Review on antimicrobial applications of silver nanoparticles and use of plant extracts for its synthesis

Paper Details

Review Paper 01/05/2018
Views (411) Download (17)
current_issue_feature_image
publication_file

Review on antimicrobial applications of silver nanoparticles and use of plant extracts for its synthesis

Mudassir Khan, Gouhar Zaman, Fazal Jalil, Haseena Rauf, Shehla Gohar
Int. J. Biosci.12( 5), 238-246, May 2018.
Certificate: IJB 2018 [Generate Certificate]

Abstract

Metallic nanoparticles are mostly used in medical fields as it has small size and can easily be used in different applications. In this review, silver nanoparticles and its antimicrobial activities are elaborated for ease of study from different research papers. It has been proven by researchers that nanoparticles have antimicrobial properties. In all metallic nanoparticles, silver nanoparticles have much attention towards antimicrobial properties. Chemicals are used as reducing agents to synthesize nanoparticles, hence it can be used in various biological risks and activities because of its toxic nature also having environmental friendly nature. Biological molecules screened out from plant extracts are used in green synthesis as they are prominent over chemical methods. Plants have vital role in synthesis of metal nanoparticles because plants have biological molecules. This review describes plant diversity which mostly meets with silver nanoparticles having antimicrobial activities.

VIEWS 25

Ahmad A, Mukherjee P, Senapati S, Mandal D, Khan MI, Kumar R, Sastry M. 2003. Extracellular biosynthesis of silver nanoparticles using the fungus Fusarium oxysporum. Colloids and surfaces B: Biointerfaces 28(4), 313-318.

Alt V, Bechert T, Steinrücke P, Wagener M, Seidel P, Dingeldein E, Schnettler R. 2004. An in vitro assessment of the antibacterial properties and cytotoxicity of nanoparticulate silver bone cement. Biomaterials 25(18), 4383-4391.

Alt V, Bechert T, Steinrücke P, Wagener M, Seidel P, Dingeldein E, Schnettler R. 2004. Nanopartikuläres Silber. Der Orthopäde 33(8), 885-892.

Ankanna STNVKVP, TNVKV P, Elumalai EK, Savithramma N. 2010. Production of biogenic silver nanoparticles using Boswellia ovalifoliolata stem bark. Dig J Nanomater Biostruct 5(2), 369-372.

Ankanna STNVKVP, Tnvkv P, Elumalai EK, Savithramma N. 2010. Production of biogenic silver nanoparticles using Boswellia ovalifoliolata stem bark. Dig J Nanomater Biostruct 5(2), 369-372.

AshaRani PV, Low Kah Mun G, Hande MP, Valiyaveettil S. 2008. Cytotoxicity and genotoxicity of silver nanoparticles in human cells. ACS NANO 3(2), 279-290.

Aymonier C, Schlotterbeck U, Antonietti L, Zacharias P, Thomann R, Tiller JC, Mecking S. 2002. Hybrids of silver nanoparticles with amphiphilic hyperbranched macromolecules exhibiting antimicrobial properties. Chemical Communications 24, 3018-3019.

Baker C, Pradhan A, Pakstis L, Pochan DJ, Shah SI. 2005. Synthesis and antibacterial properties of silver nanoparticles. Journal of Nanoscience and Nanotechnology 5(2), 244-249.

Baruwati B, Polshettiwar V, Varma RS. 2009. Glutathione promoted expeditious green synthesis of silver nanoparticles in water using microwaves. Green Chemistry 11(7), 926-930.

Brady MJ, Lisay CM, Yurkovetskiy AV, Sawan SP. 2003. Persistent silver disinfectant for the environmental control of pathogenic bacteria. American Journal Of Infection Control 31(4), 208-214.

Burrell RE, McIntosh CL, Morris LR. 1995. U.S. Patent No. 5,454,886. Washington, DC: U.S. Patent and Trademark Office.

Cao Y, Jin R, Mirkin CA. 2001. DNA-Modified Core−Shell Ag/Au Nanoparticles. Journal of the American Chemical Society 123(32), 7961-7962.

Cho KH, Park JE, Osaka T, Park SG. 2005. The study of antimicrobial activity and preservative effects of nanosilver ingredient. Electrochimica Acta 51(5), 956-960.

Cohen MS, Stern JM, Vanni AJ, Kelley RS, Baumgart E, Field D, Summerhayes IC. 2007. In vitro analysis of a nanocrystalline silver-coated surgical mesh. Surgical infections 8(3), 397-404.

Danilczuk M, Lund A, Sadlo J, Yamada H, Michalik J. 2006. Conduction electron spin resonance of small silver particles. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 63(1), 189-191.

