The processing and preservation of biogas by utilizing cow manure

Paper Details

Research Paper 13/07/2023
Views (1215)
current_issue_feature_image
publication_file

The processing and preservation of biogas by utilizing cow manure

CO. Molua, DA. Ogwu, AO. Ukpene, M. Edobor, JO. Ataman
Int. J. Biosci. 23(1), 249-254, July 2023.
Copyright Statement: Copyright 2023; The Author(s).
License: CC BY-NC 4.0

Abstract

This study focused on the generation of biogas from cow dung, specifically examining the anaerobic production process using 10kg of cow dung as input. The results indicated that the amount of biogas produced was directly proportional to the quantity of dung used. A cumulative volume of 35.63m2 was obtained, with an average daily production of 7.5m2, suggesting the process was in its final stage. Additionally, the findings revealed that biogas production is influenced by the quantity of dung employed, meaning that a larger amount of dung can potentially yield a greater quantity of biogas. It is recommended that governments in developing countries encourage private organizations to engage in large-scale biogas production and incorporate its development into rural energy policies, considering the abundant availability of cow dung, the primary raw material for biogas production.

Al lmam MFI, Khan MZH, Sarkar MAR, Ali SM. 2013. Development of biogas processing from cow dung, poultry waste, and water hyacinth. International Journal of Natural and Applied Sciences 2(1), 13-17

Bouallagui H, Tuohami Y, Chelkh RB, Hamdi M. 2004. Bioreactor performance in anacrobic digestion of fruit and vegetable wastes. Institut National des Sciences Appliques et deTechnologies. Process Biochemistry 40 (2005), 989-995

Cromwell HC. 1999. Comprehensive studies of solid waste management. State -Department of Registration on water survey, Urbana, Bulletin No. 35, Page 198.

Gunnerson CG, Stukey DC.1986. Integrated resource recovery. Anaerobic digestion: principles and practices for biogas systems (English). World Bank technical paper; no. WTP 49 Washington, D.C.  World Bank Group.

Megonigal JP, Hines ME, Visscher PT. 2004. Anaerobic metabolism: linkages to trace gases and aerobic processes. Pages 317-424. In: Schlesinger WH. Editor). Biogeochemistry. Elsevier Pergamon, Oxford, UK.

Melemey MJ, Bryant MR. 1981. Fuel gas production from biogas. Chemical Rubber Compress Inc., West Palm Beach Florida. Page 26-40.

Moses JBK, Oludolapo AO. 2022. “Biogas Production and Applications in the Sustainable Energy Transition”, Journal of Energy, vol. 2022, Article ID 8750221, 43, 2022. https://doi.org/10.1155/2022/8750221.

Rohjy HA, Aduba JJ, Manta IH, Pamdaya Y. 2013. Development of anaerobic digester for the production of biogas using poultry and cattle dung: a case study of Federal University of Technology Minna cattle & poultry pen. International Journal of Life Sciences 2(3), 139-149.

Sagagi SB, Garba B, Usman NS. 2009. Studies on biogas production from fruits and vegetable waste. Bayero Journal of Pure and Applied Sciences 2(1), 115-118.

Samchucks SC. 2004. Biomass Bio-energy. 21* Annual Conference of Association of Microbiologist. Page 102.

Ukpai PA, Nnabuchi MN. 2013. Comparative study of biogas production from cow dung, cowpea and cassava peeling using 45 litres biogas digester. Advances in Applied Science Research 3 (3), 1864-1869

UNEP. 1981. United National Environmental Programmes: Biogas fertilizer system. Technical Reports, Training and Seminar in China. UNEP Nairobi.

World Energy Council, (WEC). 2001. Challenges of rural energy poverty in developing countries. Ulma press Lancaster.Penn.

Yadava LS, Hesse PR. 1981. The development and use of biogas technology in rural areas of asia (A status report 1981). Improving soil fertility through organic recycling. Food and Agriculture Organization (FAO) and United Nations Development Program (UNEP).

Related Articles

Sensory evaluation of horn snail (Telescopium telescopium) patty

Ma. Isabel P. Lanzaderas, Gilbert P. Panimdim, Proceso C. Valleser Jr.*, Int. J. Biosci. 28(2), 7-16, February 2026.

Two years evolution of deltamethrin, malathion and pirimiphos-methyl resistance in Aedes aegypti from urban in peri urban sites of Ouagadougou, Burkina Faso

Hyacinthe K. Toe*, Moussa W. Guelbeogo, Soumananaba Zongo, Aboubacar Sombie, Athanase Badolo, Int. J. Biosci. 28(2), 1-6, February 2026.

Physicochemical characterization of annatto seeds (Bixa orellana) sold in Ouagadougou and their oils extracted using chemical processes

Mah Alima Esther Traoré*, Adama Lodoun, Pingdwindé Marie Judith Samadoulougou-Kafando, Nestor Beker Dembélé, Kiswendsida Sandrine Léticia Dayamba, Charles Parkouda, Int. J. Biosci. 28(1), 169-178, January 2026.

Inventory of african yam bean (Sphenostylis stenocarpa (Hochst. ex A. Rich.) Harms) diversity in some Yoruba areas of Benin

Orobiyi Azize*, Faton Manhognon Oscar Euloge, Zongo Élisabeth Aboubié, Sossou Kpèdé Nicodème, Houngbo Marcel, Dossou Pierre Fourier, Ogoudjobi Ladékpo Sylvain, Balogoun Ibouraïman, Dansi Alexandre, Lokoyêyinou Laura Estelle, Int. J. Biosci. 28(1), 161-168, January 2026.

A severe case of human hepatic fascioliasis mimicking an oncological disease in Azerbaijan

Aygun A. Azizova*, Int. J. Biosci. 28(1), 155-160, January 2026.

Combined effect of irrigation frequency and leaf harvesting intensity on soil water content and productivity of baobab (Adansonia digitata) seedlings in vegetable production

Sissou Zakari, Imorou F. Ouorou Barrè, Mouiz W. I. A. Yessoufou*, Colombe E. A. E. Elegbe, Amamath S. Boukari, P. B. Irénikatché Akponikpè, Int. J. Biosci. 28(1), 143-154, January 2026.

Develop sustainable coffee-based farming model using cash crops production

Maribel L. Fernandez, Roje Marie C. Rosqueta*, Diosa G. Alasaas, Boyet C. Pattung, Jaylord Dalapo, Janette Empleo, Int. J. Biosci. 28(1), 134-142, January 2026.

Animal anthrax in northern Tanzania (2015-2025): Epidemiological trends and frontline response capacity

Yohana Michael Kiwone*, Beatus Lyimo, Rowenya Mushi, Joram Buza, Int. J. Biosci. 28(1), 123-133, January 2026.