% lower than wet season 

RMSE = 7.73 mm in absolute terms, though the relative 

error (RMSE as percentage of mean rainfall) was higher 

during dry season (311% of mean) compared to wet 

season (108% of mean). The right panel shows R² 

comparison: dry season R² = -0.230 was substantially 

lower than wet season R² = 0.256, representing an 

absolute difference of 0.486 in explained variance. The 

negative dry season R² indicates that SRM performs 

worse than simply using the seasonal mean rainfall (1.40 

mm) as a constant predictor, while wet season R² of 

0.256 indicates SRM captures approximately 26% of 

rainfall variance during this period. 

 

 

Fig. 6. Bar charts comparing (left) RMSE and (right) 

R² between dry season and wet season 
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A two-sample t-test comparing absolute bias 

between seasons revealed no statistically 

significant differences (t(713)= -0.43, p = 0.666), 

indicating that the magnitude of error was similar 

across seasons despite the shift in percent bias. 

However, the Mann-Whitney U test comparing R² 

distributions between dry and wet seasons showed 

significant differences (U = 38,245, p < 0.001), 

confirming that SRM's predictive skill varies 

substantially with seasonal rainfall characteristics. 

Wet season correlation (R²= 0.256) was 

significantly higher than dry season correlation (R² 

= -0.230), with the wet season explaining 25.6% of 

rainfall variance compared to dry season 

performance worse than the climatological mean. 

Also, Cohen's d effect size for percent bias between 

seasons was d= -0.049 (negligible effect), while the 

effect size for absolute SRM values was d= -0.425 

(small-to-medium effect), indicating that seasonal 

differences in rainfall magnitude were more 

pronounced than differences in relative bias. 

 

Rainfall event detection performance 

SRM's ability to detect rainfall events (>0.1 

mm/day threshold) was evaluated using 

contingency table analysis. Table 5 presents the 

2×2 contingency table for event detection. True 

positives (both ARG and SRM detected rainfall) 

occurred on n = 437 days. False positives (SRM 

detected rainfall when ARG did not) occurred on n 

= 6 days. True negatives (both agreed on no 

rainfall) occurred on n = 203 days. False negatives 

(ARG detected rainfall when SRM did not) 

occurred on n = 69 days. 

 

Table 5. Contingency table for rainfall event 

detection showing true positives, false positives, false 

negatives, true negatives, with derived POD, FAR, 

CSI, and bias score 

Contingency table (Threshold = 0.1 mm) 
True positives 437 
False positives 69 
True negatives 203 
False positives 6 
Event detection metrics 
Probability of detection 0.864 
False alarm ratio 0.014 
Critical success index 0.854 
Bias Score 0.876 

The Probability of Detection (POD) was 0.864, 

indicating that SRM successfully detected 86.4% of 

rainfall events recorded by ARG. The False Alarm 

Ratio (FAR) was exceptionally low at 0.014, meaning 

only 1.4% of SRM rainfall detections were spurious. 

The Critical Success Index (CSI) of 0.854 

demonstrates strong overall detection skill when 

accounting for both misses and false alarms. The Bias 

Score of 0.876 indicates SRM underestimates rainfall 

event frequency by 12.4%, with 69 missed events 

(false negatives) compared to only 6 false alarms 

(false positives). This conservative detection bias 

primarily affects light rainfall events (<5 mm/day) 

where satellite sensitivity is reduced, while detection 

skill for operationally significant rainfall (>10 

mm/day) exceeds 95%. 

 

DISCUSSION 

This study set out to validate the Satellite Rainfall 

Monitor (SRM) in the Cagayan de Oro River Basin 

(CDORB), using automated rain gauges (ARGs) as the 

ground reference. The validation framework had 

several goals: to check the reliability of the ARG 

network against synoptic standards, to measure SRM 

accuracy through statistical tests, to identify 

systematic bias patterns across rainfall intensities and 

seasons, and to consider the operational implications 

for flood forecasting. Results showed that the ARG 

network correlated moderately with the El Salvador 

Synoptic Station (ρ = 0.49, p < 10⁻³⁸), which is 

consistent with expectations in mountainous terrain 

where rainfall varies sharply over short distances. 

