Genetic variability induced by gamma radiation on second generation of mutants M2 of Bambara groundnut [Vigna subterranea (L.) Verdcourt] in Burkina Faso

Paper Details

Research Paper 05/08/2024
Views (81) Download (17)
current_issue_feature_image
publication_file

Genetic variability induced by gamma radiation on second generation of mutants M2 of Bambara groundnut [Vigna subterranea (L.) Verdcourt] in Burkina Faso

Brahime Tingueri, Mahamadi Hamed Ouedraogo, Wendmanegda Hermann Tonde, Tégawendé Odette Bonkoungou, Celestin Thiombiano, Adjima Ouoba, Daouda Ouedraogo, Mahamadou Sawadogo
Int. J. Biosci.25( 2), 83-96, August 2024.
Certificate: IJB 2024 [Generate Certificate]

Abstract

Bambara groundnut is a highly nutritious food legume. However, the low genetic variability in Bambara groundnut constitutes a serious barrier for its improvement. The mutagenesis is one of the techniques able to create genetic variability of crops species for breeding. This study aims at evaluating the genetic variability induced by gamma irradiations within the second generation of mutants (M2). Thus, 40 families of M2 mutants resulting from the mutagenesis of three Bambara groundnut varieties (KVS115, KVS234 and KVS259) were characterized using a Fisher block design with three replicates. Twenty-two (22) characters related to phenology, morphology and yield were used for the characterization. The results showed highly significant differences between M2 mutant families for all the evaluated traits. Significant variability was recorded for the traits number of pods per plant, weight of pods, seeds weight, yield and number of leaves for which high coefficients of variation were observed (CV > 44%). The number of pods per plant, grain yield, seed weight and pod weight per plant, terminal leaflet length and width, and number of leaves presented high phenotypic and genotypic coefficients of variation (˃20%). High heritability (H2 > 60%) associated with high genetic advance value (GA > 72%) were registered for number of pods per plant, pods weight per plant, seed weight per plant and grain yield. Three classes were revealed from the Hierarchical ascending classification of the studied mutants. The first class comprised of fairly late maturing mutants (> 88 days), the second of and high yielding mutants (102-258 g/m2), while the third class comprised mutants with important aerial biomass. This significant variability could be used in Bambara groundnut improvement programs for creating highly performing varieties adapted to various biotic and abiotic constraints.

VIEWS 62

Adebisi MA, Ariyo OJ, Kehinde OB. 2004. Variation and correlation studies in quantitative characters in soybean. Journal of Agricultural Science 3, 134-142.

Aliero AA. 2006. Effect of hydroxylamine on the germination and growth of sesame (Sesamum indicum). Journal of Plant Science 1(4), 356-361.

Amri-Tiliouine W, Laouar M, Abdelguerfi A, Jankowicz-Cieslak J, Jankuloski L, Till BJ. 2018. Genetic variability induced by gamma rays and preliminary results of low-cost TILLING on M2 generation of chickpea (Cicer arietinum L.). Frontiers in Plant Science 9, 1-15. DOI: 10.3389/fpls.2018.01568.

ANAM. 2023. Données climatiques. Burkina Faso. Agence Nationale de la Météorologie. https://www.meteoburkina.bf.

Anbarasan K, Sivalingam D, Rajendran R, Anbazhagan M, Chidambaram AA. 2013. Studies on the mutagenic effect of EMS on seed germination and seedling characters of sesame (Sesamum indicum L.) Var.T MV3. International Journal of Research in Biological Sciences 3(1), 68-70.

Bamshaiye OM, Adegbol JA, Bamishaiye EI. 2011. Bambara groundnut: an underutilized nut in Africa. Advances in Agricultural Biotechnology 1, 60-72. www.woaj.org/AAB.

Bolbhat SN, Bhoge VD, Dhumal KN. 2012. Effect of mutagens on seed germination, plant survival, and quantitative characters of horse gram (Macrotyloma uniflorum (Lam.) Verdc). International Journal of Life Science and Pharma Research 2(4), 130-136.

Chimdi OG, Michael IU, Ogbonna PE, Onwubiko NC. 2021. Genetic studies of M3 mutants of Bambara groundnut (Vigna subterranea (L.) Verdc.) populations. Journal of Agriculture and Veterinary Science 14(10), 33-40. DOI: 10.9790/2380-1410013340.

