Evaluation and selection of synthetic hexaploid wheat and their derivatives at seedling stage targeted for salt tolerance

Paper Details

Research Paper 01/07/2016
Views (643)
current_issue_feature_image
publication_file

Evaluation and selection of synthetic hexaploid wheat and their derivatives at seedling stage targeted for salt tolerance

Rabia Masood, Niaz Ali, Azhar Hussain Shah, Fouzia Bibi, Faiza Masood, Jackie Rudd, Mujeeb Kazi
Int. J. Biosci. 9(1), 435-442, July 2016.
Copyright Statement: Copyright 2016; The Author(s).
License: CC BY-NC 4.0

Abstract

Novel sources of salt tolerance need to be identified for the development of crop on saline prone areas in order to meet the food demands of increasing human population. We have evaluated 136 Hexaploid synthetic wheat and their derivatives with local checks varieties at seedling stage for salt tolerance in petridishes at 0, 75 and 150mM NaCl solution using different physiological indices like shoot and root length stress tolerance index, shoot fresh and dry weight tolerance index and root dry weight tolerance index. The collected data were analyzed by statistical techniques as analysis of variance, descriptive statistics, and correlation analysis to evaluate the variations among the studied germplasm against salt tolerance. Mean square values by the analysis of variance and interaction mean values between the genotypes and traits expressed significant variation among all the traits. Highly significant and positive correlation was found between shoot and root length, shoot fresh weight, shoot and root dry weight. Salt tolerant genotypes with accession number 23, 897, 892, 80, 3, 44, , 50, 33, 433, 605, 52, 551, 5, 593, 20, 866, 53, 906, Pasban-90, Shorawaki, and S-24 has been identified which performed best and expressed higher plant fresh/dry biomass and root/shoot length and resulted lower biomass and growth reduction when exposed to 75 and 150mM NaCl with Stress tolerance index (STI) ranges from 70-100% . In order validate these findings the selected lines will be further investigated at the maturity stage in saline field condition for agronomic and yield related traits as thousand kernel weight and harvest index.

Ahmadi SH,  Ardekani JN. 2006. The effect of water salinity on growth and physiological stages of eight canola (Brassica napus) cultivars. Irrig. Sci 25, 11-20.

Ali Z, Salam A, Azhar FM, Khan IA. 2007. Genotypic variation in salinity tolerance among spring and winter wheat (Triticum aestivum L.) accessions. South Afr. J. Bot 73, 70-75.

Appels R, Lagudah E. 1990. Manipulation of chromosomal segments from wild wheat for the improvement of bread wheat. Aust. J. Plant Physiol 17, 253-266.

Ashraf M. 2004. Some important physiological selection criteria for salt tolerance in plants. Flora 199, 361-376. DOI: 10.1007/s00271-006-0030-3.

Dreccer MF, Ogbonnaya FC, Borgognone G. 2004. Sodium exclusion inprimary synthetic wheats. In: Proc. XI Wheat Breeding Assembly pp. 118-121.

GOP. 2016. Economic survey of Pakistan.

Lauchli A, Luttge U. 2004. Salinity: Environment  –Plants– Molecules. Amsterdam, the Netherlands: Springer.

Meneguzzo S, Navari-Izzo F, Izzo R. 2000. NaCl effects on water relations and accumulation of mineral nutrients inshoots, roots and cell sap of wheat seedlings. J. Plant Physiol 156, 711-716. Doi:10. 1016/S0176-1617(00)80236-9.

Munns R, James R A, Läuchli A. 2006. Approaches to increasing the salt tolerance of wheat and other cereals. Journal of Experimental Botany 57, 1025-1043.

Munns R, James RA. 2003. Screening methods for salt tolerance: a case study with tetraploid wheat. Plant and Soil 253, 201-218.

Munns R. 2007. Utilizing genetic resources to enhance productivity of salt–prone land. CAB Rev.: Perspectives in Agric. Vet. Sci. Nutr. Nat. Res 2, No. 009.

Institute SAS. 2003. Release 9.1. SAS Institute Inc., Cary NC.

Trethowan R, van Ginkel M. 2009. Synthetic wheat an emerging genetic resource.  p. 369-385. In:  B. Carver (ed.) Wheat science and trade. Wiley Blackwell, Ames, IA. Doi/10.1002/ 9780813818832.ch16.

Zhang J, Flowers TJ, Wang S. 2010. Mechanisms of sodium uptake by roots of higher plants. Plant Soil 326, 45-60. DOI: 10.1007/s11104-009-0076-0.

Related Articles

Unravelling the complex interactions between microplastics and PPCPs: The environment and health implications

Roshy Ann Mathews, S. Rajakumar, N. Aishwarya, M. Prashanthi Devi, Int. J. Biosci. 27(5), 40-72, November 2025.

Nutraceutical value of Gigantochloa atter and Bambusa blumeana

Eddilyn B. Plaza, Gemma A. Gruyal, Int. J. Biosci. 27(5), 34-39, November 2025.

Absence of climatic factors influence on the prevalence of COVID-19 in Benin: A spatiotemporal analysis

Houndonougbo Antoine, Lagaki Koudousse, Dramane Gado, Chogolou Ruth, Sanoussi Falilath, Kissira Islamiath, Sohou Stephane, Oloukou Freedy, Senou Elie, Yadouleton Anges, Int. J. Biosci. 27(5), 16-23, November 2025.

Isopulegol mitigates high glucose-induced oxidative stress in HK-2 cells via activation of the Nrf2/ARE pathway

Mathew Maria Caroline Rebellow, Ravishankar Sarumathi, Chandrasekaran Sankaranarayanan, Int. J. Biosci. 27(5), 6-15, November 2025.

Exploring Ctenolepis garcinii as a natural anti-diabetic agent: A phytochemical, biochemical and molecular docking approach

A. M. Thafshila Aafrin, R. Anuradha, Int. J. Biosci. 27(4), 208-214, October 2025.

Assessment of the population dynamics of microorganisms in mountainous brown soils of Gobustan in relation to soil-climate conditions

Zohra N. Mammadzada, Basti N. Alyeva, Sevinch J. Garayeva, Nizami R. Namazov, Int. J. Biosci. 27(4), 203-207, October 2025.