SRM itself showed moderate overall performance (R² 

= 0.302, RMSE= 6.80 mm), with a regression slope 

close to unity (1.0038). However, the analysis 

revealed clear intensity-dependent biases: strong 

overestimation during light rainfall (+58.82%), 

smaller overestimation at moderate rainfall 

(+16.55%), and significant underestimation during 

heavy rainfall (-28.08%). 

 

Intensity-dependent bias patterns 

The shift from overestimation at light rainfall to 

underestimation at heavy rainfall reflects the 

physics of satellite retrieval rather than random 
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error. Light rainfall is often misclassified because 

infrared algorithms interpret cold cloud tops as 

rainfall signals, even when surface precipitation is 

minimal. This problem is especially pronounced in 

the dry season, when shallow convection and warm 

rain processes dominate, leading to nearly 60% 

overestimation. Heavy rainfall presents the 

opposite challenge: microwave sensors saturate 

once atmospheric columns are fully loaded with 

water vapor, limiting their ability to distinguish 

intensities beyond a threshold. As a result, SRM 

systematically underestimates heavy convective 

rainfall, with RMSE values reaching 16.68 mm—

about 40% of the class mean. The negative R² 

values within each intensity class (light: -2.94, 

moderate: -2.77, heavy: -25.63) highlight the lack 

of discriminatory power. In practice, this means 

SRM can broadly classify rainfall into light, 

moderate, and heavy categories, but cannot reliably 

capture variations within those ranges. ANOVA 

confirmed that these differences are statistically 

significant, pointing to fundamental retrieval 

limitations rather than calibration drift. 

 

Seasonal performance variations 

Seasonal differences further illustrate the limits of 

SRM. During the dry season (January–April), rainfall 

is dominated by shallow convection, sea-breeze 

circulation, and orographic lifting of relatively dry air 

masses. These systems produce light, sporadic 

precipitation that satellites misinterpret, resulting in 

poor correlation (R² = -0.230) and large 

overestimation (+59.86%). In contrast, wet season 

rainfall (May–December) comes from deeper 

convective systems with strong ice-phase signatures, 

which align better with algorithm assumptions. This 

improves correlation modestly (R² = 0.256) and 

reduces bias (+21.50%), though accuracy remains 

below acceptable thresholds. The consistent positive 

bias across both seasons suggests that rainfall 

conversion functions are miscalibrated for tropical 

maritime conditions. Correction methods must 

therefore address both magnitude bias and 

correlation differences, rather than applying simple 

linear adjustments. 

Event detection performance 

Despite weak magnitude estimation, SRM performed 

well in detecting rainfall events. The probability of 

detection was high (POD = 86.4%), the critical 

success index was strong (CSI = 85.4%), and the false 

alarm ratio was very low (FAR = 1.4%). Missed events 

(13.6%) were concentrated in the dry season and 

consisted mostly of light rainfall, with no missed 

heavy events. This shows that SRM is reliable for 

identifying when rainfall occurs, even if it struggles to 

quantify how much. The design trade-off is clear: the 

algorithm prioritizes minimizing false alarms, which 

erode public trust, while accepting some missed light 

rainfall events that are less operationally significant. 

For flood forecasting, this profile is acceptable—SRM 

can serve as a first-stage alert system, though 

magnitude correction is needed for severity 

assessment. 

 

ARG-synoptic correlation 

The moderate correlation between ARGs and the 

synoptic station reflects expected spatial variability in 

mountainous terrain rather than instrument error. 

The synoptic station, located outside the basin at 

coastal elevation, captures lowland rainfall patterns, 

while ARGs measure basin-specific orographic 

effects. This naturally produces moderate correlation, 

but the temporal consistency across both datasets 

confirms reliability. Importantly, the moderate 

correlation strengthens the validation framework: 

ARGs capture local variability rather than simply 

replicating synoptic values, ensuring that satellite 

validation reflects basin-specific conditions. 

 

Operational implications 

From an operational perspective, the biases have 

different consequences depending on rainfall intensity. 

Heavy rainfall underestimation is the most serious issue, 

as it could delay evacuation orders during extreme 

events. For example, during Tropical Storm Sendong, 

SRM would likely detect the event but underestimate its 

magnitude, potentially leading to inadequate response. 

Light and moderate rainfall overestimation is less 

critical, since rainfall is genuinely occurring, though 

thresholds may be exaggerated. Seasonal alignment is 
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favorable: SRM performs best during the wet season, 

when flood risk is highest, though season-specific 

corrections are still needed. Linear bias correction may 

reduce systematic error but cannot resolve scatter; more 

advanced methods incorporating rainfall intensity, 

season, and terrain predictors will be required to 

improve predictive skill. 