Chittaranjan K. 2007. Genome mapping and molecular breeding in plants. Vol. 3, Springer-Verlag, Berlin, Heidelberg, New York.

Collaku A. 1994. Selection for yield and its components in a winter wheat population under different environmental conditions in Albania. Plant Breeding 112(10), 40-46. http://dx.doi.org/10.1111/j.1439-523.1994.tb01274.x.

Dapaah HA, Sangwan RS. 2004. Improving Bambara groundnut productivity using gamma irradiation and in vitro techniques. African Journal of Biotechnology 3(5), 260-265. http://dx.doi.org/10.5897/AJB2004.000-2048.

FAO/AIEA. 2020. Manual for plant breeding by mutation. Under the supervision of Spencer-Lopes MM, Forster BP, Jankuloski L. Third edition, FAO, Vienna, pp. 1-249. https://doi.org/10.4060/i9285fr.

Gaul, H. 1964. Mutations in plant breeding. Radiation Botany 4, 155-232. https://doi.org/10.1016/s0033-7560(64)80069-7

Gnankambary K, Batieno TBJ, Sawadogo N, Sawadogo M, Yonli D, Ouédraogo TJ. 2019. Assessment of radio-sensitivity for three cowpea genotypes to gamma irradiation. International Journal of Genetics and Molecular Biology 11(2), 29-33. https://doi.org/10.5897/IJGMB2019.0174.

Goli AE, Begemann F, Ng NQ. 1997. Caracterization and evaluation of IITA’s Bambara groundnut collection. In: Heller J, Begemann E, Govindaraj M, Selvi B, Rajarathinam S, Sumathi P. 2011. Genetic variability and heritability of grain yield components and grain mineral concentration in India’s Pearl Millet (Pennisetum glaucum (L.) R. Br.) accessions. African Journal of Food, Agriculture, Nutrition and Development 11(3), 4758-4771. https://doi.org/10.4314/ajfand.v11i3.66627.

Harouna AI, Alhassane A, Daouda OS, Boureima KS. 2018. Variabilité morphologique et agronomique des morphotypes de voandzou (Vigna subterranea (L.)) cultivés dans la zone sahélienne du Niger. European Scientific Journal 14, 377-393.

Hien E. 2004. Carbon dynamics in anferrical Acrisol in the Central West of Burkina: Influence of cultural practices on the stock and quality of organic matter. PhD Thesis in Soil Science, National Agronomy School of Montpellier, Frankreich, 1-140.

House WA. 1999. Trace element bioavailability as exemplified by iron and zinc. Field Crops Research 60, 115-141.

Ibrahim YAZ, Agali A, Sani IS, Harouna AI. 2023. Study of genetic variability of 19 accessions of Bambara groundnut (Vigna subterranea (L.) Verdcourt) from the Far and Central East of Niger. International Journal of Innovation and Applied Studies 38(3), 682-694. http://www.ijias.issr-journals.org/.

INERA. 2021. Données pluviométriques. Institut de l’Environnement et de Recherches Agricoles.

IPGRI, IITA, BAMNET. 2000. Descripteurs du pois bambara (Vigna subterranea). Institut international des ressources phylogénétiques, Rome, Italie; Institut International d’Agriculture Tropicale, Ibadan, Nigeria; Réseau International de pois bambara, Allemagne, 1-48.

Jilo T, Tulu L, Birhan T, Beksissa L. 2018. Genetic variability, heritability, and genetic advance of maize (Zea mays L.) inbred lines for yield and yield-related traits in south-western Ethiopia. Journal of Plant Breeding and Crop Science 10(10), 281-289.

Johnson HW, Robinson HF, Comstock RE. 1955. Genotypic and phenotypic correlations and their implication in selection. Agronomy Journal 47, 477-483.

Latif MA, Hassan MM, Sultana N. 2010. Variability and character association and path coefficient analysis in lentil (Lens culinaris Medik). Bangladesh Journal 18, 49-51.

Mahmudul HK, Mohd YR, Ramlee SI, Jusoh M, Al Mamun MD. 2021. Genetic analysis and selection of Bambara groundnut (Vigna subterranea [L.] Verdc.) landraces for high yield revealed by qualitative and quantitative traits. Scientific Reports 11(7597), 1-21. https://doi.org/10.1038/s41598-021-87039-8.

