Lignocellulolytic activities of culturable marine woodborers’ gut microbiota

Paper Details

Research Paper 01/05/2017
Views (449) Download (9)
current_issue_feature_image
publication_file

Lignocellulolytic activities of culturable marine woodborers’ gut microbiota

Bosire Carren M, Abubakar Laila U
Int. J. Micro. Myco.5( 5), 1-18, May 2017.
Certificate: IJMM 2017 [Generate Certificate]

Abstract

In this study, pure bacterial and fungal isolates obtained by culturing inoculum from woodborers’ gut were induced to produce lignocellulolytic enzymes in a variety of substrates and their lignocellulolytic activities investigated. The inocula were obtained from woodborers Dicyathifer mannii (Wright, 1866), Sphaeroma terebrans (Bate, 1866) and Cirolana sp. The cultures used enrichment media containing ground Rhizophora mucronata wood, filter paper, carboxyl methylcellulose, avicel cellulose, beechwood xylan and cellobiose as sole carbon sources. The microorganisms showed generally low ligninolytic activities but commendable cellulolytic and hemicellulolytic activities. β-glucosidase and xylanase activities were the highest activities exhibited by both bacterial and fungal isolates. The highest was bacterial β-glucosidase activity (94.55 U/ml) shown by Lysinibacillus boronitolerans from S. terebrans gut cultured in a medium containing avicel cellulose. Xylanase activity was also relatively high (up to 91.7U/ml) cultured in media containing cellobiose and xylan. The fungal isolate with the highest cellulolytic activity was β-glucosidase activity of 38.34 U/ml shown by Aspergillus niger obtained from the gut of S. terebrans and cultured in a medium containing avicel cellulose as a sole carbon source. Avicel cellulose, cellobiose and xylan beech wood were found to be best inducers of cellulase and hemicellulase production. Lysinibacilli and Aspergilli in this study present interesting advantages that make them good models for studying physiological approaches to enzyme production and lignocellulose degradation.

VIEWS 40

Acharya D K, Chabhadiya SB, Shah AJ, Shilpkar P, Acharya PB, Modi HA. 2010. Enzyme profiling of lignocellulolytic fungi. International Journal of Biological and Chemical Sciences 4(2), 443-449. ISSN: 1991-8631.

Amore A, Vincenza F. 2013. Regulation of Cellulase and Hemicellulase Gene Expression in Fungi. Current Genomics 14(4), 230-249. http://dx.doi.org/10.2174/1389202911314040002.

Aro N, Pakula T, Penttila M. 2005. Transcriptional regulation of plant cell wall degradation by filamentous fungi. FEMS microbiology reviews 29(4), 719-39. http://dx.doi.org/10.1016/j. femsre.2004.11.006.

Beeson WT, Vu VV, Span EA, Phillips CM, Marletta MA. 2015. Cellulose degradation by polysaccharide mono oxygenases. Annual Reviews of Biochemistry 84, 923-946. http://dx.doi.org/10.1146/annurev-biochem060614-034439.

Beguin P. 1990. Molecular Biology of Cellulose Degradation. Annual Reviews of Microbiology 44, 219-48. http://dx.doi.org/10.1146/annurev.mi.44.

Bisaria VS, Mishra S. 1989. Regulatory aspects of cellulase biosynthesis and secretion. Critical Reviews in Biotechnology 9(2), 61-103. http://dx.doi.org/ 10.3109/07388558909040616.

Bosire CM, Abubakar L, Ochanda J, Bosire, JO. 2013b. Lignocellulolytic activities of crude gut extracts of marine woodborers Dicyathifer mannii and Sphaeroma terebrans. International Journal of Biosciences (IJB) 3(12), 134-144. http://dx.doi.org/ 10.12692/ijb/3.12.134-144.

Bosire CM, Bosire JO, Abubakar LU, Ochanda JO. 2015. Impact of Marine Woodborers Dicyathifer mannii, Sphaeroma terebrans and Cirolana sp. on the Mangroves of the Kenyan Coast. International Journal of Ecology and Environmental Sciences 41(1-2), 23-31. ISSN: 2320-5199.

Bosire CM, Ochanda J, Abubakar L, Bosire JO. 2013a. Culturable gut microbiota of marine wood boring invertebrates Dicyathifer manni (wright, 1866), Sphaeroma terebrans (Bate, 1866) and Cirolana sp. Journal of Biodiversity and Environmental Sciences (JBES). 3(11), 12-20. ISSN: 2222-3045.

