Leaf area index and light distribution in olive tree canopies (Olea europaea L.)

Paper Details

Research Paper 01/05/2016
Views (705)
current_issue_feature_image
publication_file

Leaf area index and light distribution in olive tree canopies (Olea europaea L.)

Mouna Aïachi Mezghani, Gouta Hassouna, Laaribi Ibtissem, Foued Labidi
Int. J. Agron. & Agric. Res. 8(5), 60-65, May 2016.
Copyright Statement: Copyright 2016; The Author(s).
License: CC BY-NC 4.0

Abstract

The leaf area index (LAI) and the spatial leaf arrangements are the main factors which influenced the radiant energy distribution within the tree. The leaf area index has been shown to be an important factor of the olive productivity. Although, the photosynthetically active radiation intercepted by leaves (PAR) is the main environmental factor that determined the dry matter production, which is the main source of energy for the photosynthesis. Therefore, a commercial sensor for LAI determination (Sun scan DELTA-T Devices Ltd), was tested for olive trees, in an olive orchard located near Sousse, central Tunisia (36N, 10E). The plants were cultivated at 7m × 7m and trained on vase system. Measurements were made at two tree’s layers; on lower and upper part of the canopy and on the four cardinal directions (north, south, east and west). The results showed that the LAI was more important on the lower part of the canopy than on the upper one for all directions. LAI was also higher on South and East side of tree. The Incident Photosynthetically Active Radiation PARI, was quite constant for all directions. However, the transmitted fraction PART decreased inside the tree canopy. The lower part of the canopy was less shaded for the vase tree form. There is a significant negative relationship between LAI and ratio PART/PARI. These results will be the fundamental basis of the olive pruning basis and to establish new intensive olive orchards with fully developed canopies which intercepted the maximum solar radiation.

Aïachi Mezghani M. 2014. Olive Variety Suitability and Training System for Modern Olive Growing: Plant Growth and Yield Components. Editor: Antonella de Leonardis, Virgin Olive oil: Production, composition, uses and benefits for man, Chapter 7, p. 97-119.

Arias D, Calvo-Alvarado J, Dohrenbusch A. 2007. Calibration of LAI-2000 estimate leaf Area index (LAI) and assessment of its relationship with stand productivity in six native and introduced trees species in Costa Rica. Forest Ecology and Management 247, 185-193.

Asner GP, Scurlock JMO, Hicke JA. 2003. Global synthesis of leaf area index observations: implications for ecological and remote sensing studies. Global. Ecological Biogeography 12, 191-205.

Bongi G, Palliotti A. 1994. Olive. In. B Schaffer et PC Anderson (eds), Handbook of environmental physiology of fruit crop, CRC Press Inc, USA p. 165-182.

Bonhomme R, Chartier P. 1972. The interpretation and automatic measurement of hemispherical photographs to obtain sunlit foliage area and frequency. Israel Journal Agricultural Research 22, 53-61.

Cutini A, Matteucci G, Mugnozza GS. 1998. Estimation of leaf area index with the Li-Cor LAI 2000 in deciduous forests. Forest Ecological Management 105, 55-65.

Ganis A. 1997. Radiation transfer estimate in a row cannopy: a simple procedure. Agricultural and Forest Meteorology 88, 67-76.

Pastor M, Humanes J. 1990. Plantation density experiments of non-irrigated olive groves in Andalucia. Acta horticulturae 286, 297-29.

Pastor M. 1983. Plantation density. Proceedings of International Course F.A.O. on fertilisation and intensification of olive cultivation, Cordoba, p. 160-176.

Pastor Munõz-Cobo M, Hidalgo Moya JC, Vega Macias V, Fereres Castieel E. 2006. Variabilidad agronomico y economico de las plantaciones superintensivas en Andalucia. Journées d’études relatives au développement de l’oléiculture à huile.

Mariscal MJ, Orgaz F, Villalobos FJ. 2000. Modelling and measurement of radiation interception by olive canopies. Agricultural and Forest Meteorology 100, 183-197.

Tombesi A. 2006. Planting systems, canopy management and mechanical harvesting. In : Recent advances in olive industry, Special seminars and invited lectures. Olivebioteq, November 2006, Marsala, Mazara Del Vallo, Italy, Alcamo: Presso Campo pp. 307-316.

Villalobos FJ, Orgaz F, Mateos L. 1995. Non destructive measurement of leaf area in olive (Olea europaea L.) trees using a gap inversion method. Agricultural and Forest Meteorology 73, 29-42.

Related Articles

Botanical-based strategies for sustainable whitefly (Bemisia tabaci) management and tomato leaf curl virus suppression

P. G. Maina, R. K. Birithia, G. N. Kamotho, Int. J. Agron. & Agric. Res. 27(2), 1-11, August 2025.

Intertidal seagrass habitat and its macroinvertebrate assemblages in Baylimango, Dapitan City

MA. Dulce C. Guillena, Int. J. Agron. & Agric. Res. 27(1), 16-26, July 2025.

Impact of moisture pit planting on growth and yield of upland Taro [Colocasia esculenta (L.) Schott]: A climate-smart strategy

J. K. Macharia, T. E. Akuja, D. M. Mushimiyimana, Int. J. Agron. & Agric. Res. 27(1), 8-15, July 2025.

Effects of three essential oils on the phytohormones production against Magnaporthe oryzae B.C. Couch, A rice blast pathogen

Ouattara Souleymane, Sama Hemayoro, Sérémé Abdoulaye, Koita Kadidia, Int. J. Agron. & Agric. Res. 27(1), 1-7, July 2025.

Boro rice cultivation practices and adaptive strategies of farmers to flash floods in Sylhet haor basin

Nurunnaher Akter, Md. Rafiqul Islam, Md. Abdul Karim, Md. Giashuddin Miah, Md. Mizanur Rahman, Int. J. Agron. & Agric. Res. 26(6), 7-18, June 2025.

Technology adoption and its impact on environmental and socioeconomic outcomes for vegetable producers in Svay Rieng Province, Cambodia

Hong Chhun, Chun Nimul, Buntong Borarin, Serey Mardy, Sao Vibol, Chan Bunyeth, Tum Saravuth, Ros Vanchey, Int. J. Agron. & Agric. Res. 26(6), 1-6, June 2025.

Effect of pigeon pea (Cajanus cajan) border crop on the control of cotton bollworms

Lovemore Mutaviri, Washington Mubvekeri, Int. J. Agron. & Agric. Res. 26(5), 122-127, May 2025.