Morphological and molecular analysis of commercial Cordyceps militaris strains in Thailand

Paper Details

Research Paper 01/10/2018
Views (406) Download (28)
current_issue_feature_image
publication_file

Morphological and molecular analysis of commercial Cordyceps militaris strains in Thailand

Junya Nopparat, Kawee Sujipuli, Wassana Chatdumrong
Int. J. Biosci.13( 4), 378-386, October 2018.
Certificate: IJB 2018 [Generate Certificate]

Abstract

Cordyceps militaris, an entomopathogenic fungusi, has been extensively utilized for many years as a functional food and for medicinal activities in Thailand. The fungus has numerous strains which are commonly sold in herbal markets and not all have been identified. Seven commercial C. militaris strains (CMs1, CMs2, CMs3, CMs4, CMs5, CMs6 and CMs7) were studied using macroscopic methods (mycelium growth), microscopic methods (cross section and SEM techniques), and molecular markers. Most strains recorded high mycelial growth rates at colony diameters of 7.81±0.20 to 8.50±0.00cm after 18 days, with strain CMs4 the lowest at 6.24±0.19cm. Characteristics of the stromal cross section in all strains observed under a microscope were golden yellow at the edge with colorless hyphae. A few conidia of all strains observed by SEM had oval shapes but most had globose shape with more single than short chain conidia. Genetic diversity among the seven strains gave 100% nucleotide-sequence homology at the ITS and 28S rRNA regions. These data suggested that the macroscopic method was a highly powerful tool for strain identification of C. militaris.

VIEWS 29

Ajawatanawong P, Baldauf SL. 2013. Evolution of protein indels in plants, animals and fungi. BMC Evolutionary Biology 13, 140. https://doi.org/10.1186/1471-2148-13-140

Albini, M, Joseph E, Junier P. 2017. Fungal biogenic patina: optimization of an innovative conservation treatment for copper-based artefacts. PhD thesis. Université de Neuchâtel, Faculté des sciences 200. http://doc.rero.ch/record/322673/files/00002593.pdf

Avtonomova AV, Krasnopolskaya LM, Shuktueva MI, Isakova EB, Bukhman VM. 2015. Assessment of Antitumor Effect of Submerged Culture of Ophiocordyceps sinensis and Cordyceps militaris. Antibiot Khimioter 60(7-8), 14-17.

Brown AHS, Smith G. 1957. The genus Paecilomyces bainier and its perfect stage Byssochlamys westling. Transactions of the British Mycological Society 40(1), 17-89. https://doi.org/10.1016/s0007-1536(57)80066-7

Bunyard BA, Nicholson MS, Royse DJ. 1994. A systematic assessment of Morchella using RFLP analysis of the 28S ribosomal RNA gene. Mycologia 86(6), 762-772. https://doi.org/10.1080/00275514.1994.12026481

Chiu CP, Liu SC, Tang CH, Chan Y, El-Shazly M, Lee CL, Du YC, Wu TY, Chang FR, Wu YC. 2016. Anti-inflammatory Cerebrosides from Cultivated Cordyceps militaris. Agricultural and Food Chemistry 64(7), 1540–154. https://doi.org/10.1021/acs.jafc.5b0593

Dang HN, Wang CL, Lay HL. 2017. Effect of nutrition, vitamin, grains, and temperature on the myceliumgrowth and antioxidant capacity of Cordyceps militaris (strains AG-1and PSJ-1). Rediation Reseach and Applied Science 11, 130-138. https://doi.org/10.1016/j.jrras.2017.11.003

Guo LX, Hong YH, Zhou QZ, Zhu Q, Xu XM, Wang JH. 2017. Fungus-larva relation in the formation of Cordyceps sinensis as revealed by stable carbon isotope analysis. Scientific Reports 7(1), 7789. https://doi.org/10.1038/s41598-017-08198-1