Bugg TDH, Ahmad M, Hardiman EM, Rahmanpour R. 2011. Pathways for degradation of lignin in bacteria and fungi. Natural Products Reports 28,1883-1896. http://dx.doi.org/10. 1039/c1n.

Busk PK, Lange L. 2015. Classification of fungal and bacterial lytic polysaccharide mono oxygenases. BMC Genomics 16, 368. http://dx.doi.org/10.1186/ s12864-015-1601-6.

Camarero S, Sarkar S, Ruiz DF, Martinez MJ, Martinez AT. 1999. Description of a versatile peroxidase involved in the natural degradation of lignin that has both manganese peroxidase and lignin peroxidase substrate interaction sites. Journal of Biological Chemistry 274, 10324-10330. http://dx.doi.org/10.1074/jbc.274.15.10324.

Chen XA, Ishida N, Todaka N, Nakamura R, Maruyama J.2010. Promotion of efficient Saccharification of crystalline cellulose by Aspergillus fumigatus Swo1. Applied and Environmental Microbiology 76, 2556–2561. ISSN:1098-5336.

Chikamatsu G, Shirai K, Kato M, Kobayashi T, Tsukagoshi N. 1999. Structure and expression properties of the endo-beta-1, 4-glucanase A gene from the filamentous fungus Aspergillus nidulans. FEMS Microbiology Letters 175(2), 239-45.ISSN:1574-6968.

Chun SG, Kok TT, Keat TL, Subhash B. 2010. Bio-ethanol from lignocellulose: Status, perspectives and challenges in Malaysia. Bioresource Technology 101, 4834-4841.

De Souza WR, de Gouvea PF, Savoldi M, Malavazi I, Bernardes LAD, Goldman MHS, et al. 2011. Transcriptome analysis of Aspergillus niger grown on sugarcane bagasse. Biotechnology for Biofuels 4, 40. http://dx.doi.org/10.1186/1754-6834-4-40.

De Souza WR. 2013. Microbial Degradation of Lignocellulosic Biomass. In: Sustainable Degradation of Lignocellulosic Biomass- Techniques, Application and Commercialization. Intech 207-247. http://dx. doi.org/10.5772/54325.

De Vries RP, van de Vondervoort PJ, Hendriks L, van de Belt M, Visser J. 2002. Regulation of the alpha-glucuronidase-encoding gene (agu A) from Aspergillus niger. Molecular Genetics and Genomics 268(1), 96-102. http://dx.doi.org/10. 1007/s00438-002-0729-7.

De Vries RP, Visser J, de Graaff LH. 1999. CreA modulates the XlnR-induced expression on xylose of Aspergillus niger genes involved in xylan degradation. Research in Microbiology 150(4), 281-5.ISSN: 0923-2508.

De Vries RP, Visser J. 1999. Regulation of the feruloyl esterase (fae A) gene from Aspergillus niger. Applied Environmental Microbiology 65(12), 5500-3. ISSN: 5500-5503. http://aem.asm.org/ content/65/12/5500.

De Vries RP, Visser J. 2001. Aspergillus enzymes involved in degradation of plant cell wall polysaccharides. Microbiology and Molecular Biology Reviews 65(4), 497-522. http://dx.doi.org/10.1128/MMBR.65.4.497522.2001.

De Vries RP. 2003. Regulation of Aspergillus genes encoding plant cell wall polysaccharide-degrading enzymes; relevance for industrial production. Applied Microbiology and Biotechnology 61(1), 10-20. http://dx.doi.org/ 10.1007/s00253-002-1171-9.

Denise BM, Maria LA, Elba B, Julio SAN, Sergio HK. 1996. Colorimetric assay for lignin peroxidase activity determination using methylene blue as substrate. Biotechnological Techniques 10(4), 273-276. http://dx.doi.org/10.1007/BF00184028.

Desai SS, Tennali GB, Channur N, Anup AC, Deshpande G, Azhar Murtuza BP. 2011. Isolation of laccase producing fungi and partial characterization of laccase. Biotechnology, Bioinformatics and Bioengineering 1(4), 543-549.ISSN: 2249-9075.

Ding SJ, Ge W, Buswell JA. 2001. Endoglucanase I from the edible straw mushroom, Volvariella volvacea. Purification, characterization, cloning and expression. European Journal of Biochemistry 268(22), 5687-95.ISSN: 0014-2956.

Fakoussa RM, Frost PJ. 1999. In vivo-decolorization of coal-derived humic acids by laccase-excreting fungus Trametes versicolor. Applied Microbiology and Biotechnology 52, 60-65. http://dx.doi.org/10.1007/s002530051487.