Eby DM, Schaeublin NM, Farrington KE, Hussain SM, Johnson GR. 2009. Lysozyme catalyzes the formation of antimicrobial silver nanoparticles. ACS NANO 3(4), 984-994.

Eby DM, Schaeublin NM, Farrington KE, Hussain SM, Johnson GR. 2009. Lysozyme catalyzes the formation of antimicrobial silver nanoparticles. ACS NANO 3(4), 984-994.

Feng QL, Wu J, Chen GQ, Cui FZ, Kim TN, Kim JO. 2000. A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus. Journal of Biomedical Materials Research 52(4), 662-668.

Ghosh SK, Kundu S, Mandal M, Pal T. 2002. Silver and gold nanocluster catalyzed reduction of methylene blue by arsine in a micellar medium. Langmuir 18(23), 8756-8760.

Goyal RN, Oyama M, Bachheti N, Singh SP. 2009. Fullerene C60 modified gold electrode and nanogold modified indium tin oxide electrode for prednisolone determination. Bioelectrochemistry 74(2), 272-277.

Haes AJ, Van Duyne RP. 2002. A nanoscale optical biosensor: sensitivity and selectivity of an approach based on the localized surface plasmon resonance spectroscopy of triangular silver nanoparticles. Journal of the American Chemical Society 124(35), 10596-10604.

Hatchett DW, White HS. 1996. Electrochemistry of sulfur adlayers on the low-index faces of silver. The Journal of Physical Chemistry 100(23), 9854-9859.

Kalishwaralal K, Deepak V, Ramkumarpandian S, Nellaiah H, Sangiliyandi G. 2008. Extracellular biosynthesis of silver nanoparticles by the culture supernatant of Bacillus licheniformis. Materials letters 62(29), 4411-4413.

Kaviya S, Santhanalakshmi J, Viswanathan B. 2011. Green synthesis of silver nanoparticles using Polyalthia longifolia leaf extract along with D-sorbitol: study of antibacterial activity. Journal of Nanotechnology 2011.

Khalil KA, Fouad H, Elsarnagawy T, Almajhdi FN. 2013. Preparation and characterization of electrospun PLGA/silver composite nanofibers for biomedical applications. Int J Electrochem Sci 8(3), 3483-3493.

Kim JS, Kuk E, Yu KN, Kim JH, Park SJ, Lee HJ, Kim YK. 2007. Antimicrobial effects of silver nanoparticles. Nanomedicine: Nanotechnology, Biology and Medicine 3(1), 95-101.

Kim KJ, Sung WS, Moon SK, Choi JS, Kim JG, Lee DG. 2008. Antifungal effect of silver nanoparticles on dermatophytes. J Microbiol Biotechnol 18(8), 1482-1484.

Kim S, Kim HJ. 2006. Anti-bacterial performance of colloidal silver-treated laminate wood flooring. International Biodeterioration & Biodegradation 57(3), 155-162.

Kirsner RS, Orsted H, Wright JB. 2001. The Role of Silver in Wound Healing Part 3 Matrix Metalloproteinases in Normal and Impaired Wound Healing: A Potential Role of Nanocrystalline Silver. Wounds 13, (3 SUPPL. C).

Klaus-Joerger T, Joerger R, Olsson E, Granqvist CG. 2001. Bacteria as workers in the living factory: metal-accumulating bacteria and their potential for materials science. TRENDS in Biotechnology 19(1), 15-20.

Klueh U, Wagner V, Kelly S, Johnson A, Bryers JD. 2000. Efficacy of silver-coated fabric to prevent bacterial colonization and subsequent device-based biofilm formation. J Biomed Mater Res Part B: Appl Biomater 53, 621-31.

Korbekandi H, Iravani S. 2012. Silver nanoparticles. In The delivery of nanoparticles. InTech.

Lara HH, Ayala-Nuñez NV, Ixtepan-Turrent L, Rodriguez-Padilla C. 2010. Mode of antiviral action of silver nanoparticles against HIV-1. Journal of Nanobiotechnology 8(1), 1.

Larguinho M, Baptista PV. 2012. Gold and silver nanoparticles for clinical diagnostics from genomics to proteomics. Journal of Proteomics 75(10), 2811-2823.

Lee BU, Yun SH, Ji JH, Bae GN. 2008. Inactivation of S. epidermidis, B. subtilis, and E. coli bacteria bioaerosols deposited on a filter utilizing airborne silver nanoparticles. J Microbiol Biotechnol 18(1), 176-182.

Lee KJ, Nallathamby PD, Browning LM, Osgood CJ, Xu XHN. 2007. In vivo imaging of transport and biocompatibility of single silver nanoparticles in early development of zebrafish embryos. ACS NANO 1(2), 133-143.

