Isolation and characterization of an extremely heavy metal tolerant Sinorhizobium meliloti, utilizable for reclamation of polluted soils

Paper Details

Research Paper 01/02/2015
Views (534)
current_issue_feature_image
publication_file

Isolation and characterization of an extremely heavy metal tolerant Sinorhizobium meliloti, utilizable for reclamation of polluted soils

Seyyed Mahdi Hosseinian, Shiva Khaledzadeh, Sara Nosrati, Ahmad Golchin, Esmail Memar-Kochehbagh
J. Biodiv. & Environ. Sci. 6(2), 334-342, February 2015.
Copyright Statement: Copyright 2015; The Author(s).
License: CC BY-NC 4.0

Abstract

Soil heavy metals (HMs) have deleterious effects on Sinorhizobia and their symbiotic relationship with Legumes. Consequently, isolating HMs resistant strains and using them as inoculums in polluted soils is crucially important. In the present study, the effects of cadmium, lead and zinc on viability and nitrogen fixing potential of several native Sinorhizobium meliloti strains isolated from HMs polluted soils of Zanjan province- Iran was assessed. In this regard, several S. meliloti stains were isolated from alfalfa root nodules and their nitrogen fixation efficiencies were evaluated and compared based on symbiosis effectiveness and alfalfa shoot dry weights. Selective media containing different amounts of cadmium, lead and zinc were utilized to evaluate the tolerance rates of the isolate. Subsequently, the most HMs tolerant strains with high nitrogen fixation capability were evaluated and selected in pot experiments. Five HMS tolerant S. meliloti strains were selected and inoculated in culture media containing five different concentrations of cadmium, lead and zinc. S41 was recognized as the most HMs tolerant isolate with a symbiotic effectiveness of 139%. PCR amplification and sequencing of 16S-23S rRNA Intergenic Spacer Region was employed for molecular identification of this isolate which could significantly decrease the need for exogenous nitrogen.

Angle JS, et al. 1992. “Effects of media components on toxicity of Cd to rhizobia.” Water, Air, and Soil Pollution 64(3-4), 627-633.

Beck DP, et al. 1993. “Practical Rhizobium-legume technology manual.” Technical Manual-International Center for Agricultural Research in the Dry Areas(19).

Beier EE, et al. 2013. “Heavy metal lead exposure, osteoporotic-like phenotype in an animal model, and depression of Wnt signaling.” Environmental health perspectives 121(1), 97-104.

Benavides MP, et al. 2005. “Cadmium toxicity in plants.” Brazilian Journal of Plant Physiology 17(1), 21-34.

Chen Y, et al. 2003. “Effect of cadmium on nodulation and N< sub> 2</sub>-fixation of soybean in contaminated soils.” Chemosphere 50(6), 781-787.

Cockburn A, et al. 2013. “Nitrite in feed: From Animal health to human health.” Toxicology and applied pharmacology 270(3), 209-217.

Flint CM, et al. 2008. “Nitrogen leaching from Douglas-fir forests after urea fertilization.” Journal of environmental quality 37(5), 1781-1788.

Gibson A., Bergersen F. 1980. “Methods for legumes in glasshouses and controlled environment cabinets.” Methods for evaluating biological nitrogen fixation.: 139-184.

Giller K, et al. 1989. “Absence of nitrogen fixation in clover grown on soil subject to long-term contamination with heavy metals is due to survival of only ineffective< i> Rhizobium</i>.” Soil Biology and Biochemistry 21(6), 841-848.

Górska-Czekaj M, Borucki W. 2013. “A correlative study of hydrogen peroxide accumulation after mercury or copper treatment observed in root nodules of< i> Medicago truncatula</i> under light, confocal and electron microscopy.” Micron 52, 24-32.

Guefrachi I, et al. 2013. “Assessing Genotypic Diversity and Symbiotic Efficiency of Five Rhizobial Legume Interactions Under Cadium Stress for Soil Phytoremediation.” International journal of phytoremediation 15(10), 938-951.

Ivanov S, et al. 2012. “Rhizobium–legume symbiosis shares an exocytotic pathway required for arbuscule formation.” Proceedings of the National Academy of Sciences 109(21), 8316-8321.

Lupwayi N, Haque I. 1994. “Legume-Rhizobium technology manual.”

