Climate matching of endemic orchid (Phalaenopsis amabilis L.) Blume Forma Pelaihari) in South kalimantan

Paper Details

Research Paper 01/03/2017
Views (683)
current_issue_feature_image
publication_file

Climate matching of endemic orchid (Phalaenopsis amabilis L.) Blume Forma Pelaihari) in South kalimantan

Gusti Rusmayadi, Rodinah, Isserep Sumardi, Heri Sudjatmiko, Endah Wahyuni Kuswidyosusanti
J. Biodiv. & Environ. Sci. 10(3), 35-42, March 2017.
Copyright Statement: Copyright 2017; The Author(s).
License: CC BY-NC 4.0

Abstract

This study was aimed to make and evaluate climate matching for assessing region suitability for endemic orchid (Phaleonopsis amabilis– Pelaihari) in South Kalimantan. The study was conducted at three locations that have different region and climate conditions. Characteristics of orchids likes flowering and fruits data were collected based on interview with farmer and field observation. The correlation between flower and fruit orchids and climate was analysed with stepwise regression method. Then, temperature-Humidity Index (THI) as one of climate matching method is expressed in function climate element (CE) that is correlation to flowering orchid characteristic (FC). Temperature and relative humidity was found as climatic elements that has high correlation with characteristic of orchid. Sum of flowers (SF) and sum of fruits (SFr) were affected by temperature and relative humidity, respectively. The analysis shows temperature and humidity can be expressed as function, i.e.: THI for SF = -298.369 + 2.42215 T + 2.92066 RH and THI for SFr = 118.162 – 4.36413 T + 0.05475 RH. The first differential equation will get optimum value of temperature and humidity index for SF and SFr that are 4.9 and 0.8 respectively. Air temperature and relative humidity can determined the other suitable for development. The suitable region for optimal SF and SFr are the region that average temperature between 27.5 – 27.9⁰C and average relative humidity between 77.5 – 85.9%. The temperature and humidity index can be followed up as effective indicator to estimate suitable region for development orchid.

Chan CL, Lamb A, Shim PS, Wood JJ. 1994. Orchid of Borneo Vol I: Introduction and Selection of Taxa. The Sabah Society.

Draper N, Smith H. 1981. Applied Regression Analysis, 2d Edition, New York: John Wiley & Sons, Inc.

Mayers JH, Forgy EW. 1963. The Development of numerical credit evaluation systems. Journal of the American Statistical Association 58, 799–806.

Robinson KA. 2002. Effect of temperature on the flower development rate and morphology of Phalaenopsis orchid. MS thesis. Mich. State Univ. East Lansing.

Rodinah 2000. Koleksi dan Karakteristik Anggrek Langka Kalimantan Selatan. Fakultas Pertanian- Pemprov, Kalimantan Selatan. Banjarbaru.

Sakanishi Y, Imanishi H, Ishida G. 1980. Effect of temperature on growth and flowering of Phalaenopsis amabilis. Bull. Univ. Osaka Pref., Ser. B, 32, 1-9.

Thom EC. 1959. The Discomfort Index. Weattherwise.

Wang YT, Lee N. 1994. Another look at an old crop: Potted blooming orchids -Part 2.  Greenhouse Grower 12(2), 36-38.

Related Articles

Impact of sewage sludge on plant diversity in the Nomayos area, in the central regions of Cameroon

Valerie Njitat Tsama, Yanick Borel Kamga, Valerie Guy Wafo Djumyom, François Victor Nguetsop, J. Biodiv. & Environ. Sci. 27(4), 95-105, October 2025.

An investigation of phytochemical constitutents and pharmacological activities of Strobilanthes andamanensis leaf extract

Deepika, V. Ambikapathy, S. Babu, A. Panneerselvam, J. Biodiv. & Environ. Sci. 27(4), 86-94, October 2025.

Assessing public awareness and knowledge of drinking water safety in Carmen, Cagayan De Oro City, Philippines

Ronnie L. Besagas, Romeo M. Del Rosario, Angelo Mark P. Walag, J. Biodiv. & Environ. Sci. 27(4), 80-85, October 2025.

Baseline floristics and above-ground biomass in permanent sample plots across miombo woodlands in different land tenure systems in Hwedza, Zimbabwe

Edwin Nyamugadza, Sara Feresu, Billy Mukamuri, Casey Ryan, Clemence Zimudzi, J. Biodiv. & Environ. Sci. 27(4), 65-79, October 2025.

Adapting to shocks and stressors: Aqua-marine processors approach

Kathlyn A. Mata, J. Biodiv. & Environ. Sci. 27(4), 57-64, October 2025.

Design and development of a sustainable chocolate de-bubbling machine to reduce food waste and support biodiversity-friendly cacao processing

John Adrian B. Bangoy, Michelle P. Soriano, J. Biodiv. & Environ. Sci. 27(4), 41-47, October 2025.