Use of rejects of date palm factories to bakery yeast production

Paper Details

Research Paper 01/06/2018
Views (435)
current_issue_feature_image
publication_file

Use of rejects of date palm factories to bakery yeast production

Mohammed Ahmad Bkary, Abd-El-Rahman Metwaly, IhebChakroun, Muneeruddin Syed, Hesham Sayed Ghazzawy
Int. J. Biosci. 12(6), 269-274, June 2018.
Copyright Statement: Copyright 2018; The Author(s).
License: CC BY-NC 4.0

Abstract

In this paper, we aim to study different compositions from Rejects from date palm factories and with mix percentage to improve its use as alternative in baker yeast production. We used different date meat and date seed mixtures (from 0% to 100% of each component) as a commercial bakery yeast incubation media and PDA Media as a control. Different official methods (Stirring, plate count and Spectroscopic) were used to read results. Different date meat and date seed mixtures give various results. these results depend to physicochemestry composition and we found that the mixtures (75% date meat+25% date seed) is the best media to give an optimal bakery yeast production througt yeast colony number and absorbance after incubation. This best mixture is the nearest to palm date and to the real composition of date factories Rejects.

Adlan HA.1994. Date Palm Culture in Sudan. Horticulture Department Report. Ministry ofAgriculture, Khartoum, Sudan.

Aleid SM, Zhen-Xing, Shi, Lu-E, Tang. 2014. Date and their processing byproducts as substrates for bioactive compounds production. Braz. arch. biol. technol.57(5), 706-713.

Amer J, Hussain FA, 2006. Iraqi Date Industry Marketing and Post-harvest Issues, p. 64. http://www.iraqi-datepalms.net

AOAC.1995. Official methods of Analysis AOAC. 16th Ed. Association of Official Analytical Chemists, Washington D.C.

Barreveld WH. 1993.Date palm products. FAO Agricultural Services, Bulletin No. 101. Food and Agriculture Organization of the United Nations, Rome.

Besbes S, Bleckerb C, Deroanneb C, Drira N, Attiaa H.2004. Date seeds: chemical composition and characteristic profiles of the lipid fraction, Food Chemistry, 84(4), 577-584.

Besbes S, Blecker C, Deroanne C, Lognay G, Drira NE,  Attia H.2004.Quality Characteristics and Oxidative Stability of Date Seed Oil during Storage. Food Science and Technology International, 10, 333-338.

Evans DV. 1990. The wide-spacing approximation applied to multiple scattering and sloshing problems, Journal of Fluid Mechanics, 210, 647-658.

Duncan DB. 1975. T tests and intervals for comparisons suggested by the data. Biometrics 31, 339-59.

Mohammad SH, Al-Mulhim F, Al-Eid S, Abo El-Saad M, Aljassas F, Sallam A, Ghazzawy HS. 2017.Assessment of Post-Harvest Loss and Waste for Date Palms in the Kingdom of Saudi Arabia, International Journal of Environmental & Agriculture Research (IJOEAR), 3(6),  1-11.

Ouled El Hadj Md. 2006.  étude de la production de levure boulangère (saccharomyces cerevisiae) cultivée sur mout de rebuts de dattes, courrier du savoir7, 13-18.

Pyler EJ. 1988. Baking Science and Technology, 3rded.  Sosland Publishing: Merriam, KS.

Nguyen T. 2016.Protection de la levure Saccharomyces cerevisiae par un système biopolymérique multicouche : effet sur son activité métabolique en réponse aux conditions de l’environnement, THESE de Doctorat Universtité de Bourgogne, 149.

Siti HM, AzharaR, AbdullaabSA, JamboaH, MarbawiaJ, Azlan G, Ainol A, Mohd F, Kenneth FR. 2017. Yeasts in sustainable bioethanol production: A review,   Biochemistry and Biophysics Reports10,  52-61.

Sawaya WN, Ayaz M, AL-sogair A. 1986. Microbiological Quality of Tehineh Manufactured in Saudi Arabia. Journal of Food Protection, 49(7), 504-506.

Wahid H, Habib K, Sadok B. 2014. Physicochemical properties and antioxidant activity of Tunisian date palm (Phoenix dactylifera L.) oil as affected by different extraction methods, Food Sci. Technol, Campinas 34(3), 464-470.

Related Articles

Implications of aberrant glycosylation on age-related disease progression

Tahmid Ahmad Patwary, Mukramur Rahman, Md. Nafis Fuad Prottoy, Sayad Md. Didarul Alam, Int. J. Biosci. 27(2), 176-188, August 2025.

Design and development of solar powered water sprayer: A green technology innovation

Lorenzo V. Sugod, Int. J. Biosci. 27(2), 159-175, August 2025.

Knowledge, attitudes, practices, and social awareness regarding SARS-CoV-2 infection in the kyrgyz population in the post-pandemic period

Mirza Masroor Ali Beg, Haider Ali, Yahya Nur Ahmed, Yavuz Gunduz, Hafsa Develi, Tilekeeva UM, Int. J. Biosci. 27(2), 151-158, August 2025.

Tumor suppressing ability of myrtenal in DMBA-induced rat mammary cancer: A biochemical and histopathological evaluation

Manoharan Pethanasamy, Shanmugam M. Sivasankaran, Saravanan Surya, Raju Kowsalya, Int. J. Biosci. 27(2), 141-150, August 2025.

Assessing tree diversity in cashew plantations: Environmental and agronomic determinants in buffer zones of Mont Sangbé National Park, western Côte d’Ivoire

Kouamé Christophe Koffi, Kouakou Hilaire Bohoussou, Serge Cherry Piba, Naomie Ouffoue, Sylvestre Gagbe, Alex Beda, Adama Tondossama, Int. J. Biosci. 27(2), 122-133, August 2025.

Anthelmintic potential of powdered papaya seed Carica papaya in varying levels against Ascaridia galli in broiler chicken

Roniemay P. Sayson, Mylene G. Millapez, Zandro O. Perez, Int. J. Biosci. 27(2), 114-121, August 2025.

Valorization of fish scale waste for the synthesis of functional gelatin-based biopolymers

N. Natarajan Arun Nagendran, B. Balakrishnan Rajalakshmi, C. Chellapandi Balachandran, Jayabalan Viji, Int. J. Biosci. 27(2), 102-113, August 2025.