Guo LX, Hong YH, Zhou QZ, Zhu Q, Xu XM, Wang JH. 2017. Fungus-larva relation in the formation of Cordyceps sinensis as revealed by stable carbon isotope analysis. Scientific Reports 7(1), 7789. https://doi.org/10.1038/s41598-017-08198-1

Kang N, Lee HH, Park I, Seo YS. 2017. Development of high cordycepin-producing Cordyceps militaris strains. Mycobiology 45(1), 31-38. http://doi.org/10.5941/MYCO.2017.45.1.31

Lam KY, Chan GK, Xin GZ, Xu H, Ku CF, Chen JP, Yao P, Lin HQ, Dong TT, Tsim KW. 2015. Authentication of Cordyceps sinensis by DNA Analyses: Comparison of ITS sequence analysis and RAPD-derived molecular markers. Molecules 20(12), 22454–22462. https://doi.org/10.3390/molecules201219861

Lee BJ, Lee MA, Kim YG, Lee KW, Choi YS, Lee BE, Song HY. 2013.  Cultural characteristics of Cordyceps militaris strain ‘Yedang 3’ on various media and nutritional conditions. Mushroom Science and Production 11(3), 124-130. https://doi.org/10.14480/JM.2013.11.3.124

Li Y, Jiao L, Yao YJ. 2013. Non-concerted ITS evolution in fungi, as revealed from the important medicinal fungus Ophiocordyceps sinensis. Molecular Phylogenetics and Evolution 68, 373-379. https://doi.org/10.1016/j.ympev.2013.04.010

Lin LT, Lai YJ, Wu SC, Hsu WH, Tai CJ. 2018. Optimal conditions for cordycepin production in surface liquid-cultured Cordyceps militaris treated with porcine liver extracts for suppression of oral cancer. Journal of Food and Drug Analysis 26(1), 135 -144. https:/doi.org/10.1016/j.jfda.2016.11.021

Liu HJ, Hu HB, Chu C, Li Q, Li P. 2011. Morphological and microscopic identification studies of Cordyceps and its counterfeits. Acta Pharmaceutica Sinica B. 1(3), 189-195. https://doi.org/10.1016/j.apsb.2011.06.013

Liu JY, Feng CP, Li X, Chang MC, Meng JL, Xu LJ. 2016. Immunomodulatory and antioxidative activity of Cordyceps militaris polysaccharides in mice. International Journal of Biological Macromolecules 86, 594–598. https://doi.org/10.1016/j.ijbiomac.2016.02.009

Ma L, Zhang S, Du M. 2015. Cordycepin from Cordyceps militaris prevents hyperglycemia in alloxan-induced diabetic mice. Nutrition Research 35(5), 431-439. https://doi.org/10.1016/j.nutres.2015.04.011

Park YJ, Min BR. 2005. Sequence Analysis of the Internal Transcribed Spacer of Ribosomal DNA in the Genus Rhizopus. Mycobiology 33(2), 109-112. https://doi.org/10.4489/MYCO.2005.33.2.109

Petch T. 1936. Cordyceps militaris and Isaria farinosa. Transactions of the British Mycological Society 20(3–4), 216-224. https://doi.org/10.1016/S0007-1536(36)80014-X

Pettit RH. 1895. Studies in artificial cultures of entomogenous fungi. Bulletin (Cornell University. Agricultural Experiment Station) 97, 339-378.

Raethong N, Laoteng K, Vongsangnak W. 2018. Uncovering global metabolic response to cordycepin production in Cordyceps militaris through transcriptome and genome-scale network-driven analysis. Scientific Reports 8, 9250. https://doi.org/10.1038/s41598-018-27534-7

Schoch CL, Seifert KA, Huhndorf S, Robert V, Spouge JL, Levesque CA, Chen W. 2012. Fungal Barcoding Consortium; Fungal Barcoding Consortium Author List. Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for Fungi. Microbiology 109(16), 6241-6246. https://doi.org/10.1073/pnas.1117018109