Lyubun YV, et al. 2013. “Diverse effects of arsenic on selected enzyme activities in soil–plant–microbe interactions.” Journal of hazardous materials 262, 685-690.

Marschner H, Rimmington G. 1996. Mineral nutrition of higher plants, Wiley Online Library.

McGrath S, et al. 1988. “Effects of potentially toxic metals in soil derived from past applications of sewage sludge on nitrogen fixation by< i> trifolium repens</i> L.” Soil Biology and Biochemistry 20(4), 415-424.

Sá-Pereira P, et al. 2007. “Identification of an arsenic resistance mechanism in rhizobial strains.” World Journal of Microbiology and Biotechnology 23(10), 1351-1356.

Santamaria P. 2006. “Nitrate in vegetables: toxicity, content, intake and EC regulation.” Journal of the Science of Food and Agriculture 86(1), 10-17.

Shanehbandi D, et al. “Molecular Study of Methicillin Resistant and Enterotoxigenic Staphylococcus aureus Isolates from Traditional Cheeses in the North West of Iran.”

Shanehbandi D, et al. 2013. “Vibration and glycerol‐mediated plasmid DNA transformation for Escherichia coli.” FEMS microbiology letters 348(1), 74-78.

Somasegaran P, Hoben HJ. 1994. Handbook for rhizobia: methods in legume-Rhizobium technology, Springer-Verlag New York Inc.

Wilharm G, et al. 2010. “A simple and rapid method of bacterial transformation.”Journal of microbiological methods 80(2), 215-216.

Related Articles

Cytogenetic and pathological investigations in maize × teosinte hybrids: Chromosome behaviour, spore identification, and inheritance of maydis leaf blight resistance

Krishan Pal, Ravi Kishan Soni, Devraj, Rohit Kumar Tiwari, Ram Avtar, J. Biodiv. & Environ. Sci. 27(2), 70-76, August 2025.

Conservation and trade dynamics of non-timber forest products in local markets in south western Cameroon

Kato Samuel Namuene, Mojoko Fiona Mbella, Godswill Ntsomboh-Ntsefong, Eunice Waki, Hudjicarel Kiekeh, J. Biodiv. & Environ. Sci. 27(2), 58-69, August 2025.

Overemphasis on blue carbon leads to biodiversity loss: A case study on subsidence coastal wetlands in southwest Taiwan

Yih-Tsong Ueng, Feng-Jiau Lin, Ya-Wen Hsiao, Perng-Sheng Chen, Hsiao-Yun Chang, J. Biodiv. & Environ. Sci. 27(2), 46-57, August 2025.

An assessment of the current scenario of biodiversity in Ghana in the context of climate change

Patrick Aaniamenga Bowan, Francis Tuuli Gamuo Junior, J. Biodiv. & Environ. Sci. 27(2), 35-45, August 2025.

Entomofaunal diversity in cowpea [Vigna unguiculata (L.) Walp.] cultivation systems within the cotton-growing zone of central Benin

Lionel Zadji, Roland Bocco, Mohamed Yaya, Abdou-Abou-Bakari Lassissi, Raphael Okounou Toko, J. Biodiv. & Environ. Sci. 27(2), 21-34, August 2025.

Biogenic fabrication of biochar-functionalized iron oxide nanoparticles using Miscanthus sinensis for oxytetracycline removal and toxicological assessment

Meenakshi Sundaram Sharmila, Gurusamy, Annadurai, J. Biodiv. & Environ. Sci. 27(2), 10-20, August 2025.

Bacteriological analysis of selected fishes sold in wet markets in Tuguegarao city, Cagayan, Philippines

Lara Melissa G. Luis, Jay Andrea Vea D. Israel, Dorina D. Sabatin, Gina M. Zamora, Julius T. Capili, J. Biodiv. & Environ. Sci. 27(2), 1-9, August 2025.

Effect of different substrates on the domestication of Saba comorensis (Bojer) Pichon (Apocynaceae), a spontaneous plant used in agroforestry system

Claude Bernard Aké*1, Bi Irié Honoré Ta2, Adjo Annie Yvette Assalé1, Yao Sadaiou Sabas Barima1, J. Biodiv. & Environ. Sci. 27(1), 90-96, July 2025.