Malek MA, Rafii MY, Nath UK, Mondal M. 2014. Morphological characterization and assessment of genetic variability, character association, and divergence in soybean mutants. The Scientific World Journal 2014(1), 1-12. http://dx.doi.org/10.1155/2014/968796.

Maphumulo S, Derera J, Qwabe F, Fato P, Gasura E, Mafongoya P. 2015. Heritability and genetic gain for grain yield and path coefficient analysis of some agronomic traits in early-maturing maize hybrids. Euphytica 206(1), 225-244. DOI: 10.1007/s10681-015-1505-1.

Massawe FJ, Robert JA, Azam-Ali SN, Davey MR. 2003. Genetic diversity in Bambara groundnut (Vigna subterranea (L.) Verdc.) landraces assessed by random amplified polymorphic DNA (RAPD) markers. Genetic Resources and Crop Evolution 50(7), 737-741. DOI: 10.1023/A:1025041301787.

Meunier E. 2005. Des plantes mutantes dans nos assiettes. https://www.infogm.org/2406-des-plantes-OGM-mutees-dans-nos-assiette

Muhammad I, Rafii YB, Nazli MH, Ramlee SI, Harund AR, Oladosu Y. 2021. Determination of lethal (LD) and growth reduction (GR) doses on acute and chronic gamma-irradiated Bambara groundnut (Vigna subterranea (L.) Verdc.) varieties. Journal of Radiation Research and Applied Sciences 14(1), 133-145. https://doi.org/10.1080/16878507.2021.1883320.

Mushonga J, Ed. Promotion of the conservation and use of underutilized and neglected crops, Harare Zimbabwe, 101-118.

Nadembega S. 2016. Production vivrière et sécurité alimentaire au Burkina Faso : Cas du voandzou dans trois communes des trois zones agroécologiques. Mémoire de Master 2, Université Catholique de l’Afrique de l’Ouest, Bobo Dioulasso, p. 1-90.

Nikièma MP, Ouédraogo N, Traoré H, Sawadogo M, Jankuloski L, Abdelbagi MAG, Yonli D. 2020. Sorghum mutation breeding for tolerance to water deficit under climate change. Journal of Plant Breeding and Crop Science 12(3), 192-199. https://doi.org/10.5897/JPBCS2020.0886.

Nwakuche CO, Uguru MI, Chimdi GO. 2019. Estimates of genetic parameters in Bambara groundnut (Vigna subterranea (L.) Verdc.). Plant Breeding and Biotechnology 7, 295-301. https://doi.org/10.9787/PBB.2019.7.4.295.

Ouedraogo M, Ouedraogo JT, Tignegre JB, Balma D, Dabire CB, Konate G. 2008. Characterization and evaluation of accessions of Bambara groundnut (Vigna subterranea (L.) Verdcourt) from Burkina Faso. Sciences Naturelles 5(2), 191-197.

Oulmi A, Semcheddine N, Fellahi ZEA, Salmi M, Laala Z, Rabti A, Benmahammed A. 2016. Variabilité génétique, héritabilité et corrélations entre les caractères phéno-morpho-physiologiques et agronomiques des populations F2 de blé dur (Triticum durum Desf.). International Journal of Innovation and Applied Studies 17(4), 1275-1285.

Ouoba A, Ouédraogo M, Sawadogo M, Nadembega S. 2016. Overview of Bambara groundnut (Vigna subterranea (L.) Verdcourt) cultivation in Burkina Faso: challenges and prospects for improving productivity. International Journal of Biological and Chemical Sciences 10(2), 652-665.

Ouoba A, Zida SF, Ouédraogo M, Nandkangré H, Ouédraogo HM, Nanéma RK, Sawadogo N, Zida EP, Konaté MN, Congo AK, Soalla RW, Sawadogo M. 2017. Assessment of genetic diversity in Bambara groundnut (Vigna subterranea (L.) Verdc.) landraces in Burkina Faso using microsatellite markers (SSR). Atlantic Student Research Journal 7(3), 96-102.

Pungulani L, Kadyampakeni D, Nsapato L, Kachapila M. 2012. Selection of high-yielding and farmers’ preferred genotypes of Bambara groundnut (Vigna subterranea (L.) Verdc.) in Malawi. American Journal of Plant Sciences 3(12), 1802-1808. https://doi.org/10.4236/ajps.2012.312A221.

