Ironwood and mixed wood sawdust biopellet prototype innovation as an alternative energy of the future

Paper Details

Research Paper 01/06/2018
Views (611)
current_issue_feature_image
publication_file

Ironwood and mixed wood sawdust biopellet prototype innovation as an alternative energy of the future

Muhammad Faisal Mahdie, Noor Mirad Sari, Khairun Nisa
J. Biodiv. & Environ. Sci. 12(6), 79-90, June 2018.
Copyright Statement: Copyright 2018; The Author(s).
License: CC BY-NC 4.0

Abstract

Increased population growth causes the demand for fossil fuels to increase while the availability of these fuels is running low, so research needs to be done to find environmentally friendly alternative energy. Biopellet from a mixture of Ironwood and mixed wood (Meranti and Balsa) sawdust waste is one of the solutions in overcoming the energy crisis in the future. The objectives of this study were (1) to determine the biopellet characteristics from a mixture of Ironwood and mixed woods sawdust such as moisture content, density, volatile matter content, ash content, calorific value and fixed carbon content, (2) to identify the influencing factors in the manufacture of biopellet, (3) knowing the best quality of biopellet from various mixtures of raw material variations.  This study used a completely randomized design with 5 treatments and 3 replications. The result of this study that the best biopellet characteristics were found in treatment B (70% of Ironwood + 30% Meranti and Balsa mixed wood sawdust waste) with moisture content value of 2.150%, a density of 0.773 g/cm3, volatile matter of 68.450%, ash content of 1.204%, calorific value of 4,830.930 cal/g and fixed carbon value of 27.943%. Finding demonstrates that factors that influence the making of biopellet are the raw material and the processing process.

American Society for Testing and Materials. 2001. Standard Test Method for Chemical Analysis of Word Charcoal. ASTM International. Philadephia, USA.

Basu P. 2010. Biomass Gasification and Pyrolysis Practical Design. Oxford (GB): Elsevier Inc.

Christanty NA. 2014. Biopellet Cangkang dan Tandan Kosong Kelapa Sawit sebagai Sumber Energi Alternatif Terbarukan. Skripsi. Departemen Hasil Hutan Fakultas Kehutanan, Institut Pertanian Bogor.

Efendi R. 2007. Kajian Sistem dan Kebutuhan Bahan Baku Industri Pengolahan Kayu di Kalimantan Selatan. Info Sosial Ekonomi 7, 223-231.

Fang S, Zhai J, Tang L. 2013. Clonal Variation in Growth, Chemistry and Calorie Value of New Poplar Hybrids at Nursery Stage. Biomass Bioenergy. 54, 303-311.

Hanun F. 2014. Nilai Kalor Kayu yang Memiliki Kerapatan dan Kadar Lignin Berbeda. [Skripsi]. Institut Pertanian Bogor.

Hasanuddin dan Lahay H. 2012. Pembuatan Biopellet Ampas Kelapa sebagai Energi Bahan Bakar Alternatif Pengganti Minyak Tanah Ramah Lingkungan. Laporan Penelitian Berorientasi Produk Dana PNBP Tahun Anggaran 2012. Universitas Gorontalo.

Hendra D. 2012. Rekayasa Pembuatan Mesin Pellet Kayu dan Pengujian Hasilnya. Jurnal Penelitian Hasil Hutan 30(2), 144-154.

Jamilatun S. 2011. Kualitas Sifat-sifat Penyalaan dari Pembakaran Briket Tempurung Kelapa, Briket Serbuk Gergajian Kayu Jati, Briket Sekam Padi dan Briket Batubara. Prosiding Seminar “Nasional Teknik Kimia “Kejuangan”’.  Pengembangan Teknologi Kimia untuk Pengolahan Sumber Daya Alam Indonesia.  Yogyakarta, 22 Februari 2011.  ISSN 1693 – 4393.

Leaver R. 2008. Wood Fuel Pellet and Residential Market. www.green.com (April 16, 2016).

Liliana W.2012. Peningkatan Kualitas Biopellet Bungkul Jarak Pagar sebagai Bahan Bakar Melalui Teknik Karbonisasi. [Tesis]. Bogor (ID): Institut Pertanian Bogor.

Nurwigha R. 2012. Pembuatan dari Cangkang Kelapa Sawit dengan Penambahan Arang Cangkang Sawit dan Serabut Sawit sebagai Bahan Bakar Alternatif. [Skripsi]. Bogor (ID): Institut Pertanian Bogor.

Onu F, Sudarja, Rahman MBN. 2010. Pengukuran Nilai Kalor Bahan Bakar Briket Arang Kombinasi Cangkang Pala (Elaeis guineensis). Seminar Nasional Teknik Mesin UMY 2010, 104-115. Yogyakarta (ID): Universitas Muhammadiyah Yogyakarta).