Shrestha B, Han SK, Yoon KS, Sung JM. 2005. Morphological Characteristics of  Conidiogenesis in Cordyceps militaris. Mycobiology 33(2), 69-76. https://doi.org/10.4489/MYCO.2005.33.2.069

Song J, Wang Y, Teng M, Zhang S, Yin M. 2016. Cordyceps militaris induces tumor cell death via the caspasedependent mitochondrial pathway in HepG2 and MCF7 cells. Molecular Medicine Reports 13(6), 5132-5140. https://doi.org/10.3892/mmr.2016.5175

Sung GH, Shrestha B, Han SK, Sung JM. 2011. Growth and Cultural Characteristics of Ophiocordyceps longissima Collected in Korea. Mycobiology 39(2), 85-91. https://doi.org/10.4489/MYCO.2011.39.2.085

Ta H. 1999. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium Series 41, 95-98.

Tapingkae T. 2012. Cordyceps mushroom cultivation. Bangkok: Two Four Printing, 15-62. (Thai article)

Tatani K, Hiratochi M, Kikuchi N, Kuramochi Y, Watanabe S, Yamauchi Y. 2016. Identification of adenine and benzimidazole nucleosides as potent human concentrative nucleoside transporter 2 inhibitors: potential treatment for hyperuricemia and gout. Journal of Medicinal Chemistry 59(8), 3719-3731. https://doi.org/10.1021/acs.jmedchem.5b01884

Tianzhu Z, Shihai Y, and Juan D. 2015. The effects of cordycepin on ovalbumin-induced allergic inflammation by strengthening treg response and suppressing Th17 responses in ovalbumin-sensitized mice. Inflammation 38(3), 1036-1043. https://doi.org/10.1007/s10753-014-0068-y

Tulasne LR, Tulasne C. 1865. Selecta Fungorum Carpologia. vol. 3. (English translation). Clarendon Press, Oxford.

Watanabe M, Yonezawa T, Lee K, Kumagai S, Sugita-Konishi Y, Goto K, Hara-Kudo Y. 2011. Molecular phylogeny of the higher and lower taxonomy of the Fusarium genus and differences in the evolutionary histories of multiple genes. BMC Evolutionary Biology 11 322. https://doi.org/10.1186/1471-2148-11-322

Wen TC, Long FY, Kang C, Wang F, Zeng W. 2017. Effects of additives and bioreactors on cordycepin production from Cordyceps militaris in liquid static culture. Mycosphere 8(7), 886-898.

White T, Burns J, Lee S, Taylor J. 1990. Amplification and direct sequencing of fungal ribosoma lRNA genes for phylogenetics. In Innis, M. A. D. H. Gelfand, J. J. Sinsky, and T. J. White. (Eds.),
PCR protocols: a guide to methods and applications. Academic Press, San Diego, California 482

Yong T, Zhang M, Chen D, Shuai O, Chen S, Su J. 2016. Actions of water extract from Cordyceps
militaris
in hyperuricemic mice induced by potassium oxonate combined with hypoxanthine.

Zhang P, Huang C, Fu C, Tian Y, Hu Y, Wang B. 2015. Cordycepin (3′-deoxyadenosine) suppressed HMGA2, Twist1 and ZEB1-dependent melanoma invasion and metastasis by targeting miR-33b. Oncotarget 6(12), 9834-9853. https://doi.org/10.18632/oncotarget.3383

Zhang P, Huang C, Fu C, Tian Y, Hu Y, Wang B. 2015. Cordycepin (3′-deoxyadenosine) suppressed HMGA2, Twist1 and ZEB1-dependent melanoma invasion and metastasis by targeting miR-33b. Oncotarget 6, 9834-9853. https://doi:10.18632/ oncotarget.3383.

Zhong X, Peng Q, Qi L, Lei W, Liu X. 2010. rDNA-targeted PCR primers and FISH probe in the detection of Ophiocordyceps sinensis hyphae and conidia. Microbiological Methods 83(2), 188-193. https://doi.org/10.1016/j.mimet.2010.08.020.