Lok CN, Ho CM, Chen R, He QY, Yu WY, Sun H, Che CM. 2006. Proteomic analysis of the mode of antibacterial action of silver nanoparticles. Journal of Proteome Research 5(4), 916-924.

Loo C, Lowery A, Halas N, West J, Drezek R. 2005. Immunotargeted nanoshells for integrated cancer imaging and therapy. Nano letters 5(4), 709-711.

Mallick K, Witcomb M, Scurrell M. 2006. Silver nanoparticle catalysed redox reaction: an electron relay effect. Materials chemistry and physics 97(2-3), 283-287.

Matsumura Y, Yoshikata K, Kunisaki SI, Tsuchido T. 2003. Mode of bactericidal action of silver zeolite and its comparison with that of silver nitrate. Applied and Environmental Microbiology 69(7), 4278-4281.

Melaiye A, Sun Z, Hindi K, Milsted A, Ely D, Reneker DH, Youngs WJ. 2005. Silver (I)− imidazole cyclophane gem-diol complexes encapsulated by electrospun tecophilic nanofibers: Formation of nanosilver particles and antimicrobial activity. Journal of the American Chemical Society 127(7), 2285-2291.

Morley KS, Webb PB, Tokareva NV, Krasnov AP, Popov VK, Zhang J, Howdle SM. 2007. Synthesis and characterisation of advanced UHMWPE/silver nanocomposites for biomedical applications. European Polymer Journal 43(2), 307-314.

Morones JR, Elechiguerra JL, Camacho A, Holt K, Kouri JB, Ramírez JT, Yacaman MJ. 2005. The bactericidal effect of silver nanoparticles. Nanotechnology, 16(10), 2346.

Parashar UK, Saxena PS, Srivastava A. 2009. Bioinspired synthesis of silver nanoparticles. Digest Journal of Nanomaterials & Biostructures (DJNB) 4(1).

Popescu M, Velea A, Lorinczi A. 2010. Biogenic production of nanoparticles. Dig J Nanomater Bios 5(4), 1035-40.

Prabhu S, Poulose EK. 2012. Silver nanoparticles: mechanism of antimicrobial action, synthesis, medical applications, and toxicity effects. International Nano Letters 2(1), 32.

Rai M, Yadav A, Gade A. 2009. Silver nanoparticles as a new generation of antimicrobials. Biotechnology advances 27(1), 76-83.

Reddy NJ, Vali DN, Rani M, Rani SS. 2014. Evaluation of antioxidant, antibacterial and cytotoxic effects of green synthesized silver nanoparticles by Piper longum fruit. Materials Science and Engineering: C,    34, 115-122.

Shin SH, Ye MK, Kim HS, Kang HS. 2007. The effects of nano-silver on the proliferation and cytokine expression by peripheral blood mononuclear cells. International Immunoph Armacology 7(13), 1813-1818.

Silver, S. (2003). Bacterial silver resistance: molecular biology and uses and misuses of silver compounds. FEMS microbiology reviews 27(2-3), 341-353.

Sondi I, Salopek-Sondi B. 2004. Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram-negative bacteria. Journal of Colloid and Interface Science 275(1), 177-182.

Sondi I, Salopek-Sondi B. 2004. Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram-negative bacteria. Journal of Colloid and Interface Science 275(1), 177-182.

Thomas V, Yallapu MM, Sreedhar B, Bajpai SK. 2007. A versatile strategy to fabricate hydrogel–silver nanocomposites and investigation of their antimicrobial activity. Journal Of Colloid and Interface science 315(1), 389-395.

Tien DC, Tseng KH, Liao CY, Tsung TT. 2008. Colloidal silver fabrication using the spark discharge system and its antimicrobial effect on Staphylococcus aureus. Medical Engineering and Physics 30(8), 948-952.

Veeraputhiran V. 2013. Bio-catalytic synthesis of silver nanoparticles. Int J Chem Tech Res 5(5), 255-2562.

Wright JB, Lam K, Hansen D, Burrell RE. 1999. Efficacy of topical silver against fungal burn wound pathogens. American Journal of Infection Control 27(4), 344-350.

Xu XHN, Brownlow WJ, Kyriacou SV, Wan Q, Viola JJ. 2004. Real-time probing of membrane transport in living microbial cells using single nanoparticle optics and living cell imaging. Biochemistry 43(32), 10400-10413.

Yakabe Y, Sano T, Ushio H, Yasunaga T. 1980. Kinetic studies of the interaction between silver ion and deoxyribonucleic acid. Chemistry Letters    9(4), 373-376.

Zhao G, Stevens SE. 1998. Multiple parameters for the comprehensive evaluation of the susceptibility of Escherichia coli to the silver ion. Biometals 11(1), 27-32.