Peraturan Presiden No. 6. 2006. Tentang Kebijakan Energi Nasional

Purwanto DS. 2009. Analisa Jenis Limbah Kayu pada Industri Pengolahan Kayu di Kalimantan Selatan. Jurnal Riset Hasil Hutan 1, 14-20.

Rahmatullah A. 2014. Kadar Zat Ekstraktif dan Nilai Kalor Kayu yang Berbeda Kerapatan. Skripsi.  Departemen Hasil Hutan.  Fakultas Kehutanan Institut Pertanian Bogor.

Sa’adah WA.2014. Pemanfaatan Limbah Kelapa Sawit (Elaeis guineensis Jaeg) Serbuk Kayu Mahoni sebagai Bahan Baku Biopellet. Skripsi. Bogor (ID): Institut Pertanian Bogor.

Satmoko MEA, Saputro DD, Budiyono A.2013.  Karakteristik Briket dari Limbah Pengolahan Kayu Sengon dengan Metode Cetak Panas. Journal of Mechanical Engineering Learning2(1).

Tiruno M, dan Sabit A. 2011. Efek Suhu pada Proses Pengarangan Terhadap Nilai Kalor Arang Tempurung Kelapa (Coconut shell chorcoal). Jurnal Neutrino3(2), 143-152.

Tyas HN. 2015. Kualitas Pellet Kayu dari Limbah Padat Pengolahan Kayu Putih (Melaleuca leucadendron) sebagai Bahan Bakar Ramah Lingkungan. Skripsi. Bogor (ID). Institut Pertanian Bogor.

Winata A. 2013. Karakteristik Biopellet dari Campuran Serbuk Kayu Sengon dengan Arang Sekam Padi sebagai Energi Alternatif Terbarukan. Skripsi.  Institut Pertanian Bogor.

Related Articles

Agroforestry in woody-encroached Sub-Saharan savannas: Transforming ecological challenges into sustainable opportunities

Yao Anicet Gervais Kouamé, Pabo Quévin Oula, Kouamé Fulgence Koffi, Ollo Sib, Adama Bakayoko, Karidia Traoré, J. Biodiv. & Environ. Sci. 27(3), 10-22, September 2025.

Extreme rainfall variability and trends in the district of Ouedeme, municipality of Glazoue (Benin)

Koumassi Dègla Hervé, J. Biodiv. & Environ. Sci. 27(3), 1-9, September 2025.

Heterosis breeding, general and specific combining ability and stability studies in pearl millet: Current trends

Ram Avtar, Krishan Pal, Kavita Rani, Rohit Kumar Tiwari, Mahendra Kumar Yadav, J. Biodiv. & Environ. Sci. 27(2), 117-124, August 2025.

Combining ability, heterosis and stability for yield and fibre quality traits in cotton: Breeding approaches and future prospects

Rohit Kumar Tiwari, Krishan Pal, R. P. Saharan, Ram Avtar, Mahendra Kumar Yadav, J. Biodiv. & Environ. Sci. 27(2), 109-116, August 2025.

Bridging the COPD awareness gap in marginalized populations: Findings from a multicentre study in Khalilabad, Sant Kabir Nagar, Uttar Pradesh, India

Anupam Pati Tripathi, Jigyasa Pandey, Sakshi Singh, Smita Pathak, Dinesh Chaudhary, Alfiya Mashii, Farheen Fatima, J. Biodiv. & Environ. Sci. 27(2), 97-108, August 2025.

Antioxidant and anti-inflammatory activity of Pleurotus citrinopileatus Singer and Pleurotus sajor-caju (Fr.) Singer

P. Maheswari, P. Madhanraj, V. Ambikapathy, P. Prakash, A. Panneerselvam, J. Biodiv. & Environ. Sci. 27(2), 90-96, August 2025.

Mangrove abundance, diversity, and productivity in effluent-rich estuarine portion of Butuanon River, Mandaue City, Cebu

John Michael B. Genterolizo, Miguelito A. Ruelan, Laarlyn N. Abalos, Kathleen Kay M. Buendia, J. Biodiv. & Environ. Sci. 27(2), 77-89, August 2025.

Cytogenetic and pathological investigations in maize × teosinte hybrids: Chromosome behaviour, spore identification, and inheritance of maydis leaf blight resistance

Krishan Pal, Ravi Kishan Soni, Devraj, Rohit Kumar Tiwari, Ram Avtar, J. Biodiv. & Environ. Sci. 27(2), 70-76, August 2025.