Estimation of shoot and root biomass with their C, N, P, K and S contents of eight different rice varieties at harvesting stage

Paper Details

Research Paper 01/12/2016
Views (633)
current_issue_feature_image
publication_file

Estimation of shoot and root biomass with their C, N, P, K and S contents of eight different rice varieties at harvesting stage

Md. Mahmud Hassan, Musharraf Hossain Mian, G. M. Murshid Alam
Int. J. Biosci. 9(6), 137-144, December 2016.
Copyright Statement: Copyright 2016; The Author(s).
License: CC BY-NC 4.0

Abstract

Hybrid hira, Hybrid tia, BRRI dhan28, BRRI dhan29, Binadhan-5, Binadhan-7, Laphadhan and Pijamdhan were grown in a medium high land soil (silt loam, aeric heplaquept) during boro season (crop period: January to June 2011). Shoot and root biomass and their C, N, P, K and S contents at full maturity were determined to assess their potentiality for using as organic residues for the maintenance of soil organic matter. The experiment was laid out in a Randomized Completely Block Design (RCBD) with three replications for each of eight rice varieties having unit plot size 4m×2.5m. Air dry shoot biomass obtained for Hybrid hira, Hybrid tia, BRRI dhan28, BRRI dhan29, Binadhan-5, Binadhan-7, Laphadhan and Pijamdhan were 5.28, 4.82, 4.10, 4.29, 4.98, 3.97, 3.69 and 4.28 t ha-1 respectively and root biomass were 1.20, 0.91, 0.99, 1.11, 1.33, 0.78, 0.76 and 0.90 t ha-1, respectively. Organic carbon content in the shoots were 2.97, 2.43, 2.44, 2.54, 2.72, 2.10, 2.04 and 2.73 t ha-1, respectively and roots were 0.52, 0.46, 0.49, 0.51, 0.61, 0.38, 0.40 and 0.41t ha-1 respectively. The C-N ratios for the shoots were found to be 150.6, 170.3, 361.0, 268.9, 192.8, 246.8, 203.4 and 315.2; and for the roots were 112.8, 89.7, 114.2, 68.7, 89.4, 108.6, 187.8 and 73.6, respectively. The PKS contents in both shoots and roots also estimate. It may be inferred that both shoot and root residues may play a significant role in organic manuring. Particular attention should be given for assessing the contribution of the root biomass.

Ameta GS, Singh HG. 2004. Comparative efficiency of neem cake coated prilled urea and splitting N application in wheat production. International Tropical Agriculture 8(3), 189-192.

BBS. 2009. The Yearbook of Agricultural Statistics of Bangladesh Statistic Division Ministry of Planning, Government of Peoples Republic of Bangladesh, Dhaka. 129-132 P.

Black CA. 1965. Methods of Soil Analysis. Part I and II American Society of Agronomy. Inc. Publication Madison, Wisconsin, United State of America. 

Dongarwar UR, Pantakar MN, Pawar WS. 2003. Response of rice different fertility levels. Journal of Soil and Crops 13(1), 102-122.

Gomez KA. 1984. Statistical Procedures for Agricultural Research. Second. John Wiley and Sons. New York. 207-215 P.

Oslen SR, Cole CV, Watanable FS, Dean LA. 1954. Estimation of available phosphorus in soils by extraction with sodium bicarbonate. United State. Depertment of Agriculture. Cire. 929.

Page AL, Miller RH, Keeney DR. 1989. Methods of Soil Analysis, Part-II (Second Edition). American Society of Agronomy, Inc., Publication, Madison, Wisconsin. United State of America. 501-534 P.

Sarfaraz M, Mehdi, Sadic SM, Hassan G. 2002. Effects of Sulphur on yield and chemical composition of rice .Sarhad Journal of Agriculture 18, 411- 414.

Walkey A, Black IA. 1934. An experiment of degtiareff method for determining soils organic matter and proposed modification for the chronic acid titration method. Soil Science 37, 29-38.

Related Articles

Sensory acceptability of gnocchi pasta added with different levels of malunggay (Moringa oleifera) leaves and blue ternate (Clitoria ternatea) flowers

Ralph Justyne B. Bague, James Troyo, Proceso C. Valleser Jr.*, Int. J. Biosci. 28(1), 103-114, January 2026.

Spatio-temporal analysis of vegetation cover and socio-environmental implications in Korhogo (Northern Côte d’Ivoire) from 1990-2020

Adechina Olayossimi*, Konan Kouassi Urbain, Ouattara Amidou, Yao-Kouamé Albert, Int. J. Biosci. 28(1), 94-102, January 2026.

Predicting the habitat suitability of Vitellaria paradoxa under climate change scenarios

Franck Placide Junior Pagny*, Anthelme Gnagbo, Dofoungo Kone, Blaise Kabré, Marie-Solange Tiébré, Int. J. Biosci. 28(1), 73-83, January 2026.

Performance response dynamics of rabbits (Oryctolagus cuniculus) to locally sourced, on-farm feed ingredients during the growing phase: Implications for the institutional rabbit multiplier project

Roel T. Calagui*, Janelle G. Cadiguin, Maricel F. Campańano, Jhaysel G. Rumbaoa, Louis Voltaire A. Pagalilauan, Mary Ann M. Santos, Int. J. Biosci. 28(1), 65-72, January 2026.

Chronopharmacology: Integration of circadian biology in modern pharmacotherapy

Sangram D. Chikane*, Vishal S. Adak, Shrikant R. Borate, Rajkumar V. Shete, Deepak V. Fajage, Int. J. Biosci. 28(1), 56-64, January 2026.

Evaluation of the impact of floristic diversity on the productivity of cocoa-based agroforestry systems in the new cocoa production area: The case of the Biankouma department (Western Côte d’Ivoire)

N'gouran Kobenan Pierre, Zanh Golou Gizele*, Kouadio Kayeli Anaïs Laurence, Kouakou Akoua Tamia Madeleine, N'gou Kessi Abel, Barima Yao Sadaiou Sabas, Int. J. Biosci. 28(1), 44-55, January 2026.

Utilization of locally sourced feed ingredients and their influence on the growth performance of broiler chickens (Gallus gallus domesticus): A study in support of the school’s chicken multiplier project

Roel T. Calagui*, Maricel F. Campańano, Joe Hmer Kyle T. Acorda, Louis Voltaire A. Pagalilauan, Mary Ann M. Santos, Jojo D. Cauilan, John Michael U. Tabil, Int. J. Biosci. 28(1), 35-43, January 2026.