The processing and preservation of biogas by utilizing cow manure

Paper Details

Research Paper 13/07/2023
Views (1145)
current_issue_feature_image
publication_file

The processing and preservation of biogas by utilizing cow manure

CO. Molua, DA. Ogwu, AO. Ukpene, M. Edobor, JO. Ataman
Int. J. Biosci. 23(1), 249-254, July 2023.
Copyright Statement: Copyright 2023; The Author(s).
License: CC BY-NC 4.0

Abstract

This study focused on the generation of biogas from cow dung, specifically examining the anaerobic production process using 10kg of cow dung as input. The results indicated that the amount of biogas produced was directly proportional to the quantity of dung used. A cumulative volume of 35.63m2 was obtained, with an average daily production of 7.5m2, suggesting the process was in its final stage. Additionally, the findings revealed that biogas production is influenced by the quantity of dung employed, meaning that a larger amount of dung can potentially yield a greater quantity of biogas. It is recommended that governments in developing countries encourage private organizations to engage in large-scale biogas production and incorporate its development into rural energy policies, considering the abundant availability of cow dung, the primary raw material for biogas production.

Al lmam MFI, Khan MZH, Sarkar MAR, Ali SM. 2013. Development of biogas processing from cow dung, poultry waste, and water hyacinth. International Journal of Natural and Applied Sciences 2(1), 13-17

Bouallagui H, Tuohami Y, Chelkh RB, Hamdi M. 2004. Bioreactor performance in anacrobic digestion of fruit and vegetable wastes. Institut National des Sciences Appliques et deTechnologies. Process Biochemistry 40 (2005), 989-995

Cromwell HC. 1999. Comprehensive studies of solid waste management. State -Department of Registration on water survey, Urbana, Bulletin No. 35, Page 198.

Gunnerson CG, Stukey DC.1986. Integrated resource recovery. Anaerobic digestion: principles and practices for biogas systems (English). World Bank technical paper; no. WTP 49 Washington, D.C.  World Bank Group.

Megonigal JP, Hines ME, Visscher PT. 2004. Anaerobic metabolism: linkages to trace gases and aerobic processes. Pages 317-424. In: Schlesinger WH. Editor). Biogeochemistry. Elsevier Pergamon, Oxford, UK.

Melemey MJ, Bryant MR. 1981. Fuel gas production from biogas. Chemical Rubber Compress Inc., West Palm Beach Florida. Page 26-40.

Moses JBK, Oludolapo AO. 2022. “Biogas Production and Applications in the Sustainable Energy Transition”, Journal of Energy, vol. 2022, Article ID 8750221, 43, 2022. https://doi.org/10.1155/2022/8750221.

Rohjy HA, Aduba JJ, Manta IH, Pamdaya Y. 2013. Development of anaerobic digester for the production of biogas using poultry and cattle dung: a case study of Federal University of Technology Minna cattle & poultry pen. International Journal of Life Sciences 2(3), 139-149.

Sagagi SB, Garba B, Usman NS. 2009. Studies on biogas production from fruits and vegetable waste. Bayero Journal of Pure and Applied Sciences 2(1), 115-118.

Samchucks SC. 2004. Biomass Bio-energy. 21* Annual Conference of Association of Microbiologist. Page 102.

Ukpai PA, Nnabuchi MN. 2013. Comparative study of biogas production from cow dung, cowpea and cassava peeling using 45 litres biogas digester. Advances in Applied Science Research 3 (3), 1864-1869

UNEP. 1981. United National Environmental Programmes: Biogas fertilizer system. Technical Reports, Training and Seminar in China. UNEP Nairobi.

World Energy Council, (WEC). 2001. Challenges of rural energy poverty in developing countries. Ulma press Lancaster.Penn.

Yadava LS, Hesse PR. 1981. The development and use of biogas technology in rural areas of asia (A status report 1981). Improving soil fertility through organic recycling. Food and Agriculture Organization (FAO) and United Nations Development Program (UNEP).

Related Articles

The protective effect of black pepper (Piper nigrum) on liver enzymes in streptozotocin-induced diabetic rats

Amani A. R. Filimban, Khulud A. Wathi, Int. J. Biosci. 27(4), 140-149, October 2025.

Production of bioplastics (PHB) using waste paper as feed stock by Cupriavidus taiwanensis

Ajeena Davis, Jini Joseph, Int. J. Biosci. 27(4), 130-139, October 2025.

Gill ectoparasites of the mugilidae from the Ebrié lagoon, Abidjan (Côte d’Ivoire)

Eby Yoboué Gnamma Honorine Alla, Carel Wilfried Bermian Dibi-Ahui, Fidèle Kouassi Kouakou, Abouo Béatrice Adepo-Gourene, Int. J. Biosci. 27(4), 123-129, October 2025.

Impacts of diverse water management systems on growth and yield of two prominent boro rice cultivars in Bangladesh

Zahidul Islam, Md Ekhlasur Rahman, Md Khayrul Islam Bashar, Sharmin Sultana, Md Taharat Al Tauhid, Md Rabiul Islam, Md Shahed Hossain, Md Musa Mondal, Pradip Kumar Biswas, Int. J. Biosci. 27(4), 110-122, October 2025.

First record of Brachymeria excarinata Gahan, 1925 (Hymenoptera: Chalcididae) parasitizing Plutella xylostella (L.) (Lepidoptera: Plutellidae) in west Africa

Babacar Labou, Etienne Tendeng, El hadji Sérigne Sylla, Mamadou Diatte, Karamoko Diarra, Int. J. Biosci. 27(4), 104-109, October 2025.

Assessment of adsorption isotherms of three plantain flours (Musa paradisiaca L. var. Horn 1, FHIA 21 and PITA 3) and cassava flour (Manihot esculenta Crantz var. Bonoua 2)

Brou Koffi Siméon, Yue Bi Yao Clément, Kane Fako, Douali Gohi Bi Douali Jean-Sory, Tano Kablan, Int. J. Biosci. 27(4), 93-103, October 2025.

Exploring the antioxidant efficacy of boldine: A natural compound with broad-spectrum activity

Maharani Jaganathan, Kathiresan Suresh, Manickam John, Rajeswari Vasu, Theerthu Azhamuthu, Nihal Ahamed Abulkalam Asath, Ravichandran Pugazhendhi, Pratheeba Veerapandiyan, Int. J. Biosci. 27(4), 82-92, October 2025.

Assessment of genetic parameters and yield trait stability in sweet sorghum genotypes through AMMI and GGE biplot approaches

A. H. Inuwa, H. A. Ajeigbe, Y. Mustapha, B. S. Aliyu, I. I. Angarawai, Int. J. Biosci. 27(4), 69-81, October 2025.