Photo catalytic degradation of acrylonitrile in aqueous solutions using nano titanium Dioxide

Paper Details

Research Paper 01/12/2013
Views (649)
current_issue_feature_image
publication_file

Photo catalytic degradation of acrylonitrile in aqueous solutions using nano titanium Dioxide

Majid Aliabadi, Aliyeh Abyar
J. Biodiv. & Environ. Sci. 3(12), 36-42, December 2013.
Copyright Statement: Copyright 2013; The Author(s).
License: CC BY-NC 4.0

Abstract

In the present study, photocatalytic decomposition of Acrylonitrile (ACN) using nano titanium dioxide was investigated. The effects of influential parameters such as ACN initial concentration, solution pH, catalyst loading, inorganic salts and the type of light sources on the reaction rate were evaluated, and optimum conditions were determined. The results of experiments showed that catalyst loading of 0.1 g/l TiO2 was the optimum and further increase in the TiO2 loading reduced removal efficiency. The highest photodegradation reaction rate was obtained in slightly alkaline condition rather than neutral or acidic condition. The experimental data showed that the photocatalytic degradation of ACN can be simulated by using pseudo-first-order reaction rate expression. It was concluded that photocatalytic process offers an interesting prospect for its application to the treatment of wastewater streams containing ACN.

Abdullah M, Low G, Matthews R W. 1990. Effects of common inorganic ions on rates of photocatalytic oxidation of organic carbon over illuminated titanium dioxide. Journal of Physical Chemistry 94, 6820–6825.

Aliabadi M, Raisi A, Aroujalian A. 2011. Pervaporative removal of acrylonitrile from aqueous streams through polydimethylsiloxane membrane. Water Science and Technology 63 (12), 2820–2826.

Aliabadi M, Sagharigar T. 2011. Photocatalytic Removal of Rhodamine B from Aqueous Solutions Using TiO2 Nanocatalyst. Journal of Applied Environmental and Biological Sciences 1 (12), 620– 626.

Chang C N, Lin, J G, Chao A C, Cho B C, Yu R F. 1997. The pretreatment of acrylonitrile and styrene with the ozonation process. Water Science and Technology 36 (2–3), 263–270.

Freeman R A, Schroy J M, Klieve J R, Archer S R. 1984. Air stripping of acrylonitrile from waste-treatment systems. Environmental Progress 3 (1), 26–33

Friesen D A, Headley J V, Langford C H. 1999. The photooxidative degradation of N-methylpyrrolidinone in the presence of CS3PW12O40 and TiO2 colloid photocatalysts. Environmental Science and Technology 33, 3193– 3198.

Haque F, Vaisman E, Langford C H, Kantzas A. 2005. Preparation and performance of integrated photocatalyst adsorbent (IPCA) employed to degrade model organic compounds in synthetic wastewater. Photochemistry and Photobiology A: Chemistry 169, 21–27.

Kabra K, Chaudhary R, Sawhney R L. 2004. Treatment of azardous organic and inorganic compounds through aqueous-phase photocatalysis: a review. Industrial and Engineering Chemistry Research 43, 7683–7696.

Kumar A, Prasad B, Mishra I M. 2008. Adsorptive removal of acrylonitrile by commercial grade activated carbon: Kinetics, equilibrium and thermodynamics. Journal of Hazardous Materials 152, 589–600.

Sauer T, Neto G C, Jose H J, Moreira R F. 2002. Kinetics of photo catalytic degradation of reactive dyes in a TiO2 slurry reactor. Photochemistry and Photobiology A: Chemistry 149, 147–154.

Shakerkhatibi M, Ganjidoust H, Ayati B, Fatehifar E. 2010. Performance of aerated submerged fixed-film bioreactor for treatment of acrylonitrile-containing wastewater. Iranian Journal of Environmental Health Science and Engineering 7 (4), 327–336.

Shin Y H, Shin N C, Veriansyah B, Kim J, Lee Y W. 2009. Supercritical water oxidation of wastewater from acrylonitrile manufacturing plant. Journal of Hazardous Materials 163, 1142–1147.

Wang C C, Lee C M, Cheng P W. 2001. Acrylonitrile removal from synthetic wastewater and actual industrial wastewater with high strength nitrogen using a pure bacteria culture. Water Science and Technology 43 (2), 349–354.

Xu X R, Li S X, Li X Y, Gu J D, Chen F, Li X Z, Li H B. 2009. Degradation of n-butyl benzyl phthalate using TiO2/UV. Journal of Hazardous Materials 164, 527–532.

Zhang J, Pierce G E. 2009. Laboratory-scale biofiltration of acrylonitrile by Rhodococcus rhodochrous DAP 96622 in a trickling bed bioreactor. Journal of Industrial Microbiology and Biotechnology 36 (7), 971–979.

Related Articles

Agroforestry in woody-encroached Sub-Saharan savannas: Transforming ecological challenges into sustainable opportunities

Yao Anicet Gervais Kouamé, Pabo Quévin Oula, Kouamé Fulgence Koffi, Ollo Sib, Adama Bakayoko, Karidia Traoré, J. Biodiv. & Environ. Sci. 27(3), 10-22, September 2025.

Extreme rainfall variability and trends in the district of Ouedeme, municipality of Glazoue (Benin)

Koumassi Dègla Hervé, J. Biodiv. & Environ. Sci. 27(3), 1-9, September 2025.

Heterosis breeding, general and specific combining ability and stability studies in pearl millet: Current trends

Ram Avtar, Krishan Pal, Kavita Rani, Rohit Kumar Tiwari, Mahendra Kumar Yadav, J. Biodiv. & Environ. Sci. 27(2), 117-124, August 2025.

Combining ability, heterosis and stability for yield and fibre quality traits in cotton: Breeding approaches and future prospects

Rohit Kumar Tiwari, Krishan Pal, R. P. Saharan, Ram Avtar, Mahendra Kumar Yadav, J. Biodiv. & Environ. Sci. 27(2), 109-116, August 2025.

Bridging the COPD awareness gap in marginalized populations: Findings from a multicentre study in Khalilabad, Sant Kabir Nagar, Uttar Pradesh, India

Anupam Pati Tripathi, Jigyasa Pandey, Sakshi Singh, Smita Pathak, Dinesh Chaudhary, Alfiya Mashii, Farheen Fatima, J. Biodiv. & Environ. Sci. 27(2), 97-108, August 2025.

Antioxidant and anti-inflammatory activity of Pleurotus citrinopileatus Singer and Pleurotus sajor-caju (Fr.) Singer

P. Maheswari, P. Madhanraj, V. Ambikapathy, P. Prakash, A. Panneerselvam, J. Biodiv. & Environ. Sci. 27(2), 90-96, August 2025.

Mangrove abundance, diversity, and productivity in effluent-rich estuarine portion of Butuanon River, Mandaue City, Cebu

John Michael B. Genterolizo, Miguelito A. Ruelan, Laarlyn N. Abalos, Kathleen Kay M. Buendia, J. Biodiv. & Environ. Sci. 27(2), 77-89, August 2025.

Cytogenetic and pathological investigations in maize × teosinte hybrids: Chromosome behaviour, spore identification, and inheritance of maydis leaf blight resistance

Krishan Pal, Ravi Kishan Soni, Devraj, Rohit Kumar Tiwari, Ram Avtar, J. Biodiv. & Environ. Sci. 27(2), 70-76, August 2025.