Fekete E, Padra J, Szentirmai A, Karaffa L. 2008. Lactose and D-galactose catabolism in the filamentous fungus Aspergillus nidulans. Acta Microbiologica et Immunologica Hungarica 55(2), 119-24. http://dx.doi.org/10.1556/ AMicr.55.2008.2.4.

Fowler T, Brown RD, Jr. 1992. The bgl1 gene encoding extracellular beta-glucosidase from Trichoderma reesei is required for rapid induction of the cellulase complex. Molecular Microbiology 6(21), 3225-35. ISSN:1365-2958.

Galazka JM, Tian CG, Beeson WT, Martinez B, Glass NL, Cate JHD. 2010. Cellodextrin. Transport in Yeast for Improved Biofuel Production. Science 330(6000), 84-6. http://dx.doi.org/10.1126/ science.1192838.

Goldemberg J, Coelho ST. 2004. Renewable energy – traditional biomass vs. modern biomass. Energy Policy 32(6), 711-4. http://dx.doi.org/10.1016/S03014215(02)00340-3.

Gregory ACE, O’Connell APO, Boldwell P. 1998. Xylans. Biotechnology and Genetic Engineering Reviews 15, 439-455. http://dx.doi.org/10.1080/02648725.1998.10647965.

Gritzali M, Brown RDJr. 1979. The cellulase system of Trichoderma: relationship betweeen purified extracellular enzymes from induced or cellulose-grown cells. Advances in Chemistry 181, 237-60. http://dx.doi.org/10.1021/ba-1979-0181.ch012.

Hahn-Hagerdal B, Karhumaa K, Fonseca C, Spencer-Martins I, Gorwa-Grauslund MF. 2007. Towards industrial pentose-fermenting yeast strains. Applied Microbiology and Biotechnology 74(5), 937-53. http://dx.doi.org/10.1007/s00253-006-0827-2.

Himmel ME. 2007. Biomass recalcitrance: engineering plants and enzymes for biofuels production. Science 315(5827), 804-807. http://dx.doi.org/10.1126/science.1137016.

Howard RL, Abotsi E, Jansen van Rensburg EL, Howard S. 2003. Lignocellulose biotechnology: Issues of bioconversion and enzyme production. African Journal of Biotechnology 2(12), 602-619.ISSN: 1684-5315.

Hrmova M, Petrakova E, Biely P. 1991. Induction of cellulose- and xylan-degrading enzyme systems in Aspergillus terreus by homo- and heterodisaccharides composed of glucose and xylose. Journal of General Microbiology 137(3), 541-7.

Ilmen M, Saloheimo A, Onnela ML, Penttila ME. 1997. Regulation of cellulase gene expression in the filamentous fungus Trichoderma reesei. Applied and Environmental Microbiology 63(4), 1298-306. ISSN:1098-5336.

Jun-Seok, Soon-Chul P, Jin-Woo K, Jae CP, Sung-Min P, Jin-Suk L. 2010. Production of bioethanol from lignocellulose: Status and perspectives in Korea. Bioresource Technology 101, 4801-4805. https://doi.org/10.1016/j.biortech. 2009.12.059.

Lee J. 1997. Biological conversion of lignocellulosic biomass to ethanol. Journal of Biotechnology, 56, 1-24. https://doi.org/10.1016 /S0168-1656(97)00073-4.

Leonowicz A, Grzywnowickz K. 1981. Quantitative estimation of laccase forms in some white-rot fungi using syringaldazine as a substrate. Enzyme and Microbial Technology 3, 55-58. https://doi.org/10.1016/0141-0229(81)90036-3.

Libmond S, Savoie JM. 1993. Degradation of wheat straw by a microbial community—stimulation by a polysaccharides complex. Applied Microbiology and Biotechnology 40, 567-74. http://dx.doi.org/10. 1007/BF00175749.

Lopez MJ, Vargas-Garc´ıa MC, Su´arez-Estrella F, Nichols NN, Dien BS, Moreno J. 2007. Lignocellulose-degrading enzymes produced by the ascomycete Coniochaeta ligniaria and related species: Application for a lignocellulosic substrate treatment. Enzyme and Microbial Technology 40, 794-800. http://dx.doi.org/10.1016/j.enzmictec.2006.06.012

Lynd LR, Weimer PJ, van Zyl WH, Pretorius IS. 2002. Microbial cellulose utilization: Fundamentals and Biotechnology. Microbiology and Molecular Biology Reviews 66(4), 739. https://doi.org/10.1128/MMBR.66.3.506-577.2002.

