Specific growth rate and biomass production of seaweeds Gracilaria (Gracilaria spp.)

Paper Details

Research Paper 07/02/2024
Views (1332)
current_issue_feature_image
publication_file

Specific growth rate and biomass production of seaweeds Gracilaria (Gracilaria spp.)

Jomari A. Orillosa, Maria Danesa S. Rabia, Julie Ann T. Mejias, Joyce F. Jungco, May Charmine Sevilla
Int. J. Biosci. 24(2), 89-96, February 2024.
Copyright Statement: Copyright 2024; The Author(s).
License: CC BY-NC 4.0

Abstract

Gracilaria is the most promising seaweed in the fishery industry nowadays and can tolerate different environmental conditions. This study aimed to evaluate the specific growth rate and biomass production of Gracilaria spp. in marine water environments using different culture techniques like vertical rope, floating monoline bamboo, plastic bottles, and the half-side bamboo technique. The experiment was laid out in a randomized complete block design (RCBD), where each treatment had three replications. A one-way ANOVA was used to test if there was a significant difference among the four treatments. Results have shown that all the seaweed seedlings had 100% survival across the different treatments. The specific growth from floating-monoline bamboo techniques is 83.73 g/day (v/v) and the width of clusters is 16.78 cm/day. The vertical rope technique got the highest result in length (15.50 cm/day). The result is significant since the computed F-value was greater than the tabular value. Results showed that the floating-monoline bamboo technique was the best among four techniques used in culturing Gracilaria (Gracilaria spp.) in marine water environments. The results of the study provide highlights on the possible adoption of culture techniques to cater to the fast-growing seaweed production among fish farmers and might be supported by other future studies.

BFAR. 1998. Administrative Act No. 8550 known as Philippine Fisheries Code. BFAR Regional Office No. 4 2/F ICC Building, NIA Complex,EDSA, Diliman, Quezon City.

Abreu MH, Varela DA, Henríquez L,  Villarroel A, Yarish C,  Sousa-Pinto I, Buschmann AH. 2009. Traditional vs. Integrated Multi-Trophic Aquaculture of Gracilaria chinlesis C. J. Bird, J. McLachlan & E. C. Oliveira: Productivity and physiological performance. Aquaculture 293, 211-220.

Salles J, Scherner F, Cristalina Y, Yoshimura M, Fanganiello Z, Bouzon P, Horta P. 2010. Cultivation of Native Seaweed Gracilaria domingensis (Rhodophyta) in Southern Brazil. Brazilian Archives of Biology and Technology 53353, 633-640.

FAO. 2016. The Artificial Cultivation of Gracilaria, Fisheries and Aquaculture Organization, Retrieved on August 24, 2016 from http://www.fao.org/docrep/field/003/AB730E/AB730E02.htm

McHugh DJ. 1991. Worldwide distribution of commercial resources of seaweeds including Gelidem. Hydrobiologia 221, 19-29. http://www.fao.org/3/a-y4765e.pdf

Marine Aquaculture. 2019. Seaweed Aquaculture: Gracilaria. Retrived from https://marine-aquaculture.extension.org/seaweed-aquaculture-gracilaria/

Training Manual on Gracilaria Culture and Seaweed Processing in China. 1990. Retrieved on December 29, 2015 from http://www.fao.org/docrep/field/003/ab730e/AB730E00.htm#TOC

Trono Jr. GC. 1988. Manual on Seaweed Culture: Pond Culture of Caulerpa and pond culture of Gracilaria. Maarine Science Institute, College of Science, University of the Philippines-Diliman Campus, Quezon City, Philippines. Retrieved on December 18, 2015 from (http://www.fao.org/docrep/field/003/ac417e/AC417E00.htm)

Trono Jr. GC, Azanza RV, Manuel D. 1983. The genus Gracilaria (Gigartinales, Rhodophyta) in the Philippines. Kalikasan, Philippine Journal of Biology 12, 15-41.

Related Articles

Sensory acceptability of gnocchi pasta added with different levels of malunggay (Moringa oleifera) leaves and blue ternate (Clitoria ternatea) flowers

Ralph Justyne B. Bague, James Troyo, Proceso C. Valleser Jr.*, Int. J. Biosci. 28(1), 103-114, January 2026.

Spatio-temporal analysis of vegetation cover and socio-environmental implications in Korhogo (Northern Côte d’Ivoire) from 1990-2020

Adechina Olayossimi*, Konan Kouassi Urbain, Ouattara Amidou, Yao-Kouamé Albert, Int. J. Biosci. 28(1), 94-102, January 2026.

Predicting the habitat suitability of Vitellaria paradoxa under climate change scenarios

Franck Placide Junior Pagny*, Anthelme Gnagbo, Dofoungo Kone, Blaise Kabré, Marie-Solange Tiébré, Int. J. Biosci. 28(1), 73-83, January 2026.

Performance response dynamics of rabbits (Oryctolagus cuniculus) to locally sourced, on-farm feed ingredients during the growing phase: Implications for the institutional rabbit multiplier project

Roel T. Calagui*, Janelle G. Cadiguin, Maricel F. Campańano, Jhaysel G. Rumbaoa, Louis Voltaire A. Pagalilauan, Mary Ann M. Santos, Int. J. Biosci. 28(1), 65-72, January 2026.

Chronopharmacology: Integration of circadian biology in modern pharmacotherapy

Sangram D. Chikane*, Vishal S. Adak, Shrikant R. Borate, Rajkumar V. Shete, Deepak V. Fajage, Int. J. Biosci. 28(1), 56-64, January 2026.

Evaluation of the impact of floristic diversity on the productivity of cocoa-based agroforestry systems in the new cocoa production area: The case of the Biankouma department (Western Côte d’Ivoire)

N'gouran Kobenan Pierre, Zanh Golou Gizele*, Kouadio Kayeli Anaïs Laurence, Kouakou Akoua Tamia Madeleine, N'gou Kessi Abel, Barima Yao Sadaiou Sabas, Int. J. Biosci. 28(1), 44-55, January 2026.

Utilization of locally sourced feed ingredients and their influence on the growth performance of broiler chickens (Gallus gallus domesticus): A study in support of the school’s chicken multiplier project

Roel T. Calagui*, Maricel F. Campańano, Joe Hmer Kyle T. Acorda, Louis Voltaire A. Pagalilauan, Mary Ann M. Santos, Jojo D. Cauilan, John Michael U. Tabil, Int. J. Biosci. 28(1), 35-43, January 2026.