Rasheed S, Hanif M, Sadiq S, Abbas G, Asghar MJ, Haq MA. 2008. Inheritance of seed yield and related traits in some lentil (Lens culinaris Medik.) genotypes. Pakistan Journal of Agricultural Sciences 45, 49-52.

Ridzuan R, Rafii MY, Mohammad YM, Ismail SI, Miah G, Usman M. 2018. Genetic diversity analysis of selected Capsicum annuum genotypes based on morphophysiological, yield characteristics, and their biochemical properties. Journal of the Food and Agriculture 99(1), 269-280. https://doi.org/10.1002/jsfa.9169.

Robinson HF, Comstock RE, Hairey PH. 1949. Estimates of heritability and the degree of dominance in Cowpea. Agronomy Journal 41, 353-359.

Sangsiri C, Sorajjapinun W, Srinives P. 2005. Gamma radiation-induced mutations in mung bean. Science Asia 31(2005), 251-255. DOI: 10.2306/scienceasia1513-1874.2005.31.251.

Sawadogo N, Nanema KR, Bationo KP, Traore RE, Nebie B, Tiama D, Sawadogo M, Zongo JD. 2014. Évaluation de la diversité génétique des sorghos à grains sucrés (Sorghum bicolor (L.) Moench) du Nord du Burkina Faso. Journal of Applied Biosciences 84(2014), 7654-7664. https://doi.org/10.4314/jab.v84i1.3.

Sesay S, Ojo D, Ariyo OJ, Meseka S. 2016. Genetic variability, heritability, and genetic advance studies in top-cross and three-way cross maize (Zea mays L.) hybrids. Maydica 61(2), 1-7. https://hdl.handle.net/10568/76333.

Sivasubramanian S, Madhavamenon P. 1973. Genotypic and phenotypic variability in rice. Madras Agricultural Journal 60, 1093-1096.

Tanimu B, Aliyu L. 1997. The status of Bambara groundnut genetic resources in Nigeria. Country reports. In: Heller JF, Begemann, Mushonga J, Ed.

Tanimu BS, Ado G, Aliyu L. 1990. Genotypic variability in Bambara groundnut cultivars at Samaru, Nigeria. In: Proceedings of the 17th Annual Conference of the Genetics Society of Nigeria, Obigbesban IO, Ed. Institute for Agricultural Research and Training, Obafemi Awolowo University, Nigeria, 54-60.

Thiombiano A, Kampman D. 2010. Atlas de la biodiversité de l’Afrique de l’Ouest. Ouagadougou (Burkina Faso) et Frankfurt/Main. Tome II. 592p.

Toker C. 2004. Estimates of broad-sense heritability for seed yield and yield criteria in faba bean (Vicia faba L.). Hereditas 140, 222-225. https://doi.org/10.1111/j.1601-5223.2004.01780.x.

Tyagi SD, Khan M. 2010. Studies on genetic variability and interrelationship among the different traits in Microsperma lentil (Lens culinaris Medik.). Journal of Agricultural Biotechnology and Sustainable Development 2(1), 015-020. http://www.academicjournals.org/JABSD.

Umar UU, Ado SG, Aba DA, Bugaje SM. 2014. Genetic variability and heritability studies in maize (Zea mays L.) genotypes under three irrigation regimes. In: 38th Annual Conference of Genetic Society of Nigeria, 19th-23rd October 2014. Edo State, Nigeria, 381-386.

Usman MG, Rafii MY, Ismail MR, Malek MA, Abdul LM. 2014. Heritability and genetic advance among chili pepper genotypes for heat tolerance and morphophysiological characteristics. Scientific World Journal 2014(1), 1-14. https://doi.org/10.1155/2014/308042.

Vischer PM, Hill WG, Wray NR. 2008. Heritability in the genomics era—concepts and misconceptions. Nature Reviews Genetics 9, 255-266.

Younis N, Hanif M, Sadiq S, Abbas G, Asghar M, Haq MA. 2008. Estimates of genetic parameters and path analysis in lentil (Lens culinaris Medik.). Pakistan Journal of Agricultural Sciences 45, 44-48.