Mach RL, Strauss J, Zeilinger S, Schindler M, Kubicek CP. 1996. Carbon catabolite repression of xylanase I (xyn1) gene expression in Trichoderma reesei. Molecular Microbiology 21(6), 1273-81. https://doi.org/10.1046/j.13652958.1996.00094.x

Mach-Aigner AR, Omony J, Jovanovic B, van Boxtel AJ, de Graaff LH. 2012. d-Xylose concentration-dependent hydrolase expression profiles and the function of CreA and XlnR in Aspergillums niger. Applied and Environmental Microbiology 78(9), 3145-55. https://doi.org/10. 1128/AEM.07772-11.

Madson PW, Tereck CD. 2004. Lignocelluloses Feedstocks for Ethanol Production: The Ultimate Renewable Energy Source. In: Ethanol as Transportation Fuel-Production Technology Developments. 2004 AIChE Annual Meeting. Austin Texas.

Majumdar S, Lukk T, Solbiati JO, Bauer S, Nair SK, Cronan JE, Gerlt JA. 2014. Roles of small laccases from Streptomyces in lignin degradation. Biochemistry 53, 4047-4058. https://doi.org/10.1021/bi500285t.

Margolles-Clark M, Ilmen M, Penttila M. 1997. Expression patterns of 10 hemicelluloses genes from filamentous fungus Trichoderma reesei on various carbon sources. Journal of Biotechnology 57, 167-79.

Martinez D, Berka RM, Henrissat B, Saloheimo M, Arvas M, Baker SE, et al. 2008. Genome sequencing and analysis of the biomass-degrading fungus Trichoderma reesei (syn. Hypocrea jecorina).Nature Biotechnology 26(5), 553-60. https://doi.org/10.1038/nbt1403.

Mernitz G, Koch A, Henrissat B, Schulz G. 1996. Endoglucanase II (EGII) of Penicillium janthinellum: cDNA sequence, heterologous expression and promotor analysis. Current Genetics 29(5), 490-5. https://doi.org/10.1007/BF02221519.

Miller GL.1959. Use of dinitrosalicylic acid and reagent for determination of reducing sugars. Analytical Chemistry 31, 426-428. https://doi. org/10.1021/ac60147a030.

Noratiqah K, Madihah Md S, Adibah Y, Chun SC. 2016. Production of Lignocellulolytic Enzymes by Micro organisms Isolated from Bulbitermes sp. Termite Gut in Solid-State Fermentation. Waste and Biomass Valorisation 7(2), 357-371. https://doi.org/10.1007/s12649-015-9453-5.

Orth AB, Royse DJ, Tien M. 1993. Ubiquity of lignin-degrading peroxidises among various wood-degrading fungi. Applied and Environmental Microbiology 59, 4017-23. ISSN: 0099-2240.

Pauly M, Andersen LN, Kauppinen S, Kofod LV, York WS, Albersheim P, et al. 1999. A xyloglucan-specific endo-beta-1,4-glucanase from Aspergillus aculeatus: expression cloning in yeast, purification and characterization of the recombinant enzyme. Glycobiology 9(1), 93-100. https://doi.org/ 10.1093/glycob/9.1.93.

Payne CM, Knott BC, Mayes HB, Hansson H, Himmel ME, Sandgren M, Stahlberg J, Beckham GT. 2015. Fungal cellulases. Chemical Reviews 115, 1308-1448. https://doi.org/10. 1021/cr500351c.

Pel HJ, de Winde JH, Archer DB, Dyer PS, Hofmann G, Schaap PJ, et al. 2007. Genome sequencing and analysis of the versatile cell factory Aspergillus niger CBS 513.88. Nature Biotechnology 25(2), 221-31. https://doi.org/10. 1038/nbt1282.

Pillai NK. 1961. Wood – boring Crustacea of India. Manager of Publications, Govt. of India.Press, New Delhi 61.

Pollegioni L, Tonin F, Rosini E. 2015.Lignin-degrading enzymes. FEBS Journal 282, 1190-1213. https://doi.org/10.1111/febs.13224.

Pollet A, Delcour JA, Courtin CM. 2010. Structural determinants of the substrate specificities of xylanases from different glycoside hydrolase families. Critical Reviews in Biotechnology 30(3), 176-91. https://doi.org/10.3109/07388551003645599.

