Investigation on the effect of different factors on clay particle sedimentation in freshwaters

Paper Details

Research Paper 01/11/2014
Views (583)
current_issue_feature_image
publication_file

Investigation on the effect of different factors on clay particle sedimentation in freshwaters

N.Naghipour, S.A.Ayyoubzadeh, M.Sedighkia
J. Biodiv. & Environ. Sci. 5(5), 75-81, November 2014.
Copyright Statement: Copyright 2014; The Author(s).
License: CC BY-NC 4.0

Abstract

Suspended load concentration is a dominant factor on the health of rivers. Increase in suspended sediment load has many negative effects on the health of river. Identification of effective factors on fine particles sedimentation is a key aspect in sediment engineering. Comprehensive researches was not carried out on the effects of different factors in clay particle sedimentation in river flows and many researches has been carried out in salt waters or sea water. In present research, by a physical model with one sedimentation column, (1 m high and 25×25 cm2 square section) observation and measurement of the settling velocity of suspensions during the free and hindered settling stages is carried out and the effect of three main factors (initial solid concentration, temperature and salinity) is investigated. Based on the results, if we use auxiliary mechanisms for increasing of settling velocity, due to the impact of solid concentration (50%), we will need to enhance this mechanism in high initial solid concentration. The effect of salinity on sedimentation of fine sediment particles doesn’t have regular process. When the salinity increase in more than 4ppt, has limit effect on the settling velocity that the results of present research confirm it in 13%-20% initial solid concentration. Temperature has considerable effect on the settling velocity of fine particles. We can observe that with increase in temperature from 10 C to 45 C, critical sedimentation time decreases 49% approximately. So increase in temperature has positive effect on the settling velocity generally.

Chien N, Wan ZH. 1983. Mechanics of Sediment Movement, Science Press, Beijing, China (in Chinese).

Gailani J, Ziegler CK, Lick W. 1991. ‘Transport of suspended solids in the Lower Fox River’, J. Great Lakes Res., 17(4), 479–494.

Huang W. 1981. ‘Experimental study of settling properties of cohesive sediment in still water’, J. Sediment Res., No. 2, 30–41 (in Chinese).

Lick W, Lick J. 1988. ‘Aggregation and disaggregation of fine-grained lake sediments’, J. Great Lakes Res., 14(4), 514–523.

Li ZH, Nguyen KD, Brun-Cottan JC, Martin JM. 1994. ‘Numerical simulation of the turbidity maximum transport in the Gironde Estuary (France)’, Oceanologica Acta, 17(5), 479–500.

Mehta AJ. 1986. ‘Characterization of cohesive sediment properties and transport processes in estuaries’, Estuarine Cohesive Sediment Dynamics, A.J. Mehta (ed.), Springer-Verlag 290–325.

Newman ACD. 1987. The interaction of water with clay mineral surfaces: in Chemistry of Clay and Clay Minerals,A.C. D. Newman, ed., Mineralogical Society, London, 237-274

Owen MW. 1970. ‘A detailed study of the settling velocities of an estuary mud’, Report No. INT 78, Hydraulics Research Station, Wallingford, UK.

Shang JQ. 1997. ‘Zeta potential and electroosmotic permeability of clay soils’, Can. Geotech. J. 34, 627–631.

Thorn MFC. 1981. ‘Physical processes of siltation in tidal channels’, Proc. Hydraulic Modelling Applied to Maritime Eng. Problems, ICE, London, UK, 47–55.

Yue PJ. 1983. ‘Preliminary study of flocculation formed by cohesive sediment and its influence on rheologic properties of slurry’, J. Sediment Res., No. 1, 25–35 (in Chinese).

Related Articles

Cytogenetic and pathological investigations in maize × teosinte hybrids: Chromosome behaviour, spore identification, and inheritance of maydis leaf blight resistance

Krishan Pal, Ravi Kishan Soni, Devraj, Rohit Kumar Tiwari, Ram Avtar, J. Biodiv. & Environ. Sci. 27(2), 70-76, August 2025.

Conservation and trade dynamics of non-timber forest products in local markets in south western Cameroon

Kato Samuel Namuene, Mojoko Fiona Mbella, Godswill Ntsomboh-Ntsefong, Eunice Waki, Hudjicarel Kiekeh, J. Biodiv. & Environ. Sci. 27(2), 58-69, August 2025.

Overemphasis on blue carbon leads to biodiversity loss: A case study on subsidence coastal wetlands in southwest Taiwan

Yih-Tsong Ueng, Feng-Jiau Lin, Ya-Wen Hsiao, Perng-Sheng Chen, Hsiao-Yun Chang, J. Biodiv. & Environ. Sci. 27(2), 46-57, August 2025.

An assessment of the current scenario of biodiversity in Ghana in the context of climate change

Patrick Aaniamenga Bowan, Francis Tuuli Gamuo Junior, J. Biodiv. & Environ. Sci. 27(2), 35-45, August 2025.

Entomofaunal diversity in cowpea [Vigna unguiculata (L.) Walp.] cultivation systems within the cotton-growing zone of central Benin

Lionel Zadji, Roland Bocco, Mohamed Yaya, Abdou-Abou-Bakari Lassissi, Raphael Okounou Toko, J. Biodiv. & Environ. Sci. 27(2), 21-34, August 2025.

Biogenic fabrication of biochar-functionalized iron oxide nanoparticles using Miscanthus sinensis for oxytetracycline removal and toxicological assessment

Meenakshi Sundaram Sharmila, Gurusamy, Annadurai, J. Biodiv. & Environ. Sci. 27(2), 10-20, August 2025.

Bacteriological analysis of selected fishes sold in wet markets in Tuguegarao city, Cagayan, Philippines

Lara Melissa G. Luis, Jay Andrea Vea D. Israel, Dorina D. Sabatin, Gina M. Zamora, Julius T. Capili, J. Biodiv. & Environ. Sci. 27(2), 1-9, August 2025.

Effect of different substrates on the domestication of Saba comorensis (Bojer) Pichon (Apocynaceae), a spontaneous plant used in agroforestry system

Claude Bernard Aké*1, Bi Irié Honoré Ta2, Adjo Annie Yvette Assalé1, Yao Sadaiou Sabas Barima1, J. Biodiv. & Environ. Sci. 27(1), 90-96, July 2025.