Investigation into the parameters influencing filter cakes produced by filtration

Paper Details

Research Paper 01/03/2018
Views (643)
current_issue_feature_image
publication_file

Investigation into the parameters influencing filter cakes produced by filtration

Bornia Benouis, Hafida Boutefnouchet, Abdallah Hafsaoui
J. Biodiv. & Environ. Sci. 12(3), 304-314, March 2018.
Copyright Statement: Copyright 2018; The Author(s).
License: CC BY-NC 4.0

Abstract

An experimental study was carried out to investigate the effect of particle size, solids concentration, and applied vacuum on both the apparent specific resistance and final moisture content of filter cakes. The results obtained from filtration test work indicated that the presence of fines particles in the feed suspension leads to a cake containing a large number of small pores which tended to trap water in the cake. Therefore a cake of high moisture content and specific resistance was obtained. As solids concentration in the suspension were increased both the moisture content and specific resistance decreased, however at high solids concentration the moisture content tended to level off and the apparent specific resistance tended to reach a constant minimum value. The dewatering test work was conducted using four samples of wider size range where the effect of ultrafine material was examined.

Allen TR. 2003. Powder Sampling and Particle Size Determination. Amsterdam: Elsevier 682.

Carman PC. 1947. Slip Flow in Granular Beds. Nature 160, (301-302).

Catchpole KW, Norman JR, Sergeant GD. 1970. Use of Optimal Techniques to Minimize Moisture Content Retention in the Fine Coal Filtration. Proc. Aust. Inst. Min and Met 234, 37-42.

Cheremisinoff N. 2017. Industrial Liquid Filtration Equipment Fibrous Media (27-50), in Woodhead Publishing Series in Textiles.

Chi T. 2006. Introduction to Cake Filtration Analyses, Experiments, and pplications. Elsevier B.V,The Netherlands, ISBN 10, 0-444-52156-9.

Christensen al, Chen PL, Yue Mujumdar AS. 2002. Sludge Dewatering and Drying. Dry. Technol 20, (883-916).

Christensen GL, Dick RI. 1985a. J. Environ. Eng 111 (243).

Christensen GL, Dick RI. 1985b. J. Environ. Eng. 111(258).

Couper JR, Fair JR, Penney WR, Walas SM. 2010. Chemical Process Equipment: Selection and Design, third ed. Elsevier Inc., Oxford, UK, chapter 11(37).

Darcy. 1856. Les Fontaines Publiques de la Ville de Dijon. Dalmont.

Gale RS. 1967. Filtration Theory with Special Reference to Sewage Sludge. J. Wat. Pollut. Control fed 66(622).

Hermans PH, Bredee HL. 1936. Principle of the Mathematical Treatment of Constant-Pressure Filtration. J. Soc. Chem. Ind 55(1).

Holdich RG. 2002. Fundamentals of Particle Technology. Midland Information Technology & Publishing, UK, ISBN 0954388100.

Irwin M. Hutten. 2007. Filtration Mechanisms and Theory. Hand Book of Non-Woven Filter Media 2 29-79.

Kakwani RM, Gala HB, Chiang SH, Klinzing GE, Tierney JW. 1985. Dewatering of the Coal-Micrographic Analysis of Filter Cake Structure. Powder Technol 41, 239-250.

Mahdi FM, Holdich RG. 2012. Laboratory Cake Filtration Testing Using Constant Rate, Chemical Engineering Research and Design 9, 1145-1154.

Sjenitzer F. 1955. Contribution to the Theory of Filtration. Trans. Inst. Chem. Eng 33, 289.

Sparks T, Chase G. 2016. Filters and Filtration Handbook, Six Editions, Section 4, Liquid Filtration 199-295.

Svarovsky L. 2000. Solid Liquid Separation, Fourth edition. Oxford, Butterworth-Heinemann, UK, ISBN 07506 45687.

Wakeman RJ, Tarleton ES. 2005. Solid/Liquid Separation Scale-up of Industrial Equipment, 1st ed. Elsevier Ltd., Oxford, UK, ISBN 18561 74204.

Yuping, Xianshu D, Hui L. 2015. Dewatering Effect of Fine Coal Slurry and Filter Cake Structure Based on Particles Characteristics. Vacuum 114, 54-57.

Related Articles

Cytogenetic and pathological investigations in maize × teosinte hybrids: Chromosome behaviour, spore identification, and inheritance of maydis leaf blight resistance

Krishan Pal, Ravi Kishan Soni, Devraj, Rohit Kumar Tiwari, Ram Avtar, J. Biodiv. & Environ. Sci. 27(2), 70-76, August 2025.

Conservation and trade dynamics of non-timber forest products in local markets in south western Cameroon

Kato Samuel Namuene, Mojoko Fiona Mbella, Godswill Ntsomboh-Ntsefong, Eunice Waki, Hudjicarel Kiekeh, J. Biodiv. & Environ. Sci. 27(2), 58-69, August 2025.

Overemphasis on blue carbon leads to biodiversity loss: A case study on subsidence coastal wetlands in southwest Taiwan

Yih-Tsong Ueng, Feng-Jiau Lin, Ya-Wen Hsiao, Perng-Sheng Chen, Hsiao-Yun Chang, J. Biodiv. & Environ. Sci. 27(2), 46-57, August 2025.

An assessment of the current scenario of biodiversity in Ghana in the context of climate change

Patrick Aaniamenga Bowan, Francis Tuuli Gamuo Junior, J. Biodiv. & Environ. Sci. 27(2), 35-45, August 2025.

Entomofaunal diversity in cowpea [Vigna unguiculata (L.) Walp.] cultivation systems within the cotton-growing zone of central Benin

Lionel Zadji, Roland Bocco, Mohamed Yaya, Abdou-Abou-Bakari Lassissi, Raphael Okounou Toko, J. Biodiv. & Environ. Sci. 27(2), 21-34, August 2025.

Biogenic fabrication of biochar-functionalized iron oxide nanoparticles using Miscanthus sinensis for oxytetracycline removal and toxicological assessment

Meenakshi Sundaram Sharmila, Gurusamy, Annadurai, J. Biodiv. & Environ. Sci. 27(2), 10-20, August 2025.

Bacteriological analysis of selected fishes sold in wet markets in Tuguegarao city, Cagayan, Philippines

Lara Melissa G. Luis, Jay Andrea Vea D. Israel, Dorina D. Sabatin, Gina M. Zamora, Julius T. Capili, J. Biodiv. & Environ. Sci. 27(2), 1-9, August 2025.

Effect of different substrates on the domestication of Saba comorensis (Bojer) Pichon (Apocynaceae), a spontaneous plant used in agroforestry system

Claude Bernard Aké*1, Bi Irié Honoré Ta2, Adjo Annie Yvette Assalé1, Yao Sadaiou Sabas Barima1, J. Biodiv. & Environ. Sci. 27(1), 90-96, July 2025.