Risna RA, Suhirman. 2002. Ligninolytic enzyme production by Polyporaceae from Lombok, Indonesia. Fungal Diversity 9, 123-134. ISSN:1560-2745.

Sahay R, Yadav RS, Yadav KD. 2008. Purification and Characterization of Extracellular Laccase Secreted by Pleurotus sajor-caju MTCC 141. Chinese Journal of Biotechnology 24(12), 2068-2073. ISSN:1042-749X.

Salame TM, Knop D, Levinson D, Mabjeesh SJ, Yarden O. 2012. Release of Pleurotus ostreatus Versatile-Peroxidase from Mn2 + Repression Enhances Anthropogenic and Natural Substrate Degradation. PLoS ONE 7(12), e52446. http://dx.doi.org/10.1371/journal.pone.0052446.

Salmones D, Mata G. 2002. Detection of Extracellular Enzymes Produced by Pleurotus spp Grown on Coffee Pulp.Mushroom Biology and Mushroom Products. Sanchez et al. (Eds) 105(3), 878-968.ISBN 968-878-105-3.

Santhakumaran LN. 1996. Marine wood- borers from mangroves along Indian Coasts. Journal of Indian Academy of Wood Science 26, 1-14. ISSN: 0972-172X.

Sherief AA, El-Tanash AB, Temraz AM. 2010. Lignocellulolytic enzymes and substrate utilization during growth and fruiting of Pleurotus ostreatus on some solid wastes. International Journal of Environmental Science and Technology 3, 18-34. http://dx.doi.org/10.3923/jest.2010.18.34.

Singh CS, Singh VK, Tiwari SP, Sharma R. 2011. Ligninolytic activity and lignocelluloses degradation profiles by natural isolates of Pleurotus flabellatus during mushroom cultivation on rice straw. Asian Journal of Experimental Biological Sciences 2(1), 158-161. ISSN:2248-9223.

Sun Y, Cheng JY. 2002. Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresource Technology 83, 1-11. http://dx.doi.org/10.1016/S0960-8524(01)00212.

Sunna A, Antranikian G. 1997. Xylanolytic enzymes from fungi and bacteria. Critical Reviews in Biotechnology 17(1), 39-67. http://dx.doi.org/ 10.3109/07388559709146606.

Tan KT, Lee KT, Mohamed AR. 2008. Role of energy policy in renewable energy accomplishment: the case of second-generation bioethanol. Energy Policy 36, 3360–3365. nISSN: 0301-4215.

Tengerdy RP, Szakacs G. 2003. Bioconversion of lignocelluloses in solid substrate fermentation. Biochemical Engineering Journal 13, 169-179. https://doi.org/10.1016/S1369-703X(02)00129-8.

Turner RD. 1966. The Identification of Molluscan Borers. Report to the Governemnt of India. FAO Report No. TA. 2155, 30.

Turner RD. 1971. Identification of marine wood -boring molluscs. In: Jones, E.B.G. and Eltringham, S.K. (Eds). Marine Borers, Fungi and Fouling Organisms. OECD, Paris 17-64.

Vaaje-Kolstad G, Westereng B, Horn SJ, Liu ZL, Zhai H, Sørlie M, Eijsink VGH. 2010. An oxidative enzyme boosting the enzymatic conversion of recalcitrant polysaccharides. Science 330, 219-222. http://dx.doi.org/10. 1126/science.1192231.

Vaheri M, Leisola M. Kauppinen V. 1979. Transglycosylation products of cellulose system of Trichoderma reesei. Biotechnology Technology      1, 696-9.

Van den Brink J, de Vries RP. 2011. Fungal enzyme sets for plant polysaccharide degradation. Applied Microbiology and Biotechnology 91, 1477-1492. http://dx.doi.org/ 10.1007/s00253-011-3473-2.

Watanabe H, Tokuda G. 2010. Cellulolytic systems in insects. Annual Review of Entomology 55, 609-632. http://dx.doi.org/10.1146/annurev-ento-112408-085319.

Yadav P, Yadav KS, Yadav M, Singh VK. 2009. Purification of lignin peroxidase from the juice of Musa paradisiaca stem. Oriental Journal of Chemistry 25(4), 1113-1116. ISSN: 0970-020X.

Zeilinger S, Mach RL, Schindler M, Herzog P, Kubicek CP. 1996. Different inducibility of expression of the two xylanase genes xyn1 and xyn2 in Trichoderma reesei. Journal of Biological Chemistry 271(41), 25624-9. ISSN: 0021-9258.