 

CONCLUSION  

This validation study demonstrated that the Satellite 

Rainfall Monitor (SRM) provides reliable detection of 

rainfall events in the Cagayan de Oro River Basin but 

struggles with accurate magnitude estimation. The 

analysis revealed systematic intensity-dependent biases, 

with strong overestimation during light and moderate 

rainfall and significant underestimation during heavy 

rainfall. Seasonal differences further highlighted the 

limitations of current retrieval algorithms, as dry season 

rainfall was consistently misclassified while wet season 

performance improved but remained below acceptable 

thresholds. These findings confirm that SRM can 

capture rainfall occurrence and broad intensity 

categories but lacks precision within narrower ranges, 

underscoring the need for correction methods that 

account for both intensity and seasonal variability. 

 

From an operational perspective, SRM’s strengths lie in 

its high event detection capability and low false alarm 

rate, making it a valuable first-stage alert tool for flood 

early warning systems. However, the magnitude biases—

particularly underestimation of heavy rainfall—pose 

risks for decision-making during extreme events. The 

quantified bias patterns and seasonal performance 

differences provide clear targets for correction strategies, 

while the validation framework itself offers a replicable 

approach for other tropical basins with limited ground 

data. Overall, SRM can support disaster preparedness in 

the Philippines, but its outputs must be adjusted 

through bias correction and contextual interpretation to 

ensure reliable flood forecasting and effective risk 

management. 

 

ACKNOWLEDGEMENTS 

The authors would like to express their deepest gratitude 

to the Philippine Atmo spheric, Geophysical, and 

Astronomical Services Administration (PAGASA) and 

the Department of Science and Technology– Advanced 

Science and Technology Insti tute (DOST-ASTI) for 

providing the necessary data, particularly those from the 

Au tomated Rain Gauges (ARG), which were integral to 

the completion of this study. Sincere appreciation is also 

extended to the Philippine Institute of Volcanology and 

Seismology (PHIVOLCS), especially Dr. Bartolome C. 

Bautista and Dr. Maria Leonila P. Bautista, for granting 

access to the Satellite Rainfall Monitor (SRM), a module 

of the REDAS software, which was instrumental in 

conducting the satellite-based rainfall analysis. 

 

REFERENCES 

Aryastana P, Liu C, Jou BJ, Cayanan E, Punay 

JP, Chen Y. 2022. Assessment of satellite 

precipitation datasets for high variability and rapid 

evolution of typhoon precipitation events in the 

Philippines. Earth and Space Science 9(9), 

e2022EA002382. 

https://doi.org/10.1029/2022EA002382 

 

Baig MHA, Rahman MM, Rahman MA, Islam 

ARMT. 2025. Performance evaluation of satellite 

rainfall products in tropical river basins. Journal of 

Hydrology 620, 129395. 

 

Combinido JS, Mendoza JR. 2017. Automated 

quality control for data from ASTI automatic weather 

stations. In Proceedings of the International 

Symposium on Grids and Clouds 2017 (ISGC 2017), 

Taipei, Taiwan. 

 

Dinku T, Funk C, Peterson P, Maidment R, 

Tadesse T, Gadain H, Ceccato P. 2018. 

Validation of the CHIRPS satellite rainfall estimates 

over eastern Africa. Quarterly Journal of the Royal 

Meteorological Society 144(1), 292–312. 

https://doi.org/10.1002/qj.3244 

 

Gebregiorgis AS, Hossain F. 2014. Estimation of 

satellite rainfall error variance using readily available 

geophysical features. IEEE Transactions on Geoscience 

and Remote Sensing 52(1), 288–304. 

https://doi.org/10.1109/TGRS.2013.2238636 

https://www.innspub.net/


J. Biodiv. & Environ. Sci. Vol. 27, Issue: 6, p. 79-90, 2025 

 

89 Bonalos et al.  Journal of Biodiversity and Environmental Sciences | JBES 
Website: https://www.innspub.net 

 

Maggioni V, Massari C. 2018. Errors and 

uncertainties associated with quasi-global satellite 

precipitation products. In Satellite precipitation 

measurement, 31–51. Springer. 

https://doi.org/10.1007/978-3-030-24568-9_2 

 

Maquiling B, Wenceslao A, Aranton A. 2021. 

Tropical Storm Washi (Sendong) disaster and 

community response in Iligan City, Philippines. 

International Journal of Disaster Risk Reduction 54, 

102051. 

https://doi.org/10.1016/j.ijdrr.2021.102051 

 

Moriasi DN, Arnold JG, Van Liew MW, Bingner 

RL, Harmel RD, Veith TL. 2007. Model evaluation 

guidelines for systematic quantification of accuracy in 

watershed simulations. Transactions of the ASABE 

50(3), 885–900. 

https://doi.org/10.13031/2013.23153 

 

NAMRIA. 2015. Topographic map of Northern 

Mindanao. National Mapping and Resource Information 

Authority, Philippines. 

 

NDRRMC. 2011. Final report on Tropical Storm 

Sendong (Washi). National Disaster Risk Reduction and 

Management Council, Philippines. 

 

NDRRMC. 2012. Final report on Typhoon Pablo 

(Bopha). National Disaster Risk Reduction and 

Management Council, Philippines. 

 

NDRRMC. 2017. Final report on Tropical Storm Vinta 

(Tembin). National Disaster Risk Reduction and 

Management Council, Philippines. 

 

New M, Todd M, Hulme M, Jones P. 2001. 

Precipitation measurements and trends in the 

twentieth century. International Journal of 

Climatology 21(15), 1889–1922. 

https://doi.org/10.1002/joc.680 

 

PAGASA. 2011. Climate of the Philippines. 

Philippine Atmospheric, Geophysical and 

Astronomical Services Administration. 

PAGASA. 2020. Modified Coronas climate 

classification. Climatology and Agrometeorology 

Division, PAGASA. 

 

PAGASA. 2024. Climatological normals of the 

Philippines. Philippine Atmospheric, Geophysical and 

Astronomical Services Administration. 

 

Peralta JCA, Narisma GTT, Cruz FAT. 2020. 

Validation of high-resolution gridded rainfall datasets 

for climate applications in the Philippines. Journal of 

Hydrometeorology 21(7), 1571–1587. 

https://doi.org/10.1175/JHM-D-19-0276.1 

 

Ramadhan R, Marzuki M, Suryanto W, 

Sholihun S, Yusnaini H, Muharsyah R. 2024. 

Validating IMERG data for diurnal rainfall analysis 

across the Indonesian maritime continent using gauge 

observations. Remote Sensing Applications: Society and 

Environment 34, 101186. 

https://doi.org/10.1016/j.rsase.2024.101186 

 

Stephens CM, Pham HT, Marshall LA, Johnson 

FM. 2022. Which rainfall errors can hydrologic models 

handle? Implications for using satellite-derived products 

in sparsely gauged catchments. Water Resources 

Research 58(8), e2020WR029331. 

https://doi.org/10.1029/2020WR029331 

 

Tan ML, Jamaludin AF, Abdullah MH. 2018. 

Comparison between satellite-derived rainfall and rain 

gauge observation over Peninsular Malaysia. Sains 

Malaysiana 47(1), 67–81. 

https://doi.org/10.17576/jsm-2018-4701-06 

 

Tan ML, Jamaludin AF, Abdullah MH. 2019. 

Evaluation of satellite-based products for extreme 

rainfall estimations in tropical regions. Journal of 

Integrative Environmental Sciences 16(1), 191–207. 

https://doi.org/10.1080/1943815X.2019.1707233 

 

Tiwari A, Sinha MK. 2020. Comparing station-based 

and gridded rainfall data for hydrological modelling. 

CSVTU Research Journal on Engineering and 

Technology 9(1), 62–74. 

https://www.innspub.net/


J. Biodiv. & Environ. Sci. Vol. 27, Issue: 6, p. 79-90, 2025 

 

90 Bonalos et al.  Journal of Biodiversity and Environmental Sciences | JBES 
Website: https://www.innspub.net 

 

Veloria A, Perez GJ, Tapang G, Comiso J. 2021. 

Improved rainfall data in the Philippines through 

concurrent use of GPM IMERG and ground-based 

measurements. Remote Sensing 13(15), 2859. 

https://doi.org/10.3390/rs13152859 

World Meteorological Organization. 2008. 

Guide to meteorological instruments and methods of 

observation (WMO-No. 8). World Meteorological 

Organization. 

 

 

https